一元二次方程总复习知识点梳理学生

合集下载

人教版九年级上册数学第21章一元二次方程知识点复习总结

人教版九年级上册数学第21章一元二次方程知识点复习总结

一元二次方程知识点复习总结1. 一元二次方程的一般形式:a ≠0时,ax 2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a 、 b 、c ;其中 a 、 b,、c 可能是具体数,也可能是含待定字母或特定式子的代数式.2. 一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.3. 一元二次方程根的判别式:当ax 2+bx+c=0 (a ≠0)时,Δ=b 2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:Δ>0 <=> 有两个不等的实根;Δ=0 <=> 有两个相等的实根;Δ<0 <=> 无实根;Δ≥0 <=> 有两个实根(等或不等).4. 一元二次方程的根系关系:当ax 2+bx+c=0 (a ≠0) 时,如Δ≥0,有下列公式:.ac x x ab x x )2(a2ac4bbx )1(212122,1,;※ 5.当ax 2+bx+c=0 (a ≠0) 时,有以下等价命题:(以下等价关系要求会用公式acx x a bx x 2121,;Δ=b 2-4ac 分析,不要求背记) (1)两根互为相反数ab = 0且Δ≥0 b = 0且Δ≥0;(2)两根互为倒数a c =1且Δ≥0 a = c 且Δ≥0;(3)只有一个零根a c = 0且a b ≠0 c = 0且b ≠0;(4)有两个零根a c = 0且a b = 0c = 0且b=0;(5)至少有一个零根a c =0 c=0;(6)两根异号a c <0 a 、c 异号;(7)两根异号,正根绝对值大于负根绝对值a c <0且a b >0a 、c 异号且a 、b 异号;(8)两根异号,负根绝对值大于正根绝对值a c <0且a b <0a 、c 异号且a 、b 同号;(9)有两个正根a c >0,ab >0且Δ≥0 a 、c 同号, a 、b 异号且Δ≥0;(10)有两个负根ac >0,ab <0且Δ≥0 a 、c 同号, a 、b 同号且Δ≥0.6.求根法因式分解二次三项式公式:注意:当Δ< 0时,二次三项式在实数范围内不能分解.ax 2+bx+c=a(x-x1)(x-x2) 或 ax 2+bx+c=a2ac4bb xa2ac4bb xa 22.7.求一元二次方程的公式:x 2-(x 1+x 2)x + x 1x 2 = 0.注意:所求出方程的系数应化为整数.8.平均增长率问题--------应用题的类型题之一(设增长率为x ):(1)第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2.(2)常利用以下相等关系列方程:第一年+第二年+第三年=总和.9.分式方程的解法:.0)1(),值(或原方程的每个分母验增根代入最简公分母公分母两边同乘最简去分母法.0.2分母,值验增根代入原方程每个换元凑元,设元,换元法)(10. 二元二次方程组的解法:.0)3(0)2(0)4(0)1(0)4(0)2(0)3(0)1(0)4)(3(0)2)(1()3(;02;1分组为应注意:的方程)()(中含有能分解为方程组)分解降次法(程中含有一个二元一次方方程组法)代入消元(※11.几个常见转化:;;或;;;)x x (x x 4)x x ()x x ()x x (x x 4)x x ()x x (x x 2)x1x(x1x2)x1x(x1xx x 4)x x ()x x (x x 2)x x (xx )1(2121221221212122122121222222212212212122122214x x .22x x 2x x .12x x )2(221212121)两边平方为(和分类为;.,)2(34x x 34x x )1()916x x (34x x )3(2121222121因为增加次数两边平方一般不用和分类为或;.0x ,0x :.1x x Bsin A cos ,1Acos Asin ,90BAB sin x ,A sin x )4(2122212221注意隐含条件可推出由公式时且如.0x ,0x :.x ,x ),,(,x ,x )5(212121注意隐含条件的关系式推导出含有公式等式面积例如几何定理,相似形系可利用图形中的相等关时若为几何图形中线段长.k ,)6(”辅助未知元“引入些线段的比,并且可把它们转化为某比例式、等积式等条件角三角形、三角函数、如题目中给出特殊的直.,;,)7(知数的关系但总可求出任何两个未般求不出未知数的值少一个时,一方程个数比未知数个数一般可求出未知数的值数时方程个数等于未知数个。

一元二次方程知识总结及习题

一元二次方程知识总结及习题

一元二次方程的定义与解法知识点一 一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。

注:一元二次方程必须同时满足以下三点:①方程是整式方程。

②它只含有一个未知数。

③未知数的最高次数是2。

同时还要注意在判断时,需将方程化成一般形式。

例 下列关于x 的方程,哪些是一元二次方程?⑴3522=+x ;⑵062=-x x ;(3)5=+x x ;(4)02=-x ;(5)12)3(22+=-x x x知识点二 一元二次方程的一般形式一元二次方程的一般形式为02=++c bx ax (a ,b ,c 是已知数,0≠a )。

其中a ,b ,c 分别叫做二次项系数、一次项系数、常数项。

注:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。

(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。

(3)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。

例1 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项。

(1)x x 2752=; (2)()()832=+-x x ; (3)()()()22343+=+-x x x例2 已知关于x 的方程()()021122=-+--+x m x m m 是一元二次方程时,则=m知识点三 一元二次方程的解使方程左、右两边相等的未知数的值叫做方程的解例 1 关于x 的一元二次方程01)1(22=-++-a x x a 有一个根为0,则=a例 2 已知关于x 的一元二次方程)0(02≠=++a c bx ax 有一个根为1,一个根为1-,则=++c b a ,=+-c b a例3 已知c 为实数,并且关于x 的一元二次方程032=+-c x x 的一个根的相反数是方程032=-+c x x 的一个根,求方程032=-+c x x 的根及c 的值。

一元二次方程(知识点-考点-题型总结)

一元二次方程(知识点-考点-题型总结)

一元二次方程专题复习考点一、概念①②③(1)定义:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就是一元二次方程。

(2)一般表达式:ax +bx +c =0(a ≠0)⑶难点:如何理解“未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

典型例题:例1、下列方程中是关于x 的一元二次方程的是()211+-2=02xx 222C ax +bx +c =0Dx +2x =x +122变式:当k 时,关于x 的方程kx +2x =x +3是一元二次方程。

A 3(x +1)=2(x +1)B2例2、方程(m +2)x m 2+3mx +1=0是关于x 的一元二次方程,则m 的值为。

针对练习:★1、方程8x =7的一次项系数是,常数项是。

★2、若方程(m -2)x m -1=0是关于x 的一元一次方程,2⑴求m 的值;⑵写出关于x 的一元一次方程。

★★3、若方程(m -1)x +m ∙x =1是关于x 的一元二次方程,则m 的取值范围是。

★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是()A.m=n=2B.m=2,n=1C.n=2,m=1D.m=n=1考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。

⑵应用:利用根的概念求代数式的值;典型例题:例1、已知2y +y -3的值为2,则4y +2y +1的值为。

例2、关于x 的一元二次方程(a -2)x +x +a -4=0的一个根为0,则a 的值为。

2222例3、已知关于x 的一元二次方程ax +bx +c =0(a ≠0)的系数满足a +c=b ,则此方程必有一根为。

2例4、已知a ,b 是方程x -4x +m =0的两个根,b ,c 是方程y -8y +5m =0的两个根,则m 的值为。

针对练习:★1、已知方程x +kx -10=0的一根是2,则k 为,另一根是。

中考数学总复习考点知识讲解课件30---一元二次方程及其应用

中考数学总复习考点知识讲解课件30---一元二次方程及其应用

C.x2-x+1=0
D.x2=1
百变四:已知方程系数关系,判断方程根的情况 4.(2016·河北)a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2 +bx+c=0的根的情况( ) A.有两个相等的实数根 B.有两个不相等的实数根 C.无实数根 D.有一根为0
【解析】 ∵(a-c)2=a2+c2-2ac>a2+c2,∴ac<0.∴在方程ax2+bx+ c=0中,b2-4ac≥-4ac>0,∴方程ax2+bx+c=0有两个不相等的实数 根.故选B.
【自主解答】 解:(1)四 x= (2)x2-2x-24=0, 移项,得x2-2x=24, 配方,得x2-2x+1=24+1, 即(x-1)2=25, 两边开平方,得x-1=±5, ∴x1=6,x2=-4.
解一元二次方程的注意点
(1)在运用公式法解一元二次方程时,要先把方程化为一般形式,再确定 a,b,c的值,否则易出现符号错误; (2)用因式分解法确定一元二次方程的解时,一定要保证等号的右边化为 0,否则易出现错误; (3)如果一元二次方程的常数项为0,不能在方程两边同时除以含有未知数 的相同因式; (4)对于含有不确定量的方程,需要把求出的解代入原方程检验,避免增 根.
知识点二 一元二次方程的解法
x=b b2 4ac 2a
知识点三 一元二次方程根的判别式
b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式.判别式 的符号决定了方程根的情况,即
(1)b2-4ac>0⇔方程有两个 _不__相__等__的实数根;
(2)b2-4ac_=__0⇔方程有两个相等的实数根; (3)b2-4ac<0⇔方程__没__有___实数根.
【分析】由每个月的平均增长率相同,可分别表示二月份和三月份的工业 产值,再结合第一季度总产值为175亿元列方程即可. 【自主解答】由平均每月增长的百分率为x,则二月的工业产值为50(1+x) 亿元,三月的工业产值为50(1+x)2 亿元,则根据题意可得方程:50+ 50(1+x)+50(1+x)2=175,故选D.

七年级一元二次方程知识点总结

七年级一元二次方程知识点总结

七年级一元二次方程知识点总结
一元二次方程是中学数学中的重要内容之一。

在七年级研究一元二次方程时,主要包括以下几个知识点:
1. 一元二次方程的定义:一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b、c分别为已知数,而x是未知数。

2. 一元二次方程的解:解一元二次方程可以通过因式分解、配方法、求根公式等方式。

其中最常用的方法是求根公式,即利用二次方程的求根公式x = (-b ± √(b^2 - 4ac)) / (2a)来求解方程。

3. 一元二次方程的判别式:判别式可以帮助我们判断一元二次方程的解的情况。

判别式Δ = b^2 - 4ac,通过判别式的值可以分为三种情况:当Δ > 0时,方程有两个不同实数解;当Δ = 0时,方程有两个相等实数解;当Δ < 0时,方程没有实数解。

4. 一元二次方程的图像:一元二次方程的图像是一个抛物线。

通过方程中的a的正负和判别式的值可以判断抛物线的开口方向和位置。

5. 一元二次方程的应用:一元二次方程在生活和实际问题中有
许多应用。

例如,可以用一元二次方程求解一个物体的抛射问题、
轨道问题、距离问题等。

以上是七年级研究一元二次方程的主要知识点总结。

通过掌握
这些知识点,可以更好地理解和解决一元二次方程相关的数学问题。

参考资料:
- 《数学七年级上册》教材
- 《中学数学七年级上册》辅导书。

一元二次方程章节复习B(学生版)

一元二次方程章节复习B(学生版)
.
15.某商场销售一批名牌衬衫,平均每天可以售出20件,每件盈利40元.为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,如果商场平均每天要盈利l 200元,那么每件衬衫应降价多少元?
16.某工程队在我市实施棚户区改造过程中承包了一项拆迁工程.原计划每天拆迁1 250 ,因为准备工作不足,第一天少拆迁了20%.从第二天开始,该工程队加快了拆迁速度,第三天拆迁了1 440 .求:
二、综合提高训练
1.当 为何值时,方程 是关于 的一元二次方程?
C. ; D. .
【借题发挥】
1.下列方程中那些是一元二次方程?那些不是一元二次方程?
① ② ;③ ;④ ;⑤ ;⑥ ,( 为已知数);⑦ .
【例2】当 为何值时,关于 的方程 是一元二次方程?
【借题发挥】
1.当 为何值时,关于 的方程 是一元二次方程?
题型二:一元二次方程的解法
【例3】选择适当的方法解下列一元二次方程:
A.根的情况无法确定;B.没有实数根;
C.有两个不相等的实数根;D.有两个相等的实数根.
16.因式分解 ,下列结论中错误的是( )
A. ;B. ;
C. ;D. .
简答题:
17.解方程: .
18.解方程: .
19.用配方法解方程: .
20.用适当的方法解方程: .
解答证明题:
21.当m为何值时,关于 的一元二次方程 有两个不相等的实数.
学科教师辅导讲义
年级:科目:数学课时数:
课题
一元二次方程整章复习B
教学目的
1.理解一元二次方程的概念,掌握一元二次方程的四种解法;
2.熟练掌握一元二次方程根的判别式及性质应用.

一元二次方程复习1

一元二次方程知识点总结考点一、一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

考点二、一元二次方程的解法1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如b a x =+2)(的一元二次方程。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。

2、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程)0(02≠=++a c bx ax 的求根公式: )04(2422≥--±-=ac b aac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式5、韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a ,二根之积=c/a 也可以表示为x1+x2=-b/a,x1x2=c/a 。

一元二次方程知识点总结和例题——复习 3

知识点总结:一元二次方程知识框架知识点、概念总结1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

2.一元二次方程有四个特点:(1)含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程。

要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。

如果能整理为 ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。

(4)将方程化为一般形式:ax2+bx+c=0时,应满足(a≠0)3。

一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,经过整理,•都能化成如下形式ax2+bx+c=0(a≠0)。

一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a 是二次项系数;bx是一次项,b是一次项系数;c是常数项.4。

一元二次方程的解法(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如的一元二次方程。

根据平方根的定义可知,是b的平方根,当时,,,当b〈0时,方程没有实数根.(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用.配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。

配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q的形式,如果q≥0,方程的根是x=—p±√q;如果q<0,方程无实根.(3)公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法.一元二次方程的求根公式:(4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

第22章 一元二次方程复习

第22章一元二次方程复习(1)一元二次方程及其解法樊城区太平店中学刘玉萍一、内容与内容解析1、内容复习一元二次方程及其有关的概念,一元二次方程的基本解————配方法、公式法、因式分解法,一元二次方程根与系数的关系等知识,建立知识体系,综合运用一元二次方程的知识解决有关的问题。

2、内容解析本章学习了一元二次方程。

在学习中通过具体实例认识了一元二次方程,探索了一元二次方程的解法,研究了实际问题与一元二次方程,分别讨论了传播问题、增长率问题和几何图形面积问题。

本章的重点是一元二次方程的解法及应用一元二次方程解决实际问题。

这些知识都是方程领域的基础知识,在以后学习“二次函数”中“用函数的观点看一元二次方程”也要用到,这部分内容掌握不好,将会影响后续内容的学习。

学好这部分内容的关键是要使学生理解一元二次方程的一般形式;一元二次方程根的情况;一元二次方程根与系数的关系等知识。

并将一元二次方程与一元一次方程作类比,因为一元二次方程是一元一次方程的拓展和延伸,一元一次方程是学习一元二次方程的基础。

在本章的学习过程中需要学生通过观察、对比、归纳、类比等来发现一元二次方程的解法,同时还要注意引导学生分析方程的特点,引导学生进行转化,是学生学会把未知化为已知,把复杂问题化为简单问题的思考方法。

作为本章复习课的第一节课,本节主要复习一元二次方程的有关概念;一元二次方程的解法;一元二次方程的根与系数的关系。

本节内容是对本章重点知识的巩固和提高,通过复习使学生能够熟练地选用适当的方法解一元二次方程,进一步体会一元二次方程化归降次的思想。

由以上的分析,确定本节课的教学重点是:灵活应用一元二次方程的解法解决有关的问题。

二、教材解析本节课主要内容是复习巩固一元二次方程有关概念和一元二次方程的解法及根与系数的关系等知识,重点是一元二次方程的解法。

在知识回顾的过程中,结合问题让学生通过独立思考,回顾所学的内容,建立相应的知识结构图。

初中数学一元二次方程知识点总结(含方法技巧归纳,易错辨析)

初中数学⼀元⼆次⽅程知识点总结(含⽅法技巧归纳,易错辨析)
考情分析⾼频考点考查频率所占分值
1.元⼆次⽅程的概念★7~12分
2.⼀元⼆次⽅程的解法★★★
3.⼀元⼆次⽅程根的判别式★★
4.⼀元⼆次⽅程根与系数的关系★
5.利⽤⼀元⼆次⽅程解决实际问题★★★
1⼀元⼆次⽅程的定义及⼀般形式
定义:等号两边都是整式,只含有⼀个未知数(⼀元),并且未知数的最⾼次数是2(⼆次)的⽅程,
叫作⼀元⼆次⽅程.
点拨
对定义的理解抓住三个条件:“⼀元”“⼆次”“整式⽅程”,缺⼀不可,同时强调⼆次项的系数不为0.
⽤公式法解⼀元⼆次⽅程的记忆⼝诀
要⽤公式解⽅程,⾸先化成⼀般式.
调整系数随其后,使其成为最简⽐.
确定参数
,计算⽅程判别式.
判别式值与零⽐,有⽆实根便得知.
若有实根套公式,若⽆实根要告之.
3因式分解法
通过因式分解,使⼀元⼆次⽅程化为两个⼀次式的乘积等于0的形式,再使这两个⼀次式分别等
于0,从⽽实现降次,这种解⼀元⼆次⽅程的⽅法叫作因式分懈法.
因式分解法体现了将⼀元⼆次⽅程“降次”转化为⼀元⼀次⽅程来解的思想,运⽤这种⽅法的步
骤:
(1)将所有项移到⽅程的左边,将⽅程的右边化为0;
(2)将⽅程左边分解为两个⼀次因式的乘积;
(3)令每个因式分别等于零,得到两个⼀元⼀次⽅程;
(4)解这两个⼀元⼀次⽅程,他们的解就是原⽅程的解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程总复习 考点1:一元二次方程的概念 一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程. 一般形式:ax2+bx+c=0(a≠0)。注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。 考点2:一元二次方程的解法 1.直接开平方法:对形如(x+a)2=b(b≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。 X+a=b 1x=-a+b 2x=-a-b 2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a)2=b的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b≤0,则原方程无解. 3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是aacbbx242(b2-4ac≥0)。步骤:①把方程转化为一般形式;

②确定a,b,c的值;③求出b2-4ac的值,当b2-4ac≥0时代入求根公式。 4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 因式分解的方法:提公因式、公式法、十字相乘法。 5.一元二次方程的注意事项: ⑴ 在一元二次方程的一般形式中要注意,强调a≠0.因当a=0时,不含有二次项,即不是一元二次方程. ⑵ 应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c的值;②若b2-4ac<0,则方程无解. ⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4)2 =3(x+4)中,不能随便约去x+4。 ⑷ 注意:解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法. 6.一元二次方程解的情况 ⑴b2-4ac≥0方程有两个不相等的实数根; ⑵b2-4ac=0方程有两个相等的实数根; ⑶b2-4ac≤0方程没有实数根。 解题小诀窍:当题目中含有“两不等实数根”“两相等实数根”“没有实数根”时,往往首先考虑用b2-4ac解题。主要用于求方程中未知系数的值或取值范围。 考点3:根与系数的关系:韦达定理

对于方程ax2+bx+c=0(a≠0)来说,x1 +x2 =—ab,x1x2= ac。 利用韦达定理可以求一些代数式的值(式子变形),如2122122212)(xxxxxx

21212111xxxxxx



解题小诀窍:当一元二次方程的题目中给出一个根让你求另外一个根或未知系数时,可以用韦达定理。 二、经典考题剖析: 【考题1-1】下列方程是关于x的一元二次方程的是( ) A.ax2+bx+c=0 B. k2x+5k+6=0

C.3x2+2x+x1=0 D.( k2+3) x2+2x+1=0 【考题1-2】解方程:x2+2x-3=0 【考题1-3】(2009、青岛,6分)已知方程5x2+kx-10=0一个根是-5,求它的另一个根及k的值. 三、针对性训练: 1、下列方程中,关于x的一元二次方程是( )

2、若22324x( )xx与互为相反数,则的值为 A.12 B、2 C、±2 D、±12 3、用配方法解下列方程时,配方有错误的是( ) A.x2-2x-99=0化为(x-1)2=100 B.x2+8x+9=0化为(x+4)2=25

C.2t2-7t-4=0化为1681)47(2t D.3y2-4y-2=0化为910)32(2y 4、关于x的一元二次方程22(1)2mxxmm 30的一个根为x=0,则m的值为( ) A.m=3或m=-1 B.m=-3或m= 1 C.m=-1 D.m=-3 5、(2009济南)若x1 ,x2 是方程x2-5x+6=0的两个根,则x1 +x2的值是( ) A .1 B.5 C. -5 D.6

6、(2009眉山) 若x1 ,x2 是方程x2 -3x-1=0的两个根,则2111xx的值为( ) A.3 B.-3 C.31 D-31 7、(2009潍坊) 若x1 ,x2 是方程x2 -6x+k-1=0的两个根,且242221xx,则k的值为() A.8 B. -7 C.6 D.5 8、(2009成都) 若关于x的方程kx2 -2x-1=0有两个不相等的实数根,则k的取值范围是() A.k>-1 B. k>-1且k≠0 C. k<1 D. k<1且k≠0 9、已知一元二次方程x2 +2x-8=0的一根是2,则另一个根是______________. 10、(2009泰安) 若关于x的方程-x2 +(2k+1)x+2-k2=0有实数根,则k的取值范围是_______ 11、解方程:(1)32)32(22x; (2)3(1)2(1)yyy; (3) 3(4x2-9)-(2x-3)=0; (4) x2-6x+8=0 12、(2009鄂州)关于x的方程kx2+(k+2)x+4k=0有两个不相等的实数根, (1)求k的取值范围; (2)是否存在实数k使方程的两个实数根的倒数和等于0?若存在求出k的值;不存在说明理由。 考点:一元二次方程的应用 一、考点讲解: 1.构建一元二次方程数学模型,常见的模型如下: ⑴ 与几何图形有关的应用:如几何图形面积模型、勾股定理等; ⑵ 有关增长率的应用:此类问题是在某个数据的基础上连续增长(降低)两次得到新数据,常见的等量关系是a(1±x)2=b,其中a表示增长(降低)前的数据,x表示增长率(降低率),b表示后来的数据。注意:所得解中,增长率不为负,降低率不超过1。 ⑶ 经济利润问题:总利润=(单件销售额-单件成本)×销售数量;或者,总利润=总销售额-总成本。 ⑷ 动点问题:此类问题是一般几何问题的延伸,根据条件设出未知数后,要想办法把图中变化的线段用未知数表示出来,再根据题目中的等量关系列出方程。 2.注重解法的选择与验根:在具体问题中要注意恰当的选择解法,以保证解题过程简洁流畅,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性. 二、经典考题剖析: 【考题1】(2009、深圳南山区)课外植物小组准备利用学校仓库旁的一块空地,开辟一个面积为130平方米的花圃(如图1-2-1),打算一面利用长为15米的仓库墙面,三面利用长为33米的旧围栏,求花圃的长和宽.

解:设与墙相接的两边长都为x米,则另一边长为332x米, 依题意得332130xx , 22331300xx∴110x 2132x

又∵ 当110x时,33213x 当2132x时,33220x>15 ∴132x不合题意,舍去.∴10x 答:花圃的长为13米,宽为10米. 【考题2】(2009、襄樊)为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为10平方米提高到12.1平方米,若每年的增长率相同,则年增长率为() A.9﹪ B.10﹪ C. 11﹪ D.12 ﹪ 解:设年增长率为x,根据题意得 10(1+x)2=12.1, 解得x1=0.1,x2 =-2.1. 因为增长率不为负,所以x=0.1。故选D。 【考题3】(2009、海口)某水果批发商场经销一种高档水果 如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元? 解:设每千克水果应涨价x元,依题意,得 (500-2 0 x)(10+x)=6000. 整理,得x2-15x+50=0. 解这个方程,x1=5,x2=10. 要使顾客得到实惠,应取x=5. 答:每千克应涨价5元..

点拨:①此类经济问题在设未知数时,一般设涨价或降价为未知数;②应根据“要使顾客得到实惠”来取舍根的情况. 【考题4】如图,在△ABC中,∠B=90°,AB=5,BC=7,点P从A点开始沿AB边向点B点以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动. (1)如果点P、Q分别从A、B两点同时出发,经过几秒钟,△PBQ的面积等于4? (2)如果点P、Q分别从A、B两点同时出发,经过几秒钟,PQ的长度等于5? 解:(1)设经过x秒钟,△PBQ的面积等于4, 则由题意得AP=x,BP=5-x,BQ=2x,

由21BP·BQ=4,得21(5-x)·2x=4, 解得,x1=1,x2=4. 当x=4时,BQ=2x=8>7=BC,不符合题意。故x=1 (2)由BP2+BQ2=52得(5-x)2+(2x)2=52, 解得x1=0(不合题意),x2=2. 所以2秒后,PQ的长度等于5。 三、针对性训练: 1.小明的妈妈上周三在自选商场花10元钱买了几瓶酸奶,周六再去买时,正好遇上商场搞酬宾活动,同样的酸奶,每瓶比周三便宜0.5元,结果小明的妈妈只比上次多花了2元钱,却比上次多买了2瓶酸奶,问她上周三买了几瓶? 2.合肥百货大搂服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元。为了迎接“十·一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件。要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少? 3.在宽为20米、长为32米的矩形地面上,修筑同样宽的两条互相垂直的道路,余下部分作为耕地,要使耕地面积为540米2,道路的宽应为多少?

4.小红的妈妈前年存了5000元一年期的定期储蓄,到期后自动转存.今年到期扣除利息税32m 20m

P Q B C A

相关文档
最新文档