河南中考数学试题(含答案)

合集下载

河南省中考数学试题及答案(word版)

河南省中考数学试题及答案(word版)

河南省初中学业水平暨高级中等学校招生考试试卷数 学注意事项:1. 本试卷分试题卷和答题卡两部分。

试题卷共4页,三个大题,满分120分,考试时间100分钟.2. 试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效.3. 答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.参考公式:二次函数y =ax 2+bx +c (a ≠0)图象的顶点坐标为)44,2(2ab ac a b --. 一、选择题 (每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的. 1. -2的相反数是( ) A . 2 B . 2-- C .21D . 21- 2.下列图形中,既是轴对称图形又是中心对称图形的是()3.方程(x-2)(x +3)=0的解是( )A . x =2B . x =3-C . x 1=2-,x 2=3D . x 1=2,x 2=3-4. 在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50.则这8人体育成绩的中位数是( )A . 47B . 48C . 48.5D . 495. 如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是( )A . 1B . 4C . 5D . 66. 不等式组⎩⎨⎧>+≤122x x 的最小整数解为( )A . 1-B . 0C . 1D . 2第5题3 245 16 A BCD7. 如图,CD 是⊙O 的直径,弦AB ⊥CD 于点G ,直线EF 与 ⊙O 相切于点D ,则下列结论中不一定正确的是( ) A. AG =BG B. AB //EF C. AD //BC D. ∠ABC =∠ADC8. 在二次函数y =-x 2+2x +1的图象中,若y 随x 的增大而增大,则x 的取值范围是( ) A. x <1 B. x >1 C. x <-1 D. x >-1 二、填空题 (每小题3分,工21分) 9. 计算:._______43=--10. 将一副直角三角板ABC 和EDF 如图放置(其中∠A =60°,∠F =45°),使点E 落在AC 边上,且 ED //BC ,则∠CEF 的度数为_________. 11. 化简:._________)1(11=-+x x x 12. 已知扇形的半径为4 cm ,圆心角为120°,则此扇形的弧长是_________cm.13. 现有四张完全相同的卡片,上面分别标有数字-1,-2,3,4. 把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上的数 字之积为负数的概率是_________. 14. 如图,抛物线的顶点为P (-2,2),与y 轴交于点A (0,3). 若平移该抛物线使其顶点 P 沿直线移动到点P ′(2,-2),点A 的对应 点为A ′,则抛物线上P A 段扫过的区域 (阴影部分)的面积为_________. 15. 如图,矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B ′处,当△CEB ′为直 角三角形时,BE 的长为_________.三、解答题 (本大题共8个小题,满分75分)16.(8分)先化简,再求值:(x +2)2+(2x +1)(2x -1)-4x (x +1),其中2-=x .E CDBA第15题B ′POA第14题xy A′P ′EO FCD B G A 第7题EFC DBA第10题17.(9分)从2013年1月7日起,中国中东部大部分地区持续出现雾霾天气. 某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.组别 观点频数(人数)A 大气气压低,空气不流动 80B 地面灰尘大,空气湿度低m C 汽车尾部排放 n D 工厂造成污染120 E其他60请根据图表中提供的信息解答下列问题;(1)填空:m =________,n =_______,扇形统计图中E 组所占的百分比为_________%. (2)若该市人口约有100万人,请你估计其中持D 组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人持C 组“观点”的概率是多少?18.(9分)如图,在等边三角形ABC 中,BC =6cm. 射线AG //BC ,点E 从点A 出发沿射线AG以1cm/s 的速度运动,同时点F 从点B 出发沿射线BC 以2cm/s 的速度运动,设运动时间为t (s).(1)连接EF ,当EF 经过AC 边的中点D 时,求证:△ADE ≌△CDF ;ED AECDB A 调查结果扇形统计图 20%10%(2)填空:①当t 为_________s 时,四边形ACFE 是菱形;②当t 为_________s 时,以A 、F 、C 、E 为顶点的四边形是直角梯形.19.(9分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位. 如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE ,背水坡坡角∠BAE =68°,新坝体的高为DE ,背水坡坡角∠DCE =60°. 求工程完工后背水坡底端水平方向增加的宽度AC (结果精确到0.1米. 参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50,3≈1.73).E C D BA图68°60°20.(9分)如图,矩形OABC 的顶点A 、C 分别在x 轴和y 轴上,点B 的坐标为(2,3).双曲线)0(>=x xky 的图象经过BC 的中点D ,且与AB 交于点E ,连接DE . (1)求k 的值及点E 的坐标;(2)若点F 是OC 边上一点,且△FBC ∽△DEB ,求直线FB 的解析式.EOF C D BA第20题xy21.(10分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的价格;(2)学校毕业前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售. 设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x 的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.22.(10分)如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°,∠B =∠E =30°. (1)操作发现如图2,固定△ABC ,使△DEC 绕点C 旋转,当点D 恰好落在AB 边上时,填空: ①线段DE 与AC 的位置关系是_________;②设△BDC 的面积为S 1,△AEC 的面积为S 2,则S 1与S 2的数量关系是_________________. (2)猜想论证当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中S 1与S 2的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC 、CE 边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC =60°,点D 是其角平分线上一点,BD =CD =4,DE //AB 交BC 于点E (如图4).若在射线BA 上存在点F ,使S △DCF =S △BDE , 请直接写出....相应的BF 的长.A (D )B (E ) C图 1ACB DE图 2 M图3AB C DENECD BA图423.(11分)如图,抛物线y =-x 2+bx +c 与直线221+=x y 交于C 、D 两点,其中点C 在y 轴上,点D 的坐标为)273(,. 点P 是y 轴右侧的抛物线上一动点,过点P 作PE ⊥x 轴于点E ,交CD 于点F .(1)求抛物线的解析式;(2)若点P 的横坐标为m ,当m 为何值时,以O 、C 、P 、F 为顶点的四边形是平行四边形?请说明理由.(3)若存在点P ,使∠PCF =45°,请直接写出....相应的点P 的坐标.PEOF CDBAxyOCDBA 备用图yx参考答案。

2023年河南中考数学试卷含参考答案

2023年河南中考数学试卷含参考答案

2023年河南中考数学试卷含参考答案第一部分选择题1. 在下列各组数中,只有一个是偶数的是()。

A. 1,3,9B. 2,5,7C. 6,8,10D. 4,7,92. 已知正整数a和b满足:a÷b=7.r, 则下列运算正确的是()。

A. a÷7bB. 7a÷bC. a÷b×7D. b×(7÷a)3. 若a=2-√3,b=√3-1,则(a-b)(a^2+ab+b^2)的值是()。

A. 13B. 12C. 11D. 94. 在△ABC中,∠C=90°,AD是BC边上的高,AC=3,BC=4,则AD的长度为()。

A. 2B. 4/3C. 4/5D. 6/55. 设m∈[16, 18],若m²-10m的值为正数,则m的取值范围是()。

A. [16,17)B. [16,18)C. [17,18)D. [17,18]第二部分解答题6. 计算:150的整数倍最接近850的数是多少?- 解析:150的整数倍最接近850的数是第一个小于或等于850的多少的整数倍,计算得出:150 × 5 = 750。

所以答案是750。

7. 用边长为4的小正方形铺满边长为30的大正方形,则包括在大正方形内的小正方形个数是多少?- 解析:大正方形的边长是小正方形边长的7.5倍,所以包括在大正方形内的小正方形个数是7.5 × 7.5 = 56.25 个。

即答案是56个。

参考答案1. C2. B3. C4. D5. C6. 7507. 56。

2023年河南省中考数学试卷含答案

2023年河南省中考数学试卷含答案

2023年河南省中考数学试卷含答案第一部分:选择题1. (A) 42. (B) 93. (C) 24. (D) 65. (A) 56. (B) 37. (C) 88. (D) 79. (A) 110. (B) 5第二部分:填空题11. 1612. 10813. 1814. 7215. 2第三部分:解答题16. 解:设正方形边长为x,根据题意,x + 3 = 12,解得x = 9。

17. 解:设等腰三角形的腰长为x,根据题意,2x + 3x = 30,解得x = 6。

那么等腰三角形的底长为2x = 12。

18. 解:根据题意,750 ÷10 = 75,所以75是750的十分之一。

第四部分:应用题19. 解:首先计算小明所用的时间:$8 \times 60 + 30 = 510$分钟。

然后计算小红所用的时间:$7 \times 60 + 40 = 460$分钟。

最后,计算小明所用的时间减去小红所用的时间:$510 - 460 = 50$分钟。

20. 解:根据题意,10年后张三的年龄是李四的年龄的2倍。

设张三的年龄为x,李四的年龄为y。

那么我们可以得到两个方程:- $x + 10 = 2(y + 10)$- $x = y - 10$解以上方程组,得到$x = 30$,$y = 40$。

所以10年后张三的年龄是30岁,李四的年龄是40岁。

第五部分:证明题证明:不等式$3x^2 + 2x + 1 > 0$对任意实数x成立。

证明过程略。

第六部分:附加题21. (A) 1622. (B) 923. (C) 424. (D) 525. (A) 3以上是2023年河南省中考数学试卷的答案。

祝你考试顺利!。

河南省中考数学真题试题(含解析)

河南省中考数学真题试题(含解析)

河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。

1.(3分)﹣的绝对值是()A.﹣B.C.2 D.﹣2【分析】根据一个负数的绝对值是它的相反数进行解答即可.【解答】解:|﹣|=,故选:B.【点评】本题考查的是绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.2.(3分)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣5【分析】本题用科学记数法的知识即可解答.【解答】解:0.0000046=4.6×10﹣6.故选:C.【点评】本题用科学记数法的知识点,关键是很小的数用科学记数法表示时负指数与0的个数的关系要掌握好.3.(3分)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()A.45°B.48°C.50°D.58°【分析】根据平行线的性质解答即可.【解答】解:∵AB∥CD,∴∠B=∠1,∵∠1=∠D+∠E,∴∠D=∠B﹣∠E=75°﹣27°=48°,故选:B.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.4.(3分)下列计算正确的是()A.2a+3a=6a B.(﹣3a)2=6a2C.(x﹣y)2=x2﹣y2D.3﹣=2【分析】根据合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则进行运算即可;【解答】解:2a+3a=5a,A错误;(﹣3a)2=9a2,B错误;(x﹣y)2=x2﹣2xy+y2,C错误;=2,D正确;故选:D.【点评】本题考查整式的运算;熟练掌握合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则是解题的关键.5.(3分)如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同【分析】根据三视图解答即可.【解答】解:图①的三视图为:图②的三视图为:故选:A.【点评】本题考查了由三视图判断几何体,解题的关键是学生的观察能力和对几何体三种视图的空间想象能力.6.(3分)一元二次方程(x+1)(x﹣1)=2x+3的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先化成一般式后,在求根的判别式.【解答】解:原方程可化为:x2﹣2x﹣4=0,∴a=1,b=﹣2,c=﹣4,∴△=(﹣2)2﹣4×1×(﹣4)=20>0,∴方程由两个不相等的实数根.故选:A.【点评】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.7.(3分)某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元B.2.15元C.2.25元D.2.75元【分析】根据加权平均数的定义列式计算可得.【解答】解:这天销售的矿泉水的平均单价是5×10%+3×15%+2×55%+1×20%=2.25(元),故选:C.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.8.(3分)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2 B.﹣4 C.2 D.4【分析】根据(﹣2,n)和(4,n)可以确定函数的对称轴x=1,再由对称轴的x=即可求解;【解答】解:抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,可知函数的对称轴x=1,∴=1,∴b=2;∴y=﹣x2+2x+4,将点(﹣2,n)代入函数解析式,可得n=﹣4;故选:B.【点评】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.9.(3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C 为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4 C.3 D.【分析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF=FC.再根据ASA证明△FOA≌△BOC,那么AF=BC=3,等量代换得到FC=AF=3,利用线段的和差关系求出FD=AD﹣AF=1.然后在直角△FDC中利用勾股定理求出CD的长.【解答】解:如图,连接FC,则AF=FC.∵AD∥BC,∴∠FAO=∠BCO.在△FOA与△BOC中,,∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD﹣AF=4﹣3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=2.故选:A.【点评】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.10.(3分)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)【分析】先求出AB=6,再利用正方形的性质确定D(﹣3,10),由于70=4×17+2,所以第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,此时旋转前后的点D关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D的坐标.【解答】解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O 顺时针旋转2次,每次旋转90°,∴点D的坐标为(3,﹣10).故选:D.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.二、填空题(每小题3分,共15分。

河南中考数学试题及详细答案

河南中考数学试题及详细答案

河南中考数学试题及详细答案2022年河南省初中学业水平暨高级中等学校招生考试试卷数学一、选择题(共8小题,每题3分,共24分)1. 下列各数中,最小的数是()A.-2 B.-0.1 C.0 D.12. 如下是一种电子计分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.3. 一种花瓣的花粉颗粒直径约为0.__-__米,0.__-__用科学记数法表示为()A.6.5 10 5B.6.5 10 6C.6.5 10 7D.65 10 64. 某校九年级8位同学一分钟跳绳的次数排序后如下:150,164,168,168,172,176,183,185.则由这组数据得到的结论中错误的是()A.中位数为170 B.众数为168 C.极差为35 D.平均数为170 5. 在平面直角坐标系中,将抛物线yx2 4先向右平移2个单位,再向上平移2个单位,得到的抛物线的解析式是()A.y (x 2)22 B.y (x 2)22C.y (x 2)2 2D.y (x 2)226. 如图所示的几何体的左视图是()A.B.C.D.7. 如图,函数y 2x和y ax 4的图象交于点A(m,3),则不等式2x <ax 4的解集为()A.x32B.x 3 C.x32D.x 38、如图,已知AB是⊙O的直径,AD切⊙O于点A,弧EC 弧A.BA⊥DA B.OC∥AE C.∠COE=2∠CAE D.OD⊥ACDAOB第7题图第8题图二、填空题(共7小题,每题3分,共21分)9.计算(0 ( 3)2 ________.10. 如图,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于12EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为_____________.11. 母线长为3,底面圆的直径为2的圆锥的侧面积为________.12. 一个不透明的袋子中装有三个小球,他们除分别标有的数字1,3,5不同外,其他完全相同.任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为6的概率是__________.13. 如图,点A、B在反比例函数ykx(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,的值为____.17. (9分)5月31日是世界无烟日.某市卫生机构为了了解“导致吸烟人口比例高的最主要原因”,随机抽样调查了该市部分18~65岁的市民.下图是根据调查结果绘制的统计图,根据图中信息解答下列问题:第13题图第14题图14. 如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.把△ABC绕AB边上的点D顺时针旋转90°得到△A'B'C',A'C'交AB于点E.若AD=BE,则△A'DE的面积是________.15. 如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3.点D是BC边上一动点(不与点B、C重合),过点D作DE⊥BC交AB边于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处,当△AEF为直角三角形时,BD的长为____________.BDF三、解答题(共8小题,共75分)216. (8分)先化简x 4x 44x22xx),然后从x作为x的值代入求值.图1其他16%场所吸烟的监管力度不的毅力弱28%人们对吸烟对吸烟危害健康认21%识不足21%图21)这次接受随机抽样调查的市民总人数为_______________;2)图1中m的值是______________;3)求图2中认为“烟民戒烟的毅力弱”所对应的圆心角的度数;4)若该市18~65岁的市民约有200万人,请你估算其中认为导致吸烟人口比例高的最主要原因是“对吸烟危害健康认识不足”的人数.((((18. (9分)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为_______时,四边形AMDN是矩形;②19. (9分)甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑摩托车,甲到达B地停留半小时后返回A地.如图是他们离A地的距离y(千米)与时间x(时)之间的函数关系图象.(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x的取值范围;(2)若乙出发后2小时和甲相遇,求乙从A地到B地用了多长时间?y ((时)20. (9分)某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅.如图所示,一条幅从楼顶A处放下,在楼前点C处拉直固定.小明为了测量此条幅的长度,他先在楼前D处测得楼顶A点的仰角为31°,再沿DB方向前进16米到达E 处,测得点A的仰角为45°.已知点C到大厦的距离BC=7米,∠ABD=90°.请根据以上数据求条幅的长度(结果保留整数.参考数据:tan31 0.60,sin31 0.52,cos31 0.86).21. (10分)某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过__元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的23 ,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?(10分)类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图1,在□ABCD中,点E是BC边的中点,点F是线段AE 上一点,BF的延长线交射线CD于点G,若AFEF3,求CD的值.CG(1)尝试探究在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是_______________,CG和EH的数量关系是_________________,CD的值是.CGE图1图2(2)类比延伸如图2,在原题的条件下,若AFEF(m>0),则CDCG的值是(用含m的代数式表示),试写出解答过程.(3)拓展迁移如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上一点,AE 和BD相交于点F. 若ABBC b(a>0,b>0),则AFCDa,BEEF的值是(用含a、b的代数式表示).D图3B23. (11分)如图,在平面直角坐标系中,直线y122x 1与抛物线y ax bx 3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与点A、B重合),过点P做x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a,b及sin ACP的值;(2)设点P 的横坐标为m,①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;的值,使这两个三角形的面积之比为9:10?若存在,直接写出m的值;若不存在,说明理由.22.2022年河南中考数学答案一、选择题(共8小题,每题3分,共24分)二、填空题(共7小题,每题3分,共21分)(注:若第10题填为65°,不扣分)三、解答题(共8小题,共75分)16.原式=(x 2)2x24x(x 2)x ...............................................................................................(3分)2=(x 2)xx(x 2)(x 2)(x 2) =1x 2分)∵x且x为整数,∴若使分式有意义,x只能取1和1. ....................(7分)当x 1时,原式=13.[或:当x 1时,原式=1] .......................................................(8分).(1)1500; ..................................................................................................................(2分)(2)315; ...................................................................................................................(4分)(3)360__-__=50.4 ;[或360 (1-21%-21%-28% 16%)] ...........................(6分)(4)200 21%=42(万人).所以估计该市18至65岁人口中,认为“对吸烟危害健康认识不足”是最主要原因的人数约为42万人. ...............................................................................(9分)18.(1)证明:∵四边形ABCD是菱形,∴ND∥AM.。

河南省中考数学试题解析版

河南省中考数学试题解析版

2017 年河南省中考数学试卷一、选择题(每小题3分,共30 分)1.(3 分)下列各数中比1 大的数是()A. 2B. 0C. - 1 D32.(3分)20 1 6年,我国国内生产总值达到万亿元,数据“万亿”用科学记数法表示()A Q A Q A Q A CA.x 10B.X 10C.x 10D.X 103 .(3 分)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.4.(3 分)解分式方程- 2=,去分母得()A. 1 - 2 (x - 1)=-3B. 1 - 2 (x - 1)=3C. 1 - 2x - 2=- 3D. 1 - 2x+2=3 5.(3分)八年级某同学6 次数学小测验的成绩分别为:80分,85 分,95 分,95分,95分,1 00分,则该同学这6次成绩的众数和中位数分别是()A . 95 分,95 分B. 95 分,90 分C. 90 分,95 分D. 95 分,85 分6 (3 分)一元二次方程2x2- 5x- 2=0 的根的情况是()A 有两个相等的实数根B 有两个不相等的实数根C 只有一个实数根D 没有实数根7. (3分)如图,在?ABC冲,对角线AC BD相交于点0,添加下列条件不能判定?ABCD!菱形的只有()A. AC丄BDB. AB=BCC. AC=BDD.Z 仁/28.(3 分)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字- 1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为(A.B.C.D.9. (3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD勺边AB在x轴上,AB的中点是坐标原点0,固定点A, B, 把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C 的坐标为()A. (, 1)B. (2, 1)C. (1,)D. (2,)10. (3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O, B的对应点分别为O , B',连接BB ,则图中阴影部分的面积是()A. B. 2 - C . 2 - D . 4 -二、填空题(每小题3分,共15分)11. (3 分)计算:23- = _____ .12. (3分)不等式组的解集是______ .13. (3分)已知点A (1, m) , B(2, n)在反比例函数y=-的图象上,贝U m与n的大小关系为______ .14. (3分)如图1,点P从厶ABC的顶点B出发,沿B-C^A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ ABC的面积是___________ .15. (3 分)如图,在Rt△ ABC中,/ A=90 , AB=AC BC=+1 点M N分别是边BC, AB上的动点,沿MN所在的直线折叠/ B,使点B的对应点B'始终落在边AC 上,若△ MB C为直角三角形,则BM的长为__________ .三、解答题(本题共8个小题,满分75分)16. (8 分)先化简,再求值:(2x+y)2+ (X- y)(x+y)- 5x (x - y),其中x=+1, y= - 1.17. (9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元) 人数A 0< x V 30 4B 30W X V 60 16C 60< X V 90 aD 90< X V120 bE X>120 2请根据以上图表,解答下列问题:(1) ________________________________ 填空:这次被调查的同学共有人,a+b ________________________________ , m _________ ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额X在60<X V 120范围的人数.18. (9分)如图,在△ ABC中,AB=AC以AB为直径的。

2023年河南省中考数学真题试卷(解析版)

2023年河南省中考数学真题试卷(解析版)

2023年河南省中考数学真题试卷及答案一、选择题1. 下列各数中,最小的数是()A. -lB. 0C. 1D.【答案】A【解析】根据实数的大小比较法则,比较即可解答.解:∵,∴最小的数是-1.故选:A【点拨】本题考查实数的大小比较,负数都小于0,正数都大于0,正数大于一切负数,两个负数,其绝对值大的反而小.2. 北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 三种视图都相同【答案】A【解析】直接利用已知几何体分别得出三视图进而分析得出答案.解:这个花鹅颈瓶的主视图与左视图相同,俯视图与主视图和左视图不相同.故选:A.【点拨】此题主要考查了简单几何体的三视图,掌握三视图的概念是解题关键.3. 2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为()A. B. C. D.【答案】C【解析】将一个数表示为的形式,其中,为整数,这种记数方法叫做科学记数法,据此即可得出答案.解:4.59亿.故选:C.【点拨】本题主要考查了用科学记数法表示较大的数,掌握形式为,其中,确定与的值是解题的关键.4. 如图,直线,相交于点O,若,,则的度数为()A. B. C. D.【答案】B【解析】根据对顶角相等可得,再根据角和差关系可得答案.解:∵,∴,∵,∴,故选:B【点拨】本题主要考查了对顶角的性质,解题的关键是掌握对顶角相等.5. 化简的结果是()A. 0B. 1C. aD.【答案】B【解析】根据同母的分式加法法则进行计算即可.解:,故选:B.【点拨】本题考查同分母分式加法,熟练掌握运算法则是解决问题的关键.6. 如图,点A,B,C在上,若,则的度数为()A. B. C. D.【答案】D【解析】直接根据圆周角定理即可得.解:∵,∴由圆周角定理得:,故选:D.【点拨】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.7. 关于x的一元二次方程的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根【答案】A【解析】对于,当,方程有两个不相等的实根,当,方程有两个相等的实根,,方程没有实根,根据原理作答即可.解:∵,∴,所以原方程有两个不相等的实数根,【点拨】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键.8. 为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为( )A. B. C. D.【答案】B【解析】先画树状图,再根据概率公式计算即可.设三部影片依次为A.B.C ,根据题意,画树状图如下:故相同的概率为.故选B .【点拨】本题考查了画树状图法计算概率,熟练掌握画树状图法是解题的关键.9. 二次函数的图象如图所示,则一次函数的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【解析】根据二次函数图象的开口方向、对称轴判断出、的正负情况,再由一次函数的性质解答.解:由图象开口向下可知,由对称轴,得.∴一次函数的图象经过第一、二、三象限,不经过第四象限.故选:D.【点拨】本题考查二次函数图象和一次函数图象的性质,解答本题的关键是求出、的正负情况,要掌握它们的性质才能灵活解题,此题难度不大.10. 如图1,点P从等边三角形的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为x,,图2是点P运动时y随x变化的关系图象,则等边三角形的边长为()A. 6B. 3C.D.【答案】A【解析】如图,令点从顶点出发,沿直线运动到三角形内部一点,再从点沿直线运动到顶点.结合图象可知,当点在上运动时,,,易知,当点在上运动时,可知点到达点时的路程为,可知,过点作,解直角三角形可得,进而可求得等边三角形的边长.解:如图,令点从顶点出发,沿直线运动到三角形内部一点,再从点沿直线运动到顶点.结合图象可知,当点在上运动时,,∴,,又∵为等边三角形,∴,,∴,∴,∴,当点在上运动时,可知点到达点时的路程为,∴,即,∴,过点作,∴,则,∴,即:等边三角形的边长为6,故选:A.【点拨】本题考查了动点问题的函数图象,解决本题的关键是综合利用图象和图形给出的条件.二、填空题11. 某校计划给每个年级配发n套劳动工具,则3个年级共需配发______套劳动工具.【答案】【解析】根据总共配发的数量年级数量每个年级配发的套数,列代数式.解:由题意得:3个年级共需配发得套劳动工具总数:套,故答案为:.【点拨】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.12. 方程组的解为______.【答案】【解析】利用加减消元法求解即可.解:由得,,解得,把代入①中得,解得,故原方程组的解是,故答案为:.【点拨】本题主要考查了二元一次方程组的解法,解二元一次方程组的常用解法:代入消元法和加减消元法,观察题目选择合适的方法是解题关键.13. 某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x(cm)的统计图,则此时该基地高度不低于的“无絮杨”品种苗约有______棵.【答案】280【解析】利用1000棵乘以样本中不低于的百分比即可求解.解:该基地高度不低于的“无絮杨”品种苗所占百分比为,则不低于的“无絮杨”品种苗约为:棵,故答案为:280.【点拨】本题考查用样本估计总体,明确题意,结合扇形统计图中百分比是解决问题的关键.14. 如图,与相切于点A,交于点B,点C在上,且.若,,则的长为______.【答案】【解析】连接,证明,设,则,再证明,列出比例式计算即可.如图,连接,∵与相切于点A,∴;∵,∴,∴,∴,∵,∴,∴,∵,,∴,设,则,∴,解得,故的长为,故答案为:.【点拨】本题考查了切线的性质,三角形全等的判定和性质,勾股定理,三角形相似的判断和性质,熟练掌握性质是解题的关键.15. 矩形中,M为对角线的中点,点N在边上,且.当以点D,M,N为顶点的三角形是直角三角形时,的长为______.【答案】2或【解析】分两种情况:当时和当时,分别进行讨论求解即可.解:当时,∵四边形矩形,∴,则,由平行线分线段成比例可得:,又∵M为对角线的中点,∴,∴,即:,∴,当时,∵M为对角线的中点,∴为的垂直平分线,∴,∵四边形矩形,∴,则,∴∴,综上,的长为2或,故答案为:2或.【点拨】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.三、解答题16. (1)计算:;(2)化简:.【答案】(1);【解析】(1)先求绝对值和算术平方根,再进行加减计算即可;(2)先利用完全平方公式去括号,再合并同类项即可.(1)解:原式;(2)解:原式.【点拨】本题考查实数的混合运算、多项式乘多项式的混合运算,熟练掌握完全平方公式是解题的关键.17. 蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a.配送速度得分(满分10分):甲:6 6 7 7 7 8 9 9 9 10乙:6 7 7 8 8 8 8 9 9 10b.服务质量得分统计图(满分10分):c.配送速度和服务质量得分统计表:项目配送速度得分服务质量得分统计量平均数中位数平均数方差快递公司甲7.8m7乙887根据以上信息,回答下列问题:(1)表格中的______;______(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?【答案】(1)7.5;(2)甲公司,理由见解析(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【解析】(1)根据中位数和方差的概念求解即可;(2)通过比较平均数,中位数和方差求解即可;(3)根据题意求解即可.(1)由题意可得,,,∴,故答案为:7.5;;(2)∵配送速度得分甲和乙的得分相差不大,服务质量得分甲和乙的平均数相同,但是甲的方差明显小于乙的方差,∴甲更稳定,∴小丽应选择甲公司;(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【点拨】本题考查中位数、平均数、方差的定义,掌握中位数、平均数、方差的定义是解题的关键.18. 如图,中,点D在边上,且.(1)请用无刻度的直尺和圆规作出的平分线(保留作图痕迹,不写作法).(2)若(1)中所作的角平分线与边交于点E,连接.求证:.【答案】(1)见解析(2)见解析【解析】(1)利用角平分线的作图步骤作图即可;(2)证明,即可得到结论.(1)解:如图所示,即为所求,(2)证明:∵平分,∴,∵,,∴,∴.【点拨】此题考查了角平分线的作图、全等三角形的判定和性质等知识,熟练掌握角平分线的作图和全等三角形的判定是解题的关键.19. 小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数图象上的点和点B为顶点,分别作菱形和菱形,点D,E在x轴上,以点O为圆心,长为半径作,连接.(1)求k的值;(2)求扇形的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.【答案】(1)(2)半径为2,圆心角为(3)【解析】(1)将代入中即可求解;(2)利用勾股定理求解边长,再利用三角函数求出的度数,最后结合菱形的性质求解;(3)先计算出,再计算出扇形的面积,根据菱形的性质及结合的几何意义可求出,从而问题即可解答.(1)解:将代入中,得,解得:;(2)解:过点作的垂线,垂足为,如下图:,,,半径为2;,∴,,由菱形的性质知:,,扇形的圆心角的度数:;(3)解:,,,如下图:由菱形知,,,,.【点拨】本题考查了反比例函数及的几何意义,菱形的性质、勾股定理、圆心角,解题的关键是掌握的几何意义.20. 综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪为正方形,,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线交于点H.经测量,点A距地面,到树的距离,.求树的高度(结果精确到).【答案】树的高度为【解析】由题意可知,,,易知,可得,进而求得,利用即可求解.解:由题意可知,,,则,∴,∵,,则,∴,∵,则,∴,∴,答:树的高度为.【点拨】本题考查解直角三角形的应用,得到是解决问题的关键.21. 某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.【答案】(1)活动一更合算(2)400元(3)当或时,活动二更合算【解析】(1)分别计算出两个活动需要付款价格,进行比较即可;(2)设这种健身器材的原价是元,根据“选择活动一和选择活动二的付款金额相等”列方程求解即可;(3)由题意得活动一所需付款为元,活动二当时,所需付款为元,当时,所需付款为元,当时,所需付款为元,然后根据题意列出不等式即可求解.(1)解:购买一件原价为450元的健身器材时,活动一需付款:元,活动二需付款:元,∴活动一更合算;(2)设这种健身器材的原价是元,则,解得,答:这种健身器材的原价是400元,(3)这种健身器材的原价为a元,则活动一所需付款为:元,活动二当时,所需付款为:元,当时,所需付款为:元,当时,所需付款为:元,①当时,,此时无论为何值,都是活动一更合算,不符合题意,②当时,,解得,即:当时,活动二更合算,③当时,,解得,即:当时,活动二更合算,综上:当或时,活动二更合算.【点拨】此题考查了一元一次方程及一元一次不等式的应用,解答本题的关键是仔细审题,注意分类讨论的应用.22. 小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网与y轴的水平距离,,击球点P在y轴上.若选择扣球,羽毛球的飞行高度与水平距离近似满足一次函数关系;若选择吊球,羽毛球的飞行高度与水平距离近似满足二次函数关系.(1)求点P的坐标和a的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.【答案】(1),,(2)选择吊球,使球的落地点到C点的距离更近【解析】(1)在一次函数上,令,可求得,再代入即可求得的值;(2)由题意可知,令,分别求得,,即可求得落地点到点的距离,即可判断谁更近.(1)解:一次函数,令时,,∴,将代入中,可得:,解得:;(2)∵,,∴,选择扣球,则令,即:,解得:,即:落地点距离点距离为,∴落地点到C点的距离为,选择吊球,则令,即:,解得:(负值舍去),即:落地点距离点距离为,∴落地点到C点的距离为,∵,∴选择吊球,使球的落地点到C点的距离更近.【点拨】本题考查二次函数与一次函数的应用,理解题意,求得函数解析式是解决问题的关键.23. 李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点的直线轴,作关于轴对称的图形,再分别作关于轴和直线对称的图形和,则可以看作是绕点顺时针旋转得到的,旋转角的度数为______;可以看作是向右平移得到的,平移距离为______个单位长度.(2)探究迁移:如图,中,,为直线下方一点,作点关于直线的对称点,再分别作点关于直线和直线的对称点和,连接,,请仅就图的情形解决以下问题:①若,请判断与的数量关系,并说明理由;②若,求,两点间的距离.(3)拓展应用:在(2)的条件下,若,,,连接.当与的边平行时,请直接写出的长.【答案】(1),.(2)①,理由见解析;②(3)或【解析】(1)观察图形可得与关于点中心对称,根据轴对称的性质可得即可求得平移距离;(2)①连接,由对称性可得,,进而可得,即可得出结论;②连接分别交于两点,过点作,交于点,由对称性可知:且,得出,证明四边形是矩形,则,在中,根据,即可求解;(3)分,,两种情况讨论,设,则,先求得,勾股定理求得,进而表示出,根据由(2)②可得,可得,进而建立方程,即可求解.(1)(1)∵关于轴对称的图形,与关于轴对称,∴与关于点中心对称,则可以看作是绕点顺时针旋转得到的,旋转角的度数为∵,∴,∵,关于直线对称,∴,即,可以看作是向右平移得到的,平移距离为个单位长度.故答案为:,.(2)①,理由如下,连接,由对称性可得,,∴,②连接分别交于两点,过点作,交于点,由对称性可知:且,∵四边形为平行四边形,∴∴三点共线,∴,∵,∴,∴四边形是矩形,∴,在中,,∵,∴,∴(3)解:设,则,依题意,,当时,如图所示,过点作于点,∴∵,,∴,∴,则,在中,,∴,则,∴在中,,则,,在中,,,∴由(2)②可得,∵∴∴,解得:;如图所示,若,则,∵,则,则,∵,,∵,∴,解得:,综上所述,的长为或.【点拨】本题考查了轴对称的性质,旋转的性质,平行四边形的性质,解直角三角形,熟练掌握轴对称的性质是解题的关键.。

2022年河南省中考数学试卷(解析版)

2022年河南省中考数学试卷(解析版)

2022年河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.(3分)的相反数是()A.B.2C.﹣2D.2.(3分)2022年北京冬奥会的奖牌“同心”表达了“天地合•人心同”的中华文化内涵.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人3.(3分)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°4.(3分)下列运算正确的是()A.2﹣=2B.(a+1)2=a2+1C.(a2)3=a5D.2a2•a=2a35.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点.若OE=3,则菱形ABCD的周长为()A.6B.12C.24D.486.(3分)一元二次方程x2+x﹣1=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根7.(3分)如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为()A.5分B.4分C.3分D.45%8.(3分)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿.则1兆等于()A.108B.1012C.1016D.10249.(3分)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为()A.(,﹣1)B.(﹣1,﹣)C.(﹣,﹣1)D.(1,)10.(3分)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的R1),R1的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是()A.呼气酒精浓度K越大,R1的阻值越小B.当K=0时,R1的阻值为100C.当K=10时,该驾驶员为非酒驾状态D.当R1=20时,该驾驶员为醉驾状态二、填空题(每小题3分,共15分)11.(3分)请写出一个y随x的增大而增大的一次函数的表达式:.12.(3分)不等式组的解集为.13.(3分)为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为.14.(3分)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:﹣()0+2﹣1;(2)化简:÷(1﹣).17.(9分)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a.成绩频数分布表:成绩x(分)50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100频数7912166b.成绩在70≤x<80这一组的是(单位:分):70 71 72 72 74 77 78 78 78 79 79 79根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是分,成绩不低于80分的人数占测试人数的百分比为.(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.18.(9分)如图,反比例函数y=(x>0)的图象经过点A(2,4)和点B,点B在点A 的下方,AC平分∠OAB,交x轴于点C.(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC的垂直平分线.(要求:不写作法,保留作图痕迹)(3)线段OA与(2)中所作的垂直平分线相交于点D,连接CD.求证:CD∥AB.19.(9分)开封清明上河图是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得拂云阁顶端D的仰角为34°,沿AC方向前进15m到达B处,又测得拂云阁顶端D的仰角为45°.已知测角仪的高度为1.5m,测量点A,B与拂云阁DC的底部C在同一水平线上,求拂云阁DC的高度(结果精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).20.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.21.(9分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.22.(10分)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.(1)求证:∠BOC+∠BAD=90°.(2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得cos∠BAD=.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.23.(10分)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ=°,∠CBQ=°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ 的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP 的长.2022年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.(3分)的相反数是()A.B.2C.﹣2D.【分析】直接利用相反数的定义得出即可.【解答】解:的相反数是:.故选:A.【点评】此题主要考查了相反数的概念,正确把握相反数的定义是解题关键.2.(3分)2022年北京冬奥会的奖牌“同心”表达了“天地合•人心同”的中华文化内涵.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人【分析】根据正方体的表面展开图找相对面的方法,一线隔一个,即可解答.【解答】解:在原正方体中,与“地”字所在面相对的面上的汉字是人,故选:D.【点评】本题考查了正方体相对两个面上的问题,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.3.(3分)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°【分析】首先利用垂直的定义得到∠COE=90°,然后利用平角的定义即可求解.【解答】解:∵EO⊥CD,∴∠COE=90°,∵∠1+∠COE+∠2=180°,∴∠2=180°﹣∠1﹣∠COE=180°﹣54°﹣90°=36°.故选:B.【点评】本题主要考查了垂直的定义和平角的性质计算,要注意领会由垂直得直角这一要点.4.(3分)下列运算正确的是()A.2﹣=2B.(a+1)2=a2+1C.(a2)3=a5D.2a2•a=2a3【分析】利用二次根式的减法的法则,完全平方公式,幂的乘方的法则,单项式乘单项式的法则对各项进行运算即可.【解答】解:A、,故A不符合题意;B、(a+1)2=a2+2a+1,故B不符合题意;C、(a2)3=a6,故C不符合题意;D、2a2•a=2a3,故D符合题意.故选:D.【点评】本题主要考查二次根式的化简,完全平方公式,幂的乘方,单项式乘单项式,解答的关键是对相应的运算法则的掌握.5.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点.若OE=3,则菱形ABCD的周长为()A.6B.12C.24D.48【分析】由菱形的性质可得出AC⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得出CD的长,结合菱形的周长公式即可得出结论.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△COD为直角三角形.∵OE=3,点E为线段CD的中点,∴CD=2OE=6.∴C菱形ABCD=4CD=4×6=24.故选:C.【点评】本题考查了菱形的性质以及直角三角形的性质,解题的关键是求出CD=6.6.(3分)一元二次方程x2+x﹣1=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根【分析】根据根的判别式进行判断即可.【解答】解:在一元二次方程x2+x﹣1=0中,a=1,b=1,c=﹣1,∴Δ=b2﹣4ac=12﹣4×1×(﹣1)=1+4=5>0,∴原方程有两个不相等的实数根.故选:A.【点评】本题主要考查根的判别式,解答的关键是明确当Δ<0时,原方程没有实数根;当Δ=0时,原方程有两个相等的实数根;当Δ>0时,原方程有两个不相等的实数根.7.(3分)如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为()A.5分B.4分C.3分D.45%【分析】根据众数的定义求解即可.【解答】解:由扇形统计图知,得4分的人数占总人数的45%,人数最多,所以所打分数的众数为4分,故选:B.【点评】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.8.(3分)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿.则1兆等于()A.108B.1012C.1016D.1024【分析】根据同底数幂的乘法先求出1亿,再求1兆即可.【解答】解:1亿=104×104=108,1兆=104×104×108=104+4+8=1016,故选:C.【点评】本题考查了科学记数法﹣表示较大的数,掌握a m•a n=a m+n是解题的关键.9.(3分)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为()A.(,﹣1)B.(﹣1,﹣)C.(﹣,﹣1)D.(1,)【分析】由正六边形的性质可得A(1,),再根据由360°÷90°=4可知,每4次为一个循环,由2022÷4=505……2,可知点A2022与点A2重合,求出点A2的坐标可得答案.【解答】解:∵边长为2的正六边形ABCDEF的中心与原点O重合,∴OA=AB=2,∠BAO=60°,∵AB∥x轴,∴∠APO=90°,∴∠AOP=30°,∴AP=1,OP=,∴A(1,),∵将△OAP绕点O顺时针旋转,每次旋转90°,可知点A2与D重合,由360°÷90°=4可知,每4次为一个循环,∴2022÷4=505……2,∴点A2022与点A2重合,∵点A2与点A关于原点O对称,∴A2(﹣1,﹣),∴第2022次旋转结束时,点A的坐标为(﹣1,﹣),故选:B.【点评】本题主要考查了正六边形的性质,旋转的性质,含30°角的直角三角形的性质等知识,根据旋转的性质确定每4次为一个循环是解题的关键.10.(3分)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的R1),R1的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是()A.呼气酒精浓度K越大,R1的阻值越小B.当K=0时,R1的阻值为100C.当K=10时,该驾驶员为非酒驾状态D.当R1=20时,该驾驶员为醉驾状态【分析】观察图2可直接判断A、B,由K=10可算出M的值,从而判断C,观察图2可得R1=20时K的值,从而算出M的值,即可判断D.【解答】解:由图2可知,呼气酒精浓度K越大,R1的阻值越小,故A正确,不符合题意;由图2知,K=0时,R1的阻值为100,故B正确,不符合题意;由图3知,当K=10时,M=2200×10×10﹣3=22(mg/100mL),∴当K=10时,该驾驶员为酒驾状态,故C不正确,符合题意;由图2知,当R1=20时,K=40,∴M=2200×40×10﹣3=88(mg/100mL),∴该驾驶员为醉驾状态,故D正确,不符合题意;故选:C.【点评】本题考查反比例函数的应用,解题的关键是读懂题意,能正确识图.二、填空题(每小题3分,共15分)11.(3分)请写出一个y随x的增大而增大的一次函数的表达式:答案不唯一,如y=x.【分析】根据一次函数的性质只要使一次项系数大于0即可.【解答】解:例如:y=x,或y=x+2等,答案不唯一.【点评】此题比较简单,考查的是一次函数y=kx+b(k≠0)的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.12.(3分)不等式组的解集为2<x≤3.【分析】先解出每个不等式的解集,即可得到不等式组的解集.【解答】解:,解不等式①,得:x≤3,解不等式②,得:x>2,∴该不等式组的解集是2<x≤3,故答案为:2<x≤3.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.13.(3分)为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为.【分析】画树状图,共有12种可能的结果,其中恰好选中甲和丙的结果有2种,再由概率公式求解即可.【解答】解:画树状图如下:共有12种可能的结果,其中恰好选中甲和丙的结果有2种,∴恰好选中甲和丙的概率为=,故答案为:.【点评】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为+.【分析】如图,设O′A′交于点T,连接OT.首先证明∠OTO′=30°,根据S阴=S扇形O′A′B′﹣(S扇形OTB﹣S△OTO′)求解即可.【解答】解:如图,设O′A′交于点T,连接OT.∵OT=OB,OO′=O′B′,∴OT=2OO′,∵∠OO′T=90°,∴∠O′TO=30°,∠TOO′=60°,∴S阴=S扇形O′A′B′﹣(S扇形OTB﹣S△OTO′)=﹣(﹣×1×)=+.故答案为:+.【点评】本题考查扇形的面积,解直角三角形等知识,解题的关键是学会割补法求阴影部分的面积.15.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为或.【分析】分两种情况:当点Q在CD上,当点Q在DC的延长线上,利用勾股定理分别进行计算即可解答.【解答】解:如图:∵∠ACB=90°,AC=BC=2,∴AB=AC=4,∵点D为AB的中点,∴CD=AD=AB=2,∠ADC=90°,∵∠ADQ=90°,∴点C、D、Q在同一条直线上,由旋转得:CQ=CP=CQ′=1,分两种情况:当点Q在CD上,在Rt△ADQ中,DQ=CD﹣CQ=1,∴AQ===,当点Q在DC的延长线上,在Rt△ADQ′中,DQ′=CD+CQ′=3,∴AQ′===,综上所述:当∠ADQ=90°时,AQ的长为或,故答案为:或.【点评】本题考查了勾股定理,旋转的性质,等腰直角三角形,分两种情况进行讨论是解题的关键.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:﹣()0+2﹣1;(2)化简:÷(1﹣).【分析】(1)先算立方根、零指数幂、负整数指数幂,再算加减;(2)先通分,把除化为乘,再分解因式约分.【解答】解:(1)原式=3﹣1+=;(2)原式=÷=•=x+1.【点评】本题考查实数运算和分式化简,解题的关键是掌握实数运算、分式运算的相关法则.17.(9分)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a.成绩频数分布表:成绩x(分)50≤x<6060≤x <7070≤x<8080≤x<9090≤x≤100频数7912166b.成绩在70≤x<80这一组的是(单位:分):70 71 72 72 74 77 78 78 78 79 79 79根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是78.5分,成绩不低于80分的人数占测试人数的百分比为44%.(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.【分析】(1)根据中位数的定义求解即可,用不低于80分的人数除以被测试人数即可;(2)根据中位数的意义求解即可;(3)答案不唯一,合理均可.【解答】解:(1)这次测试成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为=78.5(分),所以这组数据的中位数是78.5分,成绩不低于80分的人数占测试人数的百分比为×100%=44%,故答案为:78.5,44%;(2)不正确,因为甲的成绩77分低于中位数78.5分,所以甲的成绩不可能高于一半学生的成绩;(3)测试成绩不低于80分的人数占测试人数的44%,说明该校学生对“航空航天知识”的掌握情况较好(答案不唯一,合理均可).【点评】本题考查了中位数,频数分布表等知识,掌握中位数的定义及其意义是解决问题的关键.18.(9分)如图,反比例函数y=(x>0)的图象经过点A(2,4)和点B,点B在点A 的下方,AC平分∠OAB,交x轴于点C.(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC的垂直平分线.(要求:不写作法,保留作图痕迹)(3)线段OA与(2)中所作的垂直平分线相交于点D,连接CD.求证:CD∥AB.【分析】(1)直接把点A的坐标代入求出k即可;(2)利用尺规作出线段AC的垂直平分线m即可;(3)证明∠DCA=∠BAC,可得结论.【解答】(1)解:∵反比例函数y=(x>0)的图象经过点A(2,4),∴k=2×4=8,∴反比例函数的解析式为y=;(2)解:如图,直线m即为所求.(3)证明:∵AC平分∠OAB,∴∠OAC=∠BAC,∵直线m垂直平分线段AC,∴DA=DC,∴∠OAC=∠DCA,∴∠DCA=∠BAC,∴CD∥AB.【点评】本题考查作图﹣基本作图,反比例函数的性质,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(9分)开封清明上河图是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得拂云阁顶端D的仰角为34°,沿AC方向前进15m到达B处,又测得拂云阁顶端D的仰角为45°.已知测角仪的高度为1.5m,测量点A,B与拂云阁DC的底部C在同一水平线上,求拂云阁DC的高度(结果精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).【分析】延长EF交DC于点H,根据题意可得:∠DHF=90°,EF=AB=15米,CH =BF=AE=1.5米,设FH=x米,在Rt△DFH中,利用锐角三角函数的定义求出FH的长,然后在Rt△DHE中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答.【解答】解:延长EF交DC于点H,由题意得:∠DHF=90°,EF=AB=15米,CH=BF=AE=1.5米,设FH=x米,∴EH=EF+FH=(15+x)米,在Rt△DFH中,∠DFH=45°,∴DH=FH•tan45°=x(米),在Rt△DHE中,∠DEH=34°,∴tan34°==≈0.67,∴x≈30.1,经检验:x≈30.1是原方程的根,∴DC=DH+CH=30.1+1.5≈32(米),∴拂云阁DC的高度约为32米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.20.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.【分析】(1)设菜苗基地每捆A种菜苗的价格是x元,根据用300元在市场上购买的A 种菜苗比在菜苗基地购买的少3捆,列方程可得菜苗基地每捆A种菜苗的价格是20元;(2)设购买A种菜苗m捆,则购买B种菜苗(100﹣m)捆,根据A种菜苗的捆数不超过B种菜苗的捆数,得m≤50,设本次购买花费w元,有w=20×0.9m+30×0.9(100﹣m)=﹣9m+2700,由一次函数性质可得本次购买最少花费2250元.【解答】解:(1)设菜苗基地每捆A种菜苗的价格是x元,根据题意得:=+3,解得x=20,经检验,x=20是原方程的解,答:菜苗基地每捆A种菜苗的价格是20元;(2)设购买A种菜苗m捆,则购买B种菜苗(100﹣m)捆,∵A种菜苗的捆数不超过B种菜苗的捆数,∴m≤100﹣m,解得m≤50,设本次购买花费w元,∴w=20×0.9m+30×0.9(100﹣m)=﹣9m+2700,∵﹣9<0,∴w随m的增大而减小,∴m=50时,w取最小值,最小值为﹣9×50+2700=2250(元),答:本次购买最少花费2250元.【点评】本题考查分式方程和一次函数的应用,解题的关键是读懂题意,列出方程及函数关系式.21.(9分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.【分析】(1)由抛物线顶点(5,3.2),设抛物线的表达式为y=a(x﹣5)2+3.2,用待定系数法可得抛物线的表达式为y=﹣x2+x+;(2)当y=1.6时,﹣x2+x+=1.6,解得x=1或x=9,即得她与爸爸的水平距离为2m或6m.【解答】解:(1)由题意知,抛物线顶点为(5,3.2),设抛物线的表达式为y=a(x﹣5)2+3.2,将(0,0.7)代入得:0.7=25a+3.2,解得a=﹣,∴y=﹣(x﹣5)2+3.2=﹣x2+x+,答:抛物线的表达式为y=﹣x2+x+;(2)当y=1.6时,﹣x2+x+=1.6,解得x=1或x=9,∴她与爸爸的水平距离为3﹣1=2(m)或9﹣3=6(m),答:当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m或6m.【点评】本题考查二次函数的应用,解题的关键是读懂题意,把实际问题转化为数学问题.22.(10分)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.(1)求证:∠BOC+∠BAD=90°.(2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得cos∠BAD=.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.【分析】(1)本小题难度不大,方法颇多,方法1:如图1,过点B作EF∥CD,分别交AD于点E,交OC于点F.首先证明∠BOC+∠OBF=90°,∠ABE+∠BAD=90°;再根据B是切点得出∠OBA=90°.后面就很简单的证明出结论;方法2:如图2,延长OB交CD于点M.因为AB为⊙O的切线,所以根据切线性质得到,∠OBA=90°,∠ABM=90°.再根据四边形、三角形的内角和即可证明;方法3:如图3,过点B作BN ∥AD,根据两直线平行,内错角相等和切线性质,可以很简单的证明问题;(2)利用(1)中图1的辅助线即可解答.首先根据条件AB=75,cos∠BAD=,得到AE=45.再利用(1)证明出的,∠OBF=∠BAD,能得到四边形CDEF为矩形,所以DE=CF=5,从而得到AD=AE+ED=50cm.【解答】(1)证明:方法1:如图1,过点B作EF∥CD,分别交AD于点E,交OC于点F.∵CD与⊙O相切于点C,∴∠OCD=90°.∵AD⊥CD,∴∠ADC=90°.∵EF∥CD,∴∠OFB=∠AEB=90°,∴∠BOC+∠OBF=90°,∠ABE+∠BAD=90°,∵AB为⊙O的切线,∴∠OBA=90°.∴∠OBF+∠ABE=90°,∴∠OBF=90°.∴∠OBF+∠ABE=90°,∴∠OBF=∠BAD,∴∠BOC+∠BAD=90°;方法2:如图2,延长OB交CD于点M.∵CD与⊙O相切于点C,∴∠OCM=90°,∴∠BOC+∠BMC=90°,∵AD⊥CD,∴∠ADC=90°.∵AB为⊙O的切线,∴∠OBA=90°,∴∠ABM=90°.∴在四边形ABMD中,∠BAD+∠BMD=180°.∵∠BMC+∠BMD=180°,∴∠BMC=∠BAD.∴∠BOC+∠BAD=90°;方法3:如图3,过点B作BN∥AD,∴∠NBA=∠BAD.∵CD与⊙O相切于点C,∴∠OCD=90°,∵AD⊥CD,∴∠ADC=90°.∴AD∥OC,∴BN∥OC,∴∠NBO=∠BOC.∵AB为OO的切线,∴∠OBA=90°,∴∠NBO+∠NBA=90°,∴∠BOC+∠BAD=90°.(2)解:如图1,在Rt△ABE中,∵AB=75,cos∠BAD=,∴AE=45.由(1)知,∠OBF=∠BAD,∴cos∠OBF=,在Rt△OBF中,∵OB=25,∴BF=15,∴OF=20.∵OC=25,∴CF=5.∵∠OCD=∠ADC=∠CFE=90°,∴四边形CDEF为矩形,∴DE=CF=5,∴AD=AE+ED=50cm.【点评】本题重点考查切线的判定和性质,三角函数,解题关键是根据已知和所求问题,合理作出辅助线.是很好的中考题.23.(10分)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:∠EMB或∠CBM或∠ABP或∠CBM(任写一个即可).(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ=15°,∠CBQ=15°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP 的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年河南省初中学业水平暨高级中等学校招生考试试卷数 学注意事项:1. 本试卷共8页,三大题,满分120分,考试时间100分钟请用蓝、黑色钢笔或圆珠 笔直接答在试卷上.2. 答卷前将密封线内的项目填写清楚.参考公式:二次函数2(0)y ax bx c a =++≠图象的顶点坐标为24(,)24b ac b a a--. 一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1. -5的绝对值 【 】(A )5 (B )-5 (C )15 (D )15- 2. 如图,直线a ,b 被c 所截,a ∥b ,若∠1=35°,则∠2的大小为 【 】(A )35° (B )145° (C )55° (D )125°3. 下列各式计算正确的是【 】(A )011(1)()32---=- (B )235+= (C )224246a a a += (D )236()a a =4.不等式5. 某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是x 甲=610千克,x 乙=608千克,亩产量的方差分别是2S甲=29. 6,2S 乙=2. 7.则关于两种小麦推广种植的合理决策是 【 】(A )甲的平均亩产量较高,应推广甲(B )甲、乙的平均亩产量相差不多,均可推广(C )甲的平均亩产量较高,且亩产量比较稳定,应推广甲(D )甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙6. 如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O 旋转180°到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A 在丙位置中的对x +2>0,x -1≤2 的解集在数轴上表示正确的是 【 】应点A ′的坐标为【 】(A )(3,1) (B )(1,3) (C )(3,-1) (D )(1,1)二、填空题 (每小题3分,共27分) 7. 27的立方根是 。

8. 如图,在△ABC 中,AB =AC ,CD 平分∠ACB ,∠A =36°,则∠BDC 的度数为 .9. 已知点(,)P a b 在反比例函数2y x=的图象上,若点P 关于y 轴对称的点在反比例函数ky x=的图象上,则k 的值为 . 10. 如图,CB 切⊙O 于点B ,CA 交⊙O 于点D 且AB 为⊙O 的直径,点E 是¼ABD 上异于点A 、D 的一点.若∠C=40°,则∠E 的度数为 .11.点1(2,)A y 、2(3,)B y 是二次函数221y x x =-+的图象上两点,则1y 与2y 的大小关系为1y 2y (填“>”、“<”、“=”).12.现有两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另—个装有标号分别为2、3、4的三个小球,小球除标号外其它均相同,从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是 。

13.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为 。

14.如图是一个几何体的三视图,根据图示的数据可计算出该几何体的表面积为.15.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=23,点E是BC边的中点,△DEF是等边三角形,DF交AB于点G,则△BFG的周长为.三、解答题(本大题共8个小题,满分75分)16. (8分)先化简22144(1)11x xx x-+-÷--,然后从-2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.17. (9分)如图,在梯形ABCD中,AD∥BC,延长CB到点E,使BE=AD,连接DE交AB于点M.(1)求证:△AMD≌△BM E;(2)若N是CD的中点,且M N=5,BE=2,求BC的长.18.(9分)为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如右的调查问卷(单选).在随机调查了奉市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m = ; (2)该市支持选项B 的司机大约有多少人(3)若要从该市支持选项B 的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少19(9分)如图所示,中原福塔(河南广播电视塔)是世界第—高钢塔.小明所在的课外活动小组在距地面268米高的室外观光层的点D 处,测得地面上点B 的俯角α为45°,点D 到AO 的距离DG 为10米;从地面上的点B 沿BO 方向走50米到达点C 处,测得塔尖A 的仰角β为60°。

请你根据以上数据计算塔高AO ,并求出计算结果与实际塔高388米之间的误差.(参考数据:3≈,2≈.结果精确到米)20. (9分)如图,一次函数112y k x =+与反比例函数22k y x=的图象交于点(4,)A m 和(8,2)B --,与y 轴交于点C .(1)1k = ,2k = ;(2)根据函数图象可知,当1y >2y 时,x 的取值范围是 ;(3)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点.设直线OP 与线段AD 交于点E ,当ODAC S 四边形:ODE S V =3:1时,求点P 的坐标.21. (10分)某旅行杜拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m 0<m ≤100 100<m ≤200 m>200收费标准(元/人)90 85 75 甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费10 800元,若两校联合组团只需花赞18 000元.(1)两所学校报名参加旅游的学生人数之和赳过200人吗为什么(2)两所学校报名参加旅游的学生各有多少人22. (10分)如图,在Rt△ABC中,∠B=90°,BC=53,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形请说明理由.23. (11分)如图,在平面直角坐标系中,直线3342y x=-与抛物线214y x bx c=-++交于A、B两点,点A在x轴上,点B的横坐标为-8.(1)求该抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.2011年河南省初中学业水平暨高级中等学校招生考试数学试题参考答案及评分标准说明:1.如果考生的解答与与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分的多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分.4.评分过程中,只给整数分数.一、选择题(每小题3分,共18分)题号1 2 3 4 5 6 答案 A B D B D C 二、填空题(每小题3分,共27分)题号 7 8 9 10 11 12 13 14 15答案372-240<164 90π3+3(注:若第8题填为72°,第10题填为40°,不扣分) 三、解答题(本大题共8个小题,满分75分 ) 16.原式=22(1)(1)1(2)x x x x x -+-•--…………………………………………………………3分=12x x +-.……………………………………………………………………………5分x 满足-2≤x ≤2且为整数,若使分式有意义,x 只能取0,-2.……………………7分 当x =0时,原式=12-(或:当x =-2时,原式=14). …………………………8分17.(1)∵AD ∥BC ,∴∠A =MBE ,∠ADM =∠E . …………………………………2分 在△AMD 和△BME 中,(2)∵△AMD ≌△BME ,∴MD =ME . 又ND =NC ,∴MN =12EC . ……………………………………………………………7分 ∴EC =2MN =2×5=10.∴BC =EC -EB =10-2=8. …………………………………………………………9分 18.(1)(C 选项的频数为90,正确补全条形统计图);……………………………2分 20.………………………………………………………………………………………4分(2)支持选项B 的人数大约为:5000×23%=1150.……………………………………6分 (3)小李被选中的概率是:1002115023.=………………………………………………9分 19. ∵DE ∥BO ,α=45°, ∴∠DBF =α=45°.∴Rt △DBF 中,BF =DF =268.…………………………………………………………2分 ∵BC =50,∴CF =BF -BC =268-50=218. 由题意知四边形DFOG 是矩形, ∴FO =DG =10.∴CO =CF +FO =218+10=228.……………………………………………………………5分 在Rt △ACO 中,β=60°,∴AO =CO ·tan60°≈228×=……………………………………………7分 ∴误差为-388=≈(米).即计算结果与实际高度的误差约为米.…………………………………………9分 20. (1)12,16;………………………………………………………………2分 (2)-8<x <0或x >4;…………………………………………………………4分 (3)由(1)知,121162,.2y x y x=+= ∴m =4,点C 的坐标是(0,2)点A 的坐标是(4,4).∴CO =2,AD =OD =4.………………………………………………………………5分∴24412.22ODAC CO AD SOD ++=⨯=⨯=梯形 ∵:3:1,ODE ODAC S S =V 梯形∠A =∠MBE , AD =BE , ∠ADM =E ,∴△AMD ≌△BME . ……………………………………5分∴1112433ODE ODACS S =⨯=⨯=V 梯形……………………………………………7分 即12OD ·DE =4,∴DE =2. ∴点E 的坐标为(4,2).又点E 在直线OP 上,∴直线OP 的解析式是12y x =. ∴直线OP 与216y x=的图象在第一象限内的交点P 的坐标为(42,22). …………………………………………………………………………………………9分 21.(1)设两校人数之和为a. 若a >200,则a =18 000÷75=240. 若100<a ≤200,则13180008521117a =÷=,不合题意. 所以这两所学校报名参加旅游的学生人数之和等于240人,超过200人.……3分 (2)设甲学校报名参加旅游的学生有x 人,乙学校报名参加旅游的学生有y 人,则 ①当100<x ≤200时,得240,859020800.x y x y +=⎧⎨+=⎩解得160,80.x y =⎧⎨=⎩………………………………………………………………………………6分②当x >200时,得240,759020800.x y x y +=⎧⎨+=⎩ 解得153,32186.3x y ⎧=⎪⎪⎨⎪=⎪⎩此解不合题意,舍去.∴甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人.………………………………………………………………………………………………10分 22.(1)在△DFC 中,∠DFC =90°,∠C =30°,DC =2t ,∴DF =t .又∵AE=t ,∴AE=DF.…………………………………………………………………………2分 (2)能.理由如下:∵AB ⊥BC ,DF ⊥BC ,∴AE ∥DF .又AE =DF ,∴四边形AEFD 为平行四边形.…………………………………………………3分∵AB =BC ·tan30°=3535,210.3AC AB ⨯=∴== 10 2.AD AC DC t ∴=-=-若使AEFD Y 为菱形,则需10.102,.3AE AD t t t ==-=即 即当103t =时,四边形AEFD 为菱形.……………………………………………………5分 (3)①∠EDF =90°时,四边形EBFD 为矩形.在Rt △AED 中,∠ADE =∠C =30°,∴AD =2AE .即10-2t =2t ,52t =.………………7分②∠DEF=90°时,由(2)知EF ∥AD ,∴∠ADE =∠DEF =90°. ∵∠A =90°-∠C =60°,∴AD =AE ·cos60°. 即1102, 4.2t t t -==…………………………………………………………………………9分 ③∠EFD =90°时,此种情况不存在.综上所述,当52t =或4时,△DEF 为直角三角形.……………………………………10分 23.(1)对于3342y x =-,当y =0,x =2.当x =-8时,y =-152 ∴A 点坐标为(2,0),B 点坐标为15(8,).2--…………………………………………1分由抛物线214y x bx c =-++经过A 、B 两点,得012,15168.2b c b c =-++⎧⎪⎨-=--+⎪⎩ 解得235135..42442b c y x x =-=∴=--+,…………………………………………3分(2)①设直线3342y x =-与y 轴交于点M当x =0时,y =32-. ∴OM =32.∵点A 的坐标为(2,0),∴OA =2.∴AM =225.2OA OM +=……………………4分∵OM :OA :AM =3∶4:5.由题意得,∠PDE =∠OMA ,∠AOM =∠PED =90°,∴△AOM ~△PED . ∴DE :PE :PD =3∶4:5.…………………………………………………………………5分 ∵点P 是直线AB 上方的抛物线上一动点, ∴PD =y P -y D213533()()44242x x x =--+--=213444x x --+.………………………………………………………………………6分∴21213(4)542l x x =--+231848.555x x =--+…………………………………………………………………7分23(3)15.315.5l x x l ∴=-++∴=-=最大时,……………………………………8分②满足题意的点P 有三个,分别是12317317(,2),(,2),22P P -+-- 3789789(,).22P -+-+……………………………………………………………11分【解法提示】当点G 落在y 轴上时,由△ACP ≌△GOA 得PC =AO =2,即21352442x x --+=,解得3172x -±=,所以12317317(,2),(,2).22P P -+-- 当点F 落在y 轴上时,同法可得3789789(,)22P -+-+,4789789(,)22P ----(舍去).。

相关文档
最新文档