七年级下数学6.2 立方根
人教版数学七年级下册6.2立方根教学设计

2.能力提升题:
-计算√27、√64、√125的值,并说明它们分别对应哪个整数的立方。
-如果一个立方体的体积是1000立方厘米,求其表面积。
3.实践应用题:
-生活中有哪些物体的体积可以用立方根来表示?请举例说明。
-利用立方根的概念,设计一个实际问题的解决方案,并解释其原理。
2.提高题:计算带分数的立方根,如√2.5、√4.5等。
3.应用题:解决实际问题,如已知一个立方体的体积,求其边长。
4.拓展题:研究立方根的性质,如证明一个数的立方根唯一性。
(五)总结归纳
在总结归纳环节,我会带领学生回顾本节课所学内容,并进行以下归纳:
1.立方根的定义:一个数的立方根,就是使得这个数等于其立方的那个数。
(二)过程与方法
1.通过引入生活中的实际例子,激发学生学习立方根的兴趣,引导学生主动探究立方根的性质和计算方法。
2.采用小组合作、讨论交流等形式,培养学生独立思考、合作解决问题的能力。
3.设计丰富的练习题,巩固学生对立方根知识的掌握,提高学生的运算速度和准确率。
4.引导学生运用类比、联想等方法,将立方根与已学的平方根、算术平方根等知识进行联系,形成知识体系。
1.请举例说明立方根在生活中的应用。
2.请思考立方根与平方根的联系和区别。
3.如何计算一个数的立方根?请给出具体步骤。
要求学生在规定时间内进行讨论,并选派代表进行汇报。我在此过程中进行巡回指导,解答学生的疑问。
(四)课堂练习
在课堂练习环节,我会设计以下四类题目,帮助学生巩固所学知识:
1.基础题:计算简单立方根,如√8、√27等。
4.拓展探究题:
-研究立方根的性质,例如:证明一个数的立方根唯一性,讨论立方根的有界性。
七年级下册数学(人教版)6.2 立方根

6.2 立方根【学习目标】1、了解立方根的概念,初步学会用根号表示一个数的立方根;2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根;3、体会一个数的立方根的惟一性,分清一个数的立方根与平方根的区别。
【学习重点和难点】1.学习重点:立方根的概念和求法。
2.学习难点:立方根与平方根的区别。
【学习过程】一、自主探究1.平方根是如何定义的 ? 平方根有哪些性质?2、问题:要制作一种容积为27 m3的正方体形状的包装箱,这种包装箱的边长应该是3、思考:(1) 的立方等于-8?(2)如果上面问题中正方体的体积为5cm3,正方体的边长又该是4、立方根的概念:如果一个数的立方等于a,这个数就叫做a的 .(也叫做数a的).换句话说,如果 ,那么x叫做a的立方根或三次方根. 记作: .读作“”,其中a是,3是,且根指数3 省略(填能或不能),否则与平方根混淆.5、开立方求一个数的的运算叫做开立方,与开立方互为逆运算(小组合作学习)6、立方根的性质(1)教科书49页探究(2)总结归纳:正数的立方根是数,负数的立方根是数,0的立方根是 .(3)思考:每一个数都有立方根吗?一个数有几个立方根呢?(4)平方根与立方根有什么不同?二、边学边练例1、 求下列各式的值: (1)364; (2)327102例2、求满足下列各式的未知数x :(1)3x 0.008=练习1. 判断正误: (1)、25的立方根是 5 ;( )(2)、互为相反数的两个数,它们的立方根也互为相反数;( )(3)、任何数的立方根只有一个;( )(4)、如果一个数的平方根与其立方根相同,则 这个数是1;( )(5)、如果一个数的立方根是这个数的本身,那么这个数一定是零;( )(6)、一个数的立方根不是正数就是负数.( )(7)、–64没有立方根.( )2、(1) 64的平方根是________立方根是________. (2) 的立方根是________. (3) 37-是_______的立方根.(4) 若 ,则 x=_______, 若 ,则 x=________. (5) 若 , 则x 的取值范围是__________, 若 有意义,则x 的取值范围是_______________.3、计算:(1)38321+ 4、已知x-2的平方根是4±,2x y 12-+的立方根是4,求()x y x y ++的值.三、我的感悟这节课我的最大收获是: 我不能解决的问题是:四、课后反思327()92=-x ()93=-x x x -=23x -。
人教版数学七年级下册6.2 立方根 课程教学设计

课题:《 6.2 立方根》教学设计
板书:
1、立方根定义:一般地,如果一个数的立方等于a,那么这个数叫做a 的立方根或三次方根.记作: 3a 2
3教学反思:
本节课的教学设计,总体上采取教师创设问题-学生合作交流与自主探索-师生概括明晰的教学思路,整个教学过程环环相扣,层层深入,以问题为线索,启发学生思考和探索,这样的设计符合中学生的认知规律,使学生易于接受。
教学开始,提出问题,借助多媒体手段,引发学生积极思考,并归结出答案,由答案的表现形式再给学生提出问题,激发学生的求知欲望,在教师的启发诱导下自然过度到新知的学习,接着层层设问,引出乘方以及与乘方有关的概念,采用归纳类比的方法把新旧知识联系起来,既有利于复习巩固旧知识,又有利于新知的理解和掌握。
评语:
1、教学目标中“了解立方根的概念和性质”不准确,其中性质不是了解层次的要求。
2、要了解教学设计的要求与形式。
人教版数学七年级下册第20课时《6.2立方根(2)》教学设计

人教版数学七年级下册第20课时《6.2立方根(2)》教学设计一. 教材分析《6.2立方根(2)》是人教版数学七年级下册的教学内容,这部分内容是在学生已经掌握了立方根的定义和求法的基础上进行进一步的拓展。
本节课主要让学生进一步了解立方根的概念,掌握求立方根的方法,并能运用立方根解决实际问题。
教材中通过丰富的例题和练习题,帮助学生巩固所学知识,提高解决问题的能力。
二. 学情分析学生在进入七年级下学期之前,已经学习了一定的数学知识,对于基本的算术运算和几何概念有一定的了解。
但是,由于学生的学习背景和学习能力各不相同,对于立方根的理解和应用可能存在差异。
因此,在教学过程中,需要关注学生的个体差异,针对不同程度的学生进行有针对性的教学。
三. 教学目标1.知识与技能:让学生掌握立方根的概念,学会求立方根的方法,并能运用立方根解决实际问题。
2.过程与方法:通过学生的自主学习、合作交流,培养学生的数学思维能力和问题解决能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生积极思考、勇于探索的精神。
四. 教学重难点1.重点:立方根的概念和求法,以及运用立方根解决实际问题。
2.难点:立方根在实际问题中的应用,以及与其他数学概念的关联。
五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,让学生在实际情境中理解立方根的意义。
2.自主学习法:鼓励学生自主探究立方根的求法,培养学生的独立思考能力。
3.合作交流法:学生进行小组讨论,分享学习心得,互相学习,共同进步。
4.案例教学法:通过分析实际问题,引导学生运用立方根解决问题,提高学生的应用能力。
六. 教学准备1.教学课件:制作精美的课件,辅助教学,提高学生的学习兴趣。
2.练习题:准备一定数量的练习题,用于巩固所学知识,提高学生的解题能力。
3.教学资源:收集与立方根相关的教学资源,如视频、文章等,丰富教学内容。
七. 教学过程1.导入(5分钟)利用生活中的实例,如冰雪融化、肥料稀释等,引导学生思考立方根的实际意义,激发学生的学习兴趣。
七年级数学下册(人教版)6.2立方根教学设计

一、教学目标
(一)知识与技能
1.理解立方根的概念,掌握立方根的表示方法,能正确书写立方根的数学符号。
2.学会使用计算器或手算求解简单正整数的立方根,并掌握其基本性质。
3.能够运用立方根解决实际问题,如体积、密度等计算,以及日常生活中的一些问题。
4.通过立方根的学习,加深对整数、平方根概念的理解,形成完整的数系概念。
6.联系实际,学以致用:设计一些与生活密切相关的实际问题,让学生运用立方根知识进行解决,增强学生的数学应用意识。
7.情感教育,全面发展:在教学过程中,关注学生的情感态度,通过鼓励、赞扬等方式,培养学生的自信心和面对挑战的勇气。
四、教学内容与过程
(一)导入新课
在课堂的开始,我将以一个简单的数学魔术作为导入,激发学生的好奇心。我会拿出一个立方体模型,并告诉学生这个立方体的体积是8立方厘米,然后提问:“同学们,你们知道这个立方体的边长是多少厘米吗?”通过这个问题,引导学生思考立方体边长与体积之间的关系。
2.立方根的计算,特别是非整数的立方根计算,是本章节的难点。学生需要掌握计算方法和技巧,并能应用于解决实际问题。
-教学设想:设计不同难度的计算题,从简单的整数立方根计算开始,逐步过渡到小数和分数的立方根计算。通过示例演示和练习,帮助学生掌握计算方法。
3.立方根与平方根的关系及应用是另一个重点。学生需要理解两者之间的联系,并能灵活运用。
(三)学生小组讨论
在讲授完新知后,我会组织学生进行小组讨论。每个小组都会得到几个立方根的计算题,包括整数、小数和分数的立方根。我会要求学生在小组内共同探讨解题方法,并尝试找出立方根计算的规律。
在这个过程中,我会巡回指导,解答学生的疑问,并引导学生发现立方根与平方根的关系。此外,我还会鼓励学生分享自己的解题心得,以促进小组间的交流与学习。
人教版七年级数学初一下册6.2..立方根PPT课件

3
=
a
概念:
一般地,如果一个数的立方 等于a,那么这个数就叫做a的立方 根或三次方根。
这就是说,如果 x a, 那么x叫做a的立方根。
3
3
a
其中a是被开方数, 3是根指数,符号 3 “ ”读做“三次根 号”. 3 8 =2 3 到现在我们学了几 8 = -2
种运算? 开平方,开立方
求一个数的立方根的运算, +,-,x,÷,乘方, 叫做开立方.
3 3 3 3 3
( 1) 3 1.442(保留四位有效数字) 0.003 ( 0.1442 ) 0.000003 ( 3000 ( 3000000 (
0.01442
) )
14.42
)
144.2
用计算器计算下列数值,并发现规律
…
…
3
0.000216 0.216
0.06
0.6
3
3
216
6
3
216000
60
…
…
归纳:被开方数的小数点每向右(或左) 移动三位,开方后立方根的小数点就向右 (或左)移动一位。
3 1.已 知3 0.342 0.6993 , 3.42 1.507 , 3
34.2 3.246 ,求下列各式的值。
3 3
3 ( 4) ( 3) ; (5)3 2 ; 64
3 3
你能求出下列各式中的未知数x吗? (1) x3=343 (2)(x-1)3=125 ( 3) 3
解: (1) x 3 343
∴x=7 (3)x=23 ∴x=8
x 2
( 4) 3
x2 4
3
(2) x 1 125 ∴x-1=5
人教版七年级数学下册6.2《立方根》说课稿
人教版七年级数学下册6.2《立方根》说课稿一. 教材分析《立方根》是人教版七年级数学下册第六章第二节的内容。
本节课的主要内容是让学生理解立方根的概念,掌握求立方根的方法,以及能够运用立方根解决一些实际问题。
教材通过引入立方根的概念,让学生通过观察、思考、操作、交流等活动,体验数学的探索过程,培养学生的数学思维能力和解决问题的能力。
二. 学情分析七年级的学生已经学习了有理数的乘方,对乘方的概念和运算法则有一定的了解。
但是,学生对立方根的概念可能还比较陌生,需要通过实例和操作来帮助理解。
此外,学生可能对求立方根的方法不够熟悉,需要通过练习和指导来提高。
三. 说教学目标1.知识与技能目标:学生能够理解立方根的概念,掌握求立方根的方法,能够运用立方根解决一些实际问题。
2.过程与方法目标:通过观察、思考、操作、交流等活动,学生能够体验数学的探索过程,培养数学思维能力和解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与数学学习,对数学产生兴趣和信心,培养良好的学习习惯和合作意识。
四. 说教学重难点1.教学重点:学生能够理解立方根的概念,掌握求立方根的方法。
2.教学难点:学生能够运用立方根解决一些实际问题,理解并应用立方根的性质。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例教学法、合作学习法等,激发学生的学习兴趣,引导学生主动参与数学学习。
2.教学手段:利用多媒体课件、实物模型、数学软件等辅助教学,提高教学效果和学生的学习兴趣。
六. 说教学过程1.导入:通过一个实际问题,引入立方根的概念,激发学生的兴趣。
2.探究:学生通过观察、操作、思考等活动,理解立方根的概念,掌握求立方根的方法。
3.练习:学生进行一些练习题,巩固对立方根的理解和运用。
4.应用:学生通过解决一些实际问题,运用立方根的知识,提高解决问题的能力。
5.总结:教师引导学生总结立方根的概念和求法,加深对知识的理解。
七. 说板书设计板书设计要清晰、简洁,能够突出立方根的概念和求法。
人教初中数学七下 6.2 立方根课件 【经典初中数学课件 】
直
156 157 153 165 159 157 155 164 156
方
图 的 步 骤
1、计算最大值与最小值的差(极差)
在以上数据中, 最大值-最小值= 17_2_-__14_9__=__2_3___.
三、研读课文
2、决定组距与组数
(1)把所有的数据分成若干组,每个小组的两__个__端点
知 之间的距离(组内数据的取值范围)称为组距.
三、研读课文
158 158 160 168 159 159 151 158 159
知
168 158 154 158 154 169 158 158 158
识
159 167 170 153 160 160 159 159 160
点
149 163 163 162 172 161 153 156 162
例3 求下列各式的值(口答): (1)3 0.001 ; (2)3 1000 ;(3)3 216000 .
例4 求下列各式中的x:
(1) x3=0.125;
(2) 1
4
(10-x)3+54=0.
利用计算器算一算:
0.1
3 0.001
3 1 1
-0.06
3 0.000216
二、学习目标
1 了解频数及频数分布,掌握划分法 2 会用表格整理数据表示频数分布.
三、研读课文
认真阅读课本第145至149页的内容,
知 完成下面练习并体验知识点的形成过程. 识 点 一 问题 为了参加学校年级之间的广播体操比
赛,七年级准备从63名同学中挑出身高相 差不多的40名同学参加比赛.为此收集到这 63名同学的身高(单位:cm)如下:
一
人教版七年级下数学6.2 立方根
1、显示结果是()A.15B.±15C.﹣15D.25A要读懂题目中给出的意思和计算器的操作,题目中给出的意思为225开平方.解:按照题目中给出的2nd和x的平方,用计算机按下,结果为225开方为15,故选 A.2、下列说法中正确的是()A.512的立方根是8,记作B.负数没有立方根C.一个数的立方根与平方根同号D.若一个数有立方根,那它一定有平方根A根据立方根的有关定义解答即可.解:A、表示立方根的方法正确;B、负数有立方根,故错误;C、负数没有平方根,但有立方根,故错误;D、负数有立方根,但没有平方根,故错误.故选A.3、下列命题中正确的是()①0.027的立方根是0.3;②不可能是负数;③如果a是b的立方根,那么ab≥0;④一个数的平方根与其立方根相同,则这个数是1.A.①③B.②④C.①④D.③④A①根据立方根的定义即可判定;②根据立方根的性质即可判定;③根据立方根的性质即可判定;④利用平方根和立方根的定义即可判定.解:∵①0.027的立方根是0.3,故说法正确;②当a<0时,是负数,故说法错误;③如果a是b的立方根,那么ab≥0(a、b同号),故说法正确;④一个数的平方根与其立方根相同,则这个数是0,故说法错误.所以①③正确.故选A.4、下列语句不正确的是()A.没有意义B.没有意义C.﹣(a2+1)的立方根是D.﹣(a2+1)的立方根是一个负数BA、根据算术平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据立方根的定义即可判定;D、根据立方根的定义即可判定.解:A、∵﹣(a2+1)<0,故选项正确;B、有意义,故选项错误;C、﹣(a2+1)的立方根是,故选项正确;D、﹣(a2+1)的立方根是一个负数,故选项正确.故选B.5、立方根是它本身的数是()A.1B.﹣1C.0或﹣1D.0或±1D根据立方根的概念进行解答,可以设这个数为x,根据立方根是它本身,求出这个数.解:设这个数为x,根据题意x3=x,解得:x=0,﹣1,1.故选D.6、下列四种说法中,共有()个是错误的.(1)负数没有立方根;(2)1的立方根与平方根都是1;(3)的平方根是;(4).A.1B.2C.3D.4C利用平方根和立方根的定义逐题判断后即可得到答案.解:(1)负数的立方根是负数,故负数没有立方根错误;(2)1的立方根是1,1平方根是±1,故1的立方根与平方根都是1错误;(3)=2,2平方根是,故正确;(4),故原题错误.错误的共有3个.故选C.7、的立方根是()A.B.C.D.如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解:∵的立方等于﹣,∴﹣的立方根等于.故选B.8、下列判断中,错误的有()(1)有立方根的数必有平方根(2)有平方根的数必有立方根(3)零的平方根、立方根、算术平方根都是零(4)不论a是什么实数,必有意义.A.1个B.2个C.3个D.4个A利用平方根、立方根及算术平方根的知识进行判断后即可得到答案.解:(1)有立方根的数必有平方根,错误;(2)有平方根的数必有立方根,正确;(3)零的平方根、立方根、算术平方根都是零,正确,(4)不论a是什么实数,必有意义正确,故选A.9、下列运算正确的是()A.B.C.D.C根据立方根的性质解答即可.解:根据可得A、B、D错误,C正确;故选C.10、下列各式中正确的是()A.=±3B.C.=﹣7D.=9BA、C根据算术平方根的定义来解答:若一个正数x的平方等于a,即x2=a,则这个正数x为a的算术平方根;B、根据立方根的定义来解答:如果一个数x的立方等于a,即x的三次方等于a(x3=a),即3个x连续相乘等于a,那么这个数x就叫做a的立方根,也叫做三次方根;D、的平方是3.解:A、=3,这是求9的算术平方根,算术平方根的值的前面符号必须为“+”号(可省略),故该选项错误;B、,因为负数的立方根是负数,故该选项正确;C、=|﹣7|=7,故该选项错误;D、=3,故该选项错误;故选B.11、在下列各式中正确的是()A.=﹣2B.=±3C.D.D利用立方根,平方根及算术平方根进行运算后即可得到正确的选项.解:A、正确的运算结果为2,故错误;B、正确的运算结果为3,故错误;C、正确的运算结果为﹣3,故错误;D、正确,故选D.12、在实数中,算术平方根与立方根相同的数是()A.0B.0,1C.1D.±1B分别把0,1,﹣1的算术平方根和立方根计算后,找到相同的数即可求解.解:∵=0,=1,=0,=1,=﹣1,﹣1没有平方根∴算术平方根与立方根相同的数是0,1.故选B.13、下列说法中:①﹣a一定是负数;②1的立方根与平方根都是1;③倒数等于它本身的数是±1;④绝对值等于它本身的数是0和1.其中正确的个数是()A.1B.2C.3D.4B利用立方根、绝对值、倒数及平方根的定义进行判断后即可得到正确的选项.解:①﹣a一定是负数,错误;②1的立方根与平方根都是1,错误;③倒数等于它本身的数是±1,正确;④绝对值等于它本身的数是0和1,正确,故选B.下列语句,写成式子后正确的是()A.3是9的算术平方根,即B.﹣3是﹣27的立方根,即=±3C.是2的算术平方根,即=2D.﹣8的立方根是﹣2,即=﹣2D根据算术平方根、立方根的定义求出每个式子的值,再判断即可.解:A、3是9的算术平方根,即,故本选项错误;B、﹣3是﹣27的立方根,即=﹣3,故本选项错误;C、是2的算术平方根,即=,故本选项错误;D、﹣2是﹣8的立方根,即=﹣2,故本选项正确;故选D.15、下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个A根据负数没有平方根,一个正数有两个平方根,0只有一个平方根是0,一个正数的算术平方根只有一个,即可判断①、②;根据一个负数有一个负的立方根,即可判断③.解:∵负数没有平方根,一个正数有两个平方根,0只有一个平方根是0,∴①错误;∵一个正数有两个平方根,它们互为相反数,而一个正数的算术平方根只有一个,∴②错误;∵一个负数有一个负的立方根,∴③错误;即正确的个数是0个,故选A.16、已知|x|=6,y3=﹣8,且x+y<0,则xy=()A.﹣8B.﹣4C.12D.﹣12C先根据绝对值的性质求出x的值,由立方根的定义求出y的值,再根据x+y<0求出符合条件的未知数的值,再进行计算即可.解:∵|x|=6,∴x=6或x=﹣6;∴y=﹣2,∵x+y<0���∴x=﹣6,y=﹣2,∴xy=(﹣6)×(﹣2)=12.故选C.17、下列说法正确的是()A.1的平方根是1B.平方根是本身的数是0和1C.1的立方根是1D.立方根是本身的数是0和1C1的平方根是±1,0的平方根是0,1的立方根是1,0的立方根是0,﹣1的立方根是﹣1,根据以上内容判断即可.解:A、1的平方根是±1,故本选项错误;B、∵1的平方根是±1,0的平方根是0,∴平方根等于它本身的数只有0,故本选项错误;C、1的立方根是1,故本选项正确;D、1的立方根是1,0的立方根是0,﹣1的立方根是﹣1,即立方根等于它本身的数是1,0,﹣1,故本选项错误;故选C.18、一个正方形的面积变为原来的9倍,则它的边长变为原来的几倍?一个正方体的体积缩小到原来的,则它的棱长缩小到原来的几倍?()A. 3,2B. 3,C. 3,D. 81,2C由于一个正方形的边长扩大x倍,面积扩大x2倍;一个立方体的棱长扩大x倍,体积扩大x3倍.利用前面的结论即可解答.解:一个正方形的面积变为原来的9倍,则边长变为原来的3倍;一个立方体的体积变为原来的,则棱长变为原来的.故选C.19、平方等于的数是_____,立方等于的数是_____.±,根据平方根及立方根的定义作答.解:根据平方根的定义可知,平方等于的数是±;根据立方根的定义可知,立方等于的数是.故答案为:±,.20、计算器计算的按键顺序为,其显示结果为_____.在计算器上按就可得结果.解:∵1.3*1.3=1.69,∴√1.69=1.3,故答案为1.321、用计算器求下列各式的值(精确到0.001):(1)_____(2)=_____ (3)_____(4)≈_____.﹣9.711,0.755,235.000,324.000先利用计算器求值,然后按要求取近似值即可.解:(1)﹣9.7108≈﹣9.711(2)≈0.754784≈0.755;(3)=235.000;(4)=324.000.故答案为:﹣9.711,0.755,235.000,324.000.22、用计算器探索:(1)=_____.(2)=_____.(3)=_____,…,由此猜想:=_____.(1)22;(2)333;(3)444 4;(4)7777 777本题要求同学们能熟练应用计算器,会用科学记算器进行计算.解:利用计算器计算得:(1)=22.(2)=333.(3)=4444,…,由此猜想:=7777777.故答案为:(1)22;(2)333;(3)444 4;(4)7777 777.23、利用计算器比较大小:(1)_____,(2)_____.(1)<,(2)>(1)(2)首先用计算器将近似值计算出来,然后就可以比较大小解答了.解:(1)∵≈4.97,≈5.20,∴<;(2)∵≈1.05,(﹣1)÷3≈0.77,∴>.答:(1)<,(2)>.24、运用计算器求下列各式的值,从中你发现什么规律(1)=_____=_____=_____规律:把一个数的小数点向左(右)移动二位,这个数算术平方根的小数点向_____移动_____位.(2)=_____=_____=_____规律:把一个数的小数点向左(右)移动三位,这个数立方根的小数点向_____移动_____位.13,1.3,0.13,左(右),一;13,1.3,0.13,左(右),一.首先利用计算器进行正确的计算,然后根据计算的结果发现小数点的移动规律即可.解:(1)=13;=1.3;=0.13;规律:把一个数的小数点向左(右)移动二位,这个数算术平方根的小数点向左(右)移动一位.(2)=13;=1.3;=0.13;规律:把一个数的小数点向左(右)移动三位,这个数立方根的小数点向左(右)移动一位.故答案为:13,1.3,0.13,左(右),一;13,1.3,0.13,左(右),一.25、下列实数:,,|﹣1|,,0.1010010001…,,中,有m个有理数,n个无理数,则=_____ (用计算器计算,结果保留5位有效数字).1.5874无理数就是无限不循环小数,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.利用这些定义即可解决问题.解:有理数是:,|﹣1|,,0. 共4个,则m=4;n=3,则==1.5874.26、王老师有两个棱长为40cm的正方体纸箱,都装满了书,他现在把这些书都放入一个新制的正方体木箱中,正好装满,那么这个木箱的棱长大约是多少?想想看.(结果精确到0.01cm)50.40cm由于新制的正方体木箱的体积=2个原来的正方体木箱的体积,根据正方体的体积公式可以列出方程求解即可.解:设这个木箱的棱长为xcm.依题意得 x3=2×403,解得.答:这个木箱的棱长大约是50.40cm.27、用计算器求下列各数的算术平方根(保留四个有效数字),并观察这些数的算术平方根有什么规律.(1)78000,780,7.8,0.078,0.00078.(2)0.00065,0.065,6.5,650,65000.解:(1)(2)规律是:被开方数的小数点向左(右)移动两位,则其平方根的小数点就向左(右)移动一位.用计算器求各数的算术平方根,通过被开方数小数点的位置与其算术平方根的小数点的位置观察规律.28、当人造地球卫星的运行速度大于第一宇宙速度而小于第二宇宙速度时,它能环绕地球运行,已知第一宇宙速度的公式是v1=(米/秒),第二宇宙速度的公式是v2=(米/秒),其中g=9.8米/秒,R=6.4×106米.试求第一、第二宇宙速度(结果保留两个有效数字).解:将g=9.8,R=6.4×106代入v1=,v2=即v1==≈7.9×103v2===≈1.1×104故第一宇宙速度是7.9×103米/秒;第二宇宙速度是1.1×104米/秒.将g=9.8,R=6.4×106分别代入速度公式v1=,v2=,再用计算器开平方即可求得结果.29、已知一个正方体的体积是1000立方米,求这个正方体的表面积.解:∵一个正方体的体积是1000立方米,∴其棱长为10分米,∴其表面积=6×102=600平方米.答:正方体的表面积为600平方米.首先根据其体积求得其棱长,然后计算其表面积即可.30、求满足下列条件的x的值(1)36x2=25(2)(x﹣1)3=﹣8.解:(1)36x2=25,两边同时除以36得:x2=,∴x=±;(2)∵(x﹣1)3=﹣8,∴x=1=﹣2,∴x=﹣1.利用平方根及立方根的定义求解即可.31、3﹣5(精确到0.01)解:∵≈2.24,≈3.32;∴3﹣5≈3×2.24﹣5×3.32=﹣9.88.用计算器求出3和5的近似值后,再来计算它们的差.32、判断下列各式是否正确成立.(1)(2)(3)(4)判断完以后,你有什么体会?你能否得到更一��的结论?若能,请写出你的一般结论.解:能.由已知(1)(2)(3)(4)经观察发现,上述的等式均满足这样的规律:=,故推广后可得=.经过对上述式子的计算,可得出式子均正确,故可得出结论为=.33、已知一个正方体的体积是32cm3,另一个正方体的体积是这个正方体体积的2倍,求另一个正方体的表面积.解:设另一个正方体的边长为xcm.依题意得:x3=32×2x3=64,解得x=4,4×4×6=96(cm2),答:另一个正方体的表面积是96cm2.设另一个正方体的边长为xcm,根据正方体的体积公式即可求出x的值,再求出另一个正方体的表面积即可.34、求出下列各式中x的值.(1)(x﹣1)2﹣9=0(2).解:(1)移项得:(x﹣1)2=9开平方得:x﹣1=±3解得:x=4或x=﹣2;(2)移项得:x3=3+开立方得:x=.(1)移项后两边开平方即可求得未知数的值;(2)移项并合并同类项后两边开立方即可求得未知数的值;35、求下列各式中的x(1)2x2=6;(2)(x+1)3=﹣8.解:(1)2x2=6,x2=3,x1=,x2=﹣;(2)(x+1)3=﹣8,x+1=﹣2,x=﹣3.(1)根据已知得出x2=3,两边开方即可;(2)两边开立方即可得出方程x+1=﹣2,求出即可.36、求满足下列各式中x的值:①121x2﹣25=0②(2x﹣1)3=8.解:(1)121x2﹣25=0,∴x2=,∴x=;(2)(2x﹣1)3=8,∴2x﹣1=2,解得x=.(1)先系数化为1,再直接开平方法进行解答;(2)可用直接开立方法进行解答.37、求下列各式中的x(1)(2)(x﹣2)3=.解:(1)由原方程,得2x﹣1=±,∴x=,∴x1=,x2=;(2)由原方程,得(x﹣2)3=,∴x﹣2=,解得,x=.(1)利用直接开平方法解方程;(2)利用直接开立方法解方程.38、若与(b﹣27)2互为相反数,求的立方根.解:∵与(b﹣27)2互为相反数,∴+(b﹣27)2=0,而≥0,(b﹣27)2≥0,∴=0,(b﹣27)2=0,∴a=﹣8,b=27,∴=﹣2﹣3=﹣5.∴的立方根为.由于与(b﹣27)2互为相反数,那么它们的和为0,然后根据非负数的性质即可得到它们每一个等于0,由此即可得到关于a、b的方程,解方程即可求解.39、计算:若5x+19的立方根是4,求2x+18的平方根.解:根据题意得:5x+19=43,即5x=45,则x=9,则2x+18=36,则2x+18的平方根是±6.由于若5x+19的立方根是4,根据立方根的定义即可得到5x+19=43,即可求得x的值,进而可以求2x+18的平方根.40、求x的值:(1)7=2x2+1;(2)27(x+1)3=64.解:(1)原方程可化为:2x2=6,x2=3x=;(2)原方程可化为:,x+1=x=.(1)根据移项、等式的性质,可化成平方的形式,根据开平方,可得答案;(2)根据等式的性质,可化成立方的形式,根据开立方,可得答案.教师出题相关试题库:/teacher/paper/new学生查看相关知识点:/teacher/lesson/prepare寻找同班同学,自己的老师:/teacher/class/my。
人教版数学七年级下册6.2《立方根》教案
人教版数学七年级下册6.2《立方根》教案一. 教材分析《立方根》是人教版数学七年级下册第六章第二节的内容,本节课主要让学生掌握立方根的概念,理解立方根的性质,学会求一个数的立方根。
通过本节课的学习,培养学生观察、思考、归纳的能力,为后续学习四次根式打下基础。
二. 学情分析学生在六年级时已经学习了平方根的概念和性质,对求一个数的平方根已经有一定掌握。
但是,立方根与平方根虽然在概念和性质上有相似之处,也有很大区别。
因此,在教学过程中,要引导学生正确理解立方根的概念,把握立方根与平方根的联系与区别。
三. 教学目标1.知识与技能:理解立方根的概念,掌握立方根的性质,学会求一个数的立方根。
2.过程与方法:通过观察、思考、归纳,培养学生探索数学问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,激发学生学习数学的积极性。
四. 教学重难点1.重点:立方根的概念和性质,求一个数的立方根。
2.难点:立方根与平方根的联系与区别。
五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、思考、归纳立方根的性质,培养学生探索数学问题的能力。
3.小组合作学习:分组讨论,培养学生的团队协作能力。
六. 教学准备1.课件:制作与教学内容相关的课件,以便于展示和讲解。
2.黑板:准备黑板,用于板书重要知识点和示例。
3.练习题:准备一定数量的练习题,用于巩固所学知识。
七. 教学过程1. 导入(5分钟)通过生活实例引入立方根的概念。
例如,一个正方体的体积是27立方厘米,求这个正方体的棱长。
引导学生思考正方体的棱长与体积的关系,从而引出立方根的概念。
2. 呈现(10分钟)讲解立方根的性质,与平方根进行对比,让学生理解立方根与平方根的联系与区别。
通过PPT展示立方根的性质,让学生观察、思考、归纳。
3. 操练(10分钟)让学生独立完成一些求立方根的练习题,巩固所学知识。
教师在旁边巡回指导,解答学生的疑问。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下数学
6.2 立方根
一、选择题
1.如果a是负数,那么2a的平方根是 ( )
A.a B.a C.a D.a
2.使得2a有意义的a有 ( )
A.0个 B.1个 C.无数个 D.以上都不对
3.下列说法中正确的是 ( )
A.若0a,则20a B.x是实数,且2xa,则0a
C.x有意义时,0x D.0.1的平方根是0.01
4.若一个数的平方根是8,则这个数的立方根是 ( )
A.2 B.2 C.4 D.4
5.若22(5)a,33(5)b,则ab的所有可能值为 ( )
A.0 B.10 C.0或10 D.0或10
6.若10m,且3nm,则m、n的大小关系是 ( )
A.mn B.mn C.mn D.不能确定
7.设76a,则下列关于a的取值范围正确的是 ( )
A.8.08.2a B.8.28.5a
C.8.58.8a D.8.89.1a
8.27的立方根与81的平方根之和是 ( )
A.0 B.6 C.-12或6 D.0或-6
9.若a,b满足23|1|(2)0ab,则ab等于 ( )
A.2 B.12 C.2 D.12
10.若一个数的一个平方根是8,则这个数的立方根是 ( )
A.2 B.4 C.2 D.4
11.下列各式中无论x为任何数都没有意义的是 ( )
七年级下数学
A. 7x B.31999x C.20.11x D.3265x
12.下列结论中,正确的是 ( )
A.0.0027的立方根是0.03
B.0.009的平方根是0.3
C.0.09的平方根是0.3
D.一个数的立方根等于这个数的立方,那么这个数为1、0、1
二、填空题
13.2(4)的平方根是 ,35是 的平方根.
14.在下列各数中0,254,21a,31()3,2(5),222xx,|1|a,||1a,
16
有平方根的个数是 个.
15.自由落体公式:212Sgt(g是重力加速度,它的值约为29.8/ms),若物体
降落的高度300Sm,用计算器算出降落的时间T s(精确到
0.1s
).
16.代数式3ab的最大值为 ,这是,ab的关系是 .
17.若335x,则x ,若3||6x,则x .
18.若33(4)4kk,则k的值为 .
19.若101nn,81mm,其中m、n为整数,则mn .
20.若m的平方根是51a和19a,则m= .
三、解答题
21.求下列各数的平方根
⑴2(3)1 ⑵1316 ⑶0 ⑷21
22.求下列各数的立方根:
⑴10227 ⑵164 ⑶0 ⑷18
七年级下数学
23.解下列方程:
⑴264(3)90x ⑵2(41)225x
⑶31(1)802x ⑷3125(2)343x
24.计算:
⑴22257 ⑵2(23)2|23||3|
⑶233(1)8|13| ⑷23151()(1)(1)393
⑸37121.758 ⑹3331513432782125
25.请你用2个边长为1的小正方形,裁剪出一个边长为2的较大的正方形.如
果要裁剪出一个边长为2的较大的正方形,要几个边长为1的小正方形,如何
进行裁剪?
七年级下数学
26.已知第一个正方形纸盒的棱长是6厘米,第二个正方形纸盒的体积比第一个
正方形纸盒的体积大127立方厘米,试求第二个正方形纸盒的棱长.
27.已知312x,332y互为相反数,求代数式12xy的值.
28.已知abxM是M的立方根,36yb是x的相反数,且37Ma,请你
求出x的平方根.
29.若22442xxyx,求2xy的值.
30.已知34x,且2(21)30yxz,求xyz的值.
七年级下数学
参考答案
一、选择题
1.C ;2.B ;3.C ;4.C ;5.C;6.A ;
7.C ;8.D ;9.C ; 10.D;11.C ;12.D
二、填空题
13.±2,925. 14.7个.15.7.8s. 16.3, ,ab的关系是互为相反数.
17.x27125,x216. 18.k的值为4. 19. mn0.20. m=256.
三、解答题
21.⑴±2 ⑵74 ⑶0 ⑷没有平方根
22.⑴34 ⑵14 ⑶0 ⑷12
23.⑴278x或 218x ⑵4x或72x
⑶3122x ⑷35x
24.⑴24 ⑵3223
⑶3 ⑷1
⑸1 ⑹9
25.
26.二个正方形纸盒的棱长是7厘米.
七年级下数学
27.12xy=3.
28.由条件得,3(6)(37)0abba,所以8M,,故x的平方根是2.
29.2xy=4. 30.xyz=194.