高中数学概率大题(经典二)

高中数学概率大题(经典二)

一.解答题(共10小题)

1.某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;

(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字).

2.已知盒中有10个灯泡,其中8个正品,2个次品.需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止.设ξ为取出的次数,求ξ的分布列及Eξ.3.某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数),假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到,记该系收到李老师或张老师所发活动通知信息的学生人数为X.(I)求该系学生甲收到李老师或张老师所发活动通知信息的概率;

(II)求使P(X=m)取得最大值的整数m.

4.在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.以ξ表示笼内还剩下的果蝇的只数.

(Ⅰ)写出ξ的分布列(不要求写出计算过程)和数学期望Eξ;

(Ⅱ)求概率P(ξ≥Eξ).

5.A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如表(单位:小时):

A班 6 6.5 7 7.5 8

B班 6 7 8 9 10 11 12

C班 3 4.5 6 7.5 9 10.5 12 13.5

(Ⅰ)试估计C班的学生人数;

(Ⅱ)从A班和C班抽出的学生中,各随机选取一个人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;

(Ⅲ)再从A,B,C三班中各随机抽取一名学生,他们该周锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明)

6.某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ 1 2 3 4 5

P 0.4 0.2 0.2 0.1 0.1

商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.

(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);

(Ⅱ)求η的分布列及期望Eη.

7.甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人

都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活

动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;

(II)“星队”两轮得分之和为X的分布列和数学期望EX.

8.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.

(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;

(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.

9.购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为1﹣0.999104.

(Ⅰ)求一投保人在一年度内出险的概率p;

(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).

10.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:

A地区:62 73 81 92 95 85 74 64 53 76

78 86 95 66 97 78 88 82 76 89

B地区:73 83 62 51 91 46 53 73 64 82

93 48 65 81 74 56 54 76 65 79

(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);

(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:

满意度评分低于70分70分到89分不低于90分

满意度等级不满意满意非常满意

记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的频率,求C的概率.

11.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4

个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出

的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.

(1)求顾客抽奖1次能获奖的概率;

(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.

12.端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个.

(Ⅰ)求三种粽子各取到1个的概率;

(Ⅱ)设X表示取到的豆沙粽个数,求X的分布列与数学期望.

13.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加,现有来自甲协会的运动员3名,其中种子选手2名,乙协会的运动员5名,其中种子选手3名,从这8名运动员中随机选择4人参加比赛.

(Ⅰ)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;

(Ⅱ)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.14.已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.

(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;

(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)

15.某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.

(1)求当天小王的该银行卡被锁定的概率;

(2)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.

16.若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得﹣1分,若能被10整除,得1分.

(Ⅰ)写出所有个位数字是5的“三位递增数”;

(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望EX.

17.设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.

(Ⅰ)求同一工作日至少3人需使用设备的概率;

(Ⅱ)实验室计划购买k台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.

18.20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:

(Ⅰ)求频率分布直方图中a的值;

(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;

(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.

19.某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).

(Ⅰ)求选出的3名同学是来自互不相同学院的概率;

(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.20.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.

(Ⅰ)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;

(Ⅱ)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).

参考答案与试题解析

一.解答题(共10小题)

1.(2005?)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.

(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;

(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字).

【解答】解:因为该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.所以寿命为1~2年的概率应为p1﹣p2.其分布列为:

寿命0~1 1~2 2~

P 1﹣P1P1﹣P2P2

(I)一只灯泡需要不需要换,可以看做一个独立重复试验,根据公式得到

在第一次更换灯泡工作中,不需要换灯泡的概率为p15,需要更换2只灯泡的概率为C52p13(1﹣p1)2;

(II)在第二次灯泡更换工作中,对其中的某一盏灯来说,该盏灯需要更换灯泡是两个独立事件的和事件:

①在第1、2次都更换了灯泡的概率为(1﹣p1)2;

②在第一次未更换灯泡而在第二次需要更换灯泡的概率为p1﹣p2.

故所求的概率为p3=(1﹣p1)2+p1﹣p2.

(III)由(II)当p1=0.8,p2=0.3时,在第二次灯泡更换工作中,对其中的某一盏灯来说,该盏灯需要更换灯泡的概率p3=(1﹣p1)2+p1(p1﹣p2)=0.54.

在第二次灯泡更换工作,至少换4只灯泡包括换5只和换4只两种情况:

①换5只的概率为p35=0.545=0.046;

②换4只的概率为C51p34(1﹣p3)=5×0.544(1﹣0.54)=0.196,

故至少换4只灯泡的概率为:p4=0.046+0.196=0.242.

即满两年至少需要换4只灯泡的概率为0.242.

2.(2004?)已知盒中有10个灯泡,其中8个正品,2个次品.需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止.设ξ为取出的次数,求ξ的分布列及Eξ.

【解答】解:由题意知每次取1件产品,

∴至少需2次,即ξ最小为2,有2件次品,

当前2次取得的都是次品时,ξ=4,

∴ξ可以取2,3,4

当变量是2时,表示第一次取出正品,第二次取出也是正品,

根据相互独立事件同时发生的概率公式得到

P(ξ=2)=×=;

P(ξ=3)=××+××=;

P(ξ=4)=1﹣﹣=.

∴ξ的分布列如下:

ξ 2 3 4

P

Eξ=2×P(ξ=2)+3×P(ξ=3)+4×P(ξ=4)=.

3.(2013?)某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数),假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到,记该系收到李老师或张老师所发活动通知信息的学生人数为X.

(I)求该系学生甲收到李老师或张老师所发活动通知信息的概率;

(II)求使P(X=m)取得最大值的整数m.

【解答】解:(I)因为事件A:“学生甲收到李老师所发信息”与事件B:“学生甲收到张老师所发信息”是相互独立事件,所以与相互独立,由于P(A)=P(B)==,故P ()=P()=1﹣,

因此学生甲收到活动信息的概率是1﹣(1﹣)2=

(II)当k=n时,m只能取n,此时有P(X=m)=P(X=n)=1

当k<n时,整数m满足k≤m≤t,其中t是2k和n中的较小者,由于“李老师与张老师各自独立、随机地发送活动信息给k位”所包含的基本事件总数为()2,当X=m时,同时收到两位老师所发信息的学生人数为2k﹣m,仅收到李老师或张老师转发信息的学生人数为m﹣k,由乘法原理知:事件{X=m}所包含的基本事件数为

P(X=m)==

当k≤m<t时,P(X=M)<P(X=M+1)?(m﹣k+1)2≤(n﹣m)(2k﹣m)?m≤2k﹣

假如k≤2k﹣<t成立,则当(k+1)2能被n+2整除时,

k≤2k﹣<2k+1﹣<t,故P(X=M)在m=2k﹣和m=2k+1﹣处达到最大值;

当(k+1)2不能被n+2整除时,P(X=M)在m=2k﹣[]处达到最大值(注:[x]

表示不超过x的最大整数),

下面证明k≤2k﹣<t

因为1≤k<n,所以2k﹣﹣k=≥=≥0

而2k﹣﹣n=<0,故2k﹣<n,显然2k﹣<2k 因此k≤2k﹣<t

综上得,符合条件的m=2k﹣[]

4.(2007?)在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.以ξ表示笼内还剩下的果蝇的只数.

(Ⅰ)写出ξ的分布列(不要求写出计算过程)和数学期望Eξ;

(Ⅱ)求概率P(ξ≥Eξ).

【解答】解:(Ⅰ)由题意知以ξ表示笼内还剩下的果蝇的只数,ξ的可能取值是0,1,2,3,4,5,6

得到ξ的分布列为:

ξ0 1 2 3 4 5 6

P

∴数学期望为Eξ=(1×6+2×5+3×4)=2.

(II)所求的概率为P(ξ≥Eξ)=P(ξ≥2)=.

5.(2016?)A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如表(单位:小时):

A班 6 6.5 7 7.5 8

B班 6 7 8 9 10 11 12

C班 3 4.5 6 7.5 9 10.5 12 13.5

(Ⅰ)试估计C班的学生人数;

(Ⅱ)从A班和C班抽出的学生中,各随机选取一个人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;

(Ⅲ)再从A,B,C三班中各随机抽取一名学生,他们该周锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明)

【解答】解:(I)由题意得:三个班共抽取20个学生,其中C班抽取8个,

故抽样比K==,

故C班有学生8÷=40人,

(Ⅱ)从从A班和C班抽出的学生中,各随机选取一个人,

共有5×8=40种情况,

而且这些情况是等可能发生的,

当甲锻炼时间为6时,甲的锻炼时间比乙的锻炼时间长有2种情况;

当甲锻炼时间为6.5时,甲的锻炼时间比乙的锻炼时间长有3种情况;

当甲锻炼时间为7时,甲的锻炼时间比乙的锻炼时间长有3种情况;

当甲锻炼时间为7.5时,甲的锻炼时间比乙的锻炼时间长有3种情况;

当甲锻炼时间为8时,甲的锻炼时间比乙的锻炼时间长有4种情况;

故周甲的锻炼时间比乙的锻炼时间长的概率P==;

(Ⅲ)μ0>μ1.

6.(2016?东城区模拟)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为

ξ 1 2 3 4 5

P 0.4 0.2 0.2 0.1 0.1

商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.

(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.

【解答】解:(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,

设A表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.

知表示事件“购买该商品的3位顾客中无人采用1期付款”

∴.

(Ⅱ)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率

P(η=200)=P(ξ=1)=0.4,

P(η=250)=P(ξ=2)+P(ξ=3)=0.2+0.2=0.4,

P(η=300)=1﹣P(η=200)﹣P(η=250)=1﹣0.4﹣0.4=0.2.

∴η的分布列为

η200 250 300

P 0.4 0.4 0.2

∴Eη=200×0.4+250×0.4+300×0.2=240(元).

7.(2016?)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;

如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;

每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;

(II)“星队”两轮得分之和为X的分布列和数学期望EX.

【解答】解:(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,

故概率

P=++=++=,(II)“星队”两轮得分之和为X可能为:0,1,2,3,4,6,

则P(X=0)==,

P(X=1)=2×[+]=,

P(X=2)

=++

+=,

P(X=3)=2×=,

P(X=4)=2×[+]=

P(X=6)==

故X的分布列如下图所示:

X 0 1 2 3 4 6

P

∴数学期望EX=0×+1×+2×+3×+4×+6×==

8.(2016?天津)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.

(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;

(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.

【解答】解:(1)从10人中选出2人的选法共有=45种,

事件A:参加次数的和为4,情况有:①1人参加1次,另1人参加3次,②2人都参加2次;

共有+=15种,

∴事件A发生概率:P==.

(Ⅱ)X的可能取值为0,1,2.

P(X=0)==

P(X=1)==,

P(X=2)==,

∴X的分布列为:

X 0 1 2

P

∴EX=0×+1×+2×=1.

9.(2015?鄂州校级模拟)购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为1﹣0.999104.

(Ⅰ)求一投保人在一年度内出险的概率p;

(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).

【解答】解:由题意知

各投保人是否出险互相独立,且出险的概率都是p,

记投保的10000人中出险的人数为ξ,

由题意知ξ~B(104,p).

(Ⅰ)记A表示事件:保险公司为该险种至少支付10000元赔偿金,

则发生当且仅当ξ=0,

=1﹣P(ξ=0)=1﹣(1﹣p)104,

又P(A)=1﹣0.999104,

故p=0.001.

(Ⅱ)该险种总收入为10000a元,支出是赔偿金总额与成本的和.

支出10000ξ+50000,

盈利η=10000a﹣(10000ξ+50000),

盈利的期望为Eη=10000a﹣10000Eξ﹣50000,

由ξ~B(104,10﹣3)知,

Eξ=10000×10﹣3,

Eη=104a﹣104Eξ﹣5×104=104a﹣104×104×10﹣3﹣5×104.

Eη≥0?104a﹣104×10﹣5×104≥0?a﹣10﹣5≥0?a≥15(元).

∴每位投保人应交纳的最低保费为15元.

10.(2015?新课标II)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:

A地区:62 73 81 92 95 85 74 64 53 76

78 86 95 66 97 78 88 82 76 89

B地区:73 83 62 51 91 46 53 73 64 82

93 48 65 81 74 56 54 76 65 79

(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);

(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:

满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意

记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的频率,求C的概率.

【解答】解:(1)两地区用户满意度评分的茎叶图如下

通过茎叶图可以看出,A地区用户满意评分的平均值高于B地区用户满意评分的平均值;A 地区用户满意度评分比较集中,B地区用户满意度评分比较分散;

(2)记C A1表示事件“A地区用户满意度等级为满意或非常满意”,

记C A2表示事件“A地区用户满意度等级为非常满意”,

记C B1表示事件“B地区用户满意度等级为不满意”,

记C B2表示事件“B地区用户满意度等级为满意”,

则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,

则C=C A1C B1∪C A2C B2,

P(C)=P(C A1C B1)+P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2),

由所给的数据C A1,C A2,C B1,C B2,发生的频率为,,,,

所以P(C A1)=,P(C A2)=,P(C B1)=,P(C B2)=,

所以P(C)=×+×=0.48.

高一数学概率测试题

高一数学概率测试题 一、选择题 1.下列说法正确的是( ) A. 任何事件的概率总是在(0,1)之间 B. 频率是客观存在的,与试验次数无关 C. 随着试验次数的增加,频率一般会越来越接近概率 D. 概率是随机的,在试验前不能确定 2.掷一枚骰子,则掷得奇数点的概率是( ) A. 61 B.21 C. `31 D. 41 3. 抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是( ) A. 9991 B. 10001 C. 1000999 D. 2 1 4.从一批产品中取出三件产品,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论正确的是( ) A. A 与C 互斥 B. B 与C 互斥 C. 任何两个均互斥 D. 任何两个均不互斥 5.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85]( g )范围内的概率是( ) A. 0.62 B. 0.38 C. 0.02 D. 0.68 6.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是( ) A. 21 B. 4 1 C. 31 D. 81 7.甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是( ) A. 31 . B. 41 C. 2 1 D.无法确定 8.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是( ) A. 1 B. 21 C. 31 D. 3 2 9.一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出 一球,则取出的两个球同色的概率是( ) A. 21 B. 31 C. 41 D. 5 2 10.现有五个球分别记为A ,C ,J ,K ,S ,随机放进三个盒子,每个盒子只能放 一个球,则K 或S 在盒中的概率是( ) A. 101 B. 53 C. 103 D. 10 9 二、填空题 11. 某小组有三名女生,两名男生,现从这个小组中任意选出一名组长, 则其中一名女生小丽当选为组长的概率是___________ 12. 掷两枚骰子,出现点数之和为3的概率是_____________

高中数学专题――概率统计专题.

专题二概率统计专题 【命题趋向】概率与统计是高中数学的重要学习内容,它是一种处理或然问题的方法,在工农业生产和社会生活中有着广泛的应用,渗透到社会的方方面面,概率与统计的基础知识成为每个公民的必备常识.概率与统计的引入,拓广了应用问题取材的范围,概率的计算、离散型随机变量的分布列和数学期望的计算及应用都是考查应用意识的良好素材.在高考试卷中,概率与统计的内容每年都有所涉及,以解答题形式出现的试题常常设计成包含离散型随机变量的分布列与期望、统计图表的识别等知识为主的综合题,以考生比较熟悉的实际应用问题为载体,以排列组合和概率统计等基础知识为工具,考查对概率事件的识别及概率计算.解答概率统计试题时要注意分类与整合、化归与转化、或然与必然思想的运用.由于中学数学中所学习的概率与统计内容是最基础的,高考对这一部分内容的考查注重考查基础知识和基本方法.该部分在高考试卷中,一般是2—3个小题和一个解答题. 【考点透析】概率统计的考点主要有:概率与统计包括随机事件,等可能性事件的概率,互斥事件有一个发生的概率,古典概型,几何概型,条件概率,独立重复试验与二项分布,超几何分布,离散型随机变量的分布列,离散型随机变量的期望和方差,抽样方法,总体分布的估计,正态分布,线性回归等.【例题解析】 题型1 抽样方法 -)中,在公证部门监督下按照随机抽取的方法确【例1】在1000个有机会中奖的号码(编号为000999 定后两位数为的号码为中奖号码,该抽样运用的抽样方法是() A.简单随机抽样B.系统抽样C.分层抽样D.以上均不对 分析:实际“间隔距离相等”的抽取,属于系统抽样. 解析:题中运用了系统抽样的方法采确定中奖号码,中奖号码依次为:088,188,288,388,488,588,688,788,888,988.答案B. 点评:关于系统抽样要注意如下几个问题:(1)系统抽样是将总体分成均衡几个部分,然按照预先定出的规则从每一部分抽取一个个体,得到所需要的样本的一种抽样方法.(2)系统抽样的步骤:①将总体中的个体随机编号;②将编号分段;③在第一段中用简单随机抽样确定起始的个体编号;④按事先研究的规则抽取样本.(3)适用范围:个体数较多的总体. 例2(2008年高考广东卷理3)某校共有学生2000名,各年级男、女生人数如表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为() A.24B.18C.16D.12 Array 分析:根据给出的概率先求出x的值,这样就可以知道三年级的学生人数,问题就解决了. x=?=,这样一年级和二年级学生的解析:C 二年级女生占全校学生总数的19%,即20000.19380 +++=,三年级学生有500人,用分层抽样抽取的三年级学生应是总数是3733773803701500 64 50016 ?=.答案C. 2000 点评:本题考查概率统计最基础的知识,还涉及到一点分析问题的能力和运算能力,题目以抽样的等可能性为出发点考查随机抽样和分层抽样的知识. 例3.(2009江苏泰州期末第2题)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系, 2500,3500(元)月收入段应抽要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[) 出人.

高中数学概率大题

高中数学概率大题(经典二)一.解答题(共10小题) 1.某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; (Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率; (Ⅲ)当p1=,p2=时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字). 2.已知盒中有10个灯泡,其中8个正品,2个次品.需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止.设ξ为取出的次数,求ξ的分布列及Eξ. 3.某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数),假设李老师

和张老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到,记该系收到李老师或张老师所发活动通知信息的学生人数为X. (I)求该系学生甲收到李老师或张老师所发活动通知信息的概率;(II)求使P(X=m)取得最大值的整数m. 4.在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.以ξ表示笼内还剩下的果蝇的只数. (Ⅰ)写出ξ的分布列(不要求写出计算过程)和数学期望Eξ;(Ⅱ)求概率P(ξ≥Eξ). 5.A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如表(单位:小时): A班 6 7 8 B班 6 7 8 9 10 11 12

高中数学统计与概率知识点

高中数学统计与概率知识点(文) 第一部分:统计 一、什么是众数。 一组数据中出现次数最多的那个数据,叫做这组数据的众数。 众数的特点。 ①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。 3.众数与平均数的区别。 众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。 二、.中位数的概念。 一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数。 三.众数、中位数及平均数的求法。 ①众数由所给数据可直接求出;②求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。 四、中位数与众数的特点。 ⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据; ⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数; ⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单位相同;(6)众数可能是一个或多个甚至没有;(7)平均数、众数和中位数都是描述一组数据集中趋势的量。

高中数学概率大题(经典二)

高中数学概率大题(经典二) 一.解答题(共10小题) 1.某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; (Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字). 2.已知盒中有10个灯泡,其中8个正品,2个次品.需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止.设ξ为取出的次数,求ξ的分布列及Eξ.3.某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由老师和老师负责,已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数),假设老师和老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到,记该系收到老师或老师所发活动通知信息的学生人数为X. (I)求该系学生甲收到老师或老师所发活动通知信息的概率; (II)求使P(X=m)取得最大值的整数m. 4.在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.以ξ表示笼还剩下的果蝇的只数. (Ⅰ)写出ξ的分布列(不要求写出计算过程)和数学期望Eξ; (Ⅱ)求概率P(ξ≥Eξ). 5.A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如表(单位:小时): A班 6 6.5 7 7.5 8 B班 6 7 8 9 10 11 12 C班 3 4.5 6 7.5 9 10.5 12 13.5 (Ⅰ)试估计C班的学生人数; (Ⅱ)从A班和C班抽出的学生中,各随机选取一个人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率; (Ⅲ)再从A,B,C三班中各随机抽取一名学生,他们该周锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明) 6.某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ 1 2 3 4 5 P 0.4 0.2 0.2 0.1 0.1 商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润. (Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);

高中数学选修2-3第二章概率单元测试试题2

选修2-3第二章概率质量检测(二) 时间:120分钟 总分:150分 第Ⅰ卷(选择题,共60分) . 1.某射手射击所得环数ξ的分布列如下: 已知ξA . B . C . D . 2.若X 的分布列为 , 则D (X )等于( ) A . B . C . D . 3.已知某人每天早晨乘坐的某一班次公共汽车准时到站的概率为3 5,则他在3天乘车中,此班次公共汽车至少有2天准时到站的概率为( ) 4.设随机变量X ~N (μ,σ2),且P (X c ),则c 的值为( ) A .0 B .1 C .μ

5.将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率P (A |B ),P (B |A )分别是( ) ,12 ,6091 ,6091 ,12 6.箱中装有标号为1,2,3,4,5,6且大小相同的6个球.从箱中一次摸出两个球,记下号码后放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是( ) 、 7.已知X 的分布列为 且Y =aX +3,E (Y )=7 3,则a 为( ) , A .-1 B .-12 C .-13 D .-1 4 8.已知变量x 服从正态分布N (4,σ2),且P (x >2)=,则P (x >6)=( ) A . B . C . D . 9.设由“0”,“1”组成的三位数组中,若用A 表示“第二位数字为‘0’的事件”,用B 表示“第一位数字为‘0’的事件”,则P (A |B )等于( ) 10.把10个骰子全部投出,设出现6点的骰子的个数为X ,则P (X ≤2)=( ) A .C 210×? ????162×? ?? ??568 B .C 110×16×? ????569+? ????5610 C .C 110× 16×? ????569+C 210×162×? ?? ??568 D .以上都不对

(最全)高中数学概率统计知识点总结

概率与统计 一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。 2、平均数:①、常规平均数:12n x x x x n ++???+= ②、加权平均数:112212n n n x x x x ωωωωωω++???+=++???+ 3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。 4、方差:2222121 [()()()]n s x x x x x x n = -+-+???+- 二、频率直方分布图下的频率 1、频率 =小长方形面积:f S y d ==?距;频率=频数/总数 2、频率之和:121n f f f ++???+=;同时 121n S S S ++???+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。 2、平均数: 112233n n x x f x f x f x f =+++???+ 112233n n x x S x S x S x S =+++???+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。 4、方差:22221122()()()n n s x x f x x f x x f =-+-+???+- 四、线性回归直线方程:???y bx a =+ 其中:1 1 2 22 1 1 ()() ?() n n i i i i i i n n i i i i x x y y x y nxy b x x x nx ====---∑∑== --∑∑ , ??a y bx =- 1、线性回归直线方程必过样本中心(,)x y ; 2、?0:b >正相关;?0:b <负相关。 3、线性回归直线方程:???y bx a =+的斜率?b 中,两个公式中分子、分母对应也相等;中间可以推导得到。 五、回归分析 1、残差:??i i i e y y =-(残差=真实值—预报值)。分析:?i e 越小越好; 2、残差平方和:21?()n i i i y y =-∑, 分析:①意义:越小越好; ②计算:222211221 ????()()()()n i i n n i y y y y y y y y =-=-+-+???+-∑ 3、拟合度(相关指数):221 2 1 ?()1() n i i i n i i y y R y y ==-∑=- -∑,分析:①.(]20,1R ∈的常数; ②.越大拟合度越高; 4、相关系数 :()() n n i i i i x x y y x y nx y r ---?∑∑= = 分析:①.[r ∈-的常数; ②.0:r >正相关;0:r <负相关 ③.[0,0.25]r ∈;相关性很弱; (0.25,0.75)r ∈;相关性一般; [0.75,1]r ∈;相关性很强; 六、独立性检验 1、2×2列联表: 2、独立性检验公式 ①.2 2() ()()()() n ad bc k a b c d a c b d -= ++++ ②.犯错误上界P 对照表 3、独立性检验步骤

高中数学大题规范解答-全得分系列之十概率与统计的综合问题答题模板

概率与统计是高中数学的重要学习内容,在高考试卷中,每年都有所涉及,以解答题形式出现的试题常常设计成包含概率计算,统计图表的识别等知识为主的综合题,以考生比较熟悉的实际应用问题为载体,注重考查基础知识和基本方法;以排列组合和概率统计等基础知识为工具,考查对概率事件的识别及概率计算. “大题规范解答——得全分”系列之(十) 概率与统计的综合问题答题模板 [典例](2012辽宁高考改编·满分12分)电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图: 将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性. (1)根据已知条件完成下面的2×2列联表,并据此资料判断是否有95%的把握认为“体育迷”与性别有关? 非体育迷体育迷合计 男 女 合计 (2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率. 附K2=n(ad-bc)2 (a+b)(c+d)(a+c)(b+d) ,

P (K 2≥k ) 0.05 0.01 k 3.841 6.635 [教你快速规范审题] 1.审条件,挖解题信息 观察 条件 ―→ 100名观众收看节目时间的频率分布直方图及日均收看时间不低于40分钟的观众称为体育迷,女体育迷10名 ??????→ 借助直方可确定图非体育迷及 体育迷人数 2.审结论,明解题方向 观察所求结论―→完成2×2列联表并判断“体育迷”与性别的相关性 ???→ 需要确定a ,b ,c ,d 及K 2的值 3.建联系,找解题突破口 由直方图及条件确定体育迷与非体育迷人数―→完成列联表―→ 计算K 2可判断结论 1.审条件,挖解题信息 观察条件―→确定“超级体育迷”标准且有2名女性“超级体育迷” ??????→由率分布直方频图 确定“超级体育迷”的人数 2.审结论,明解题方向 观察所求结论―→从“超级体育迷”中任取2人求至少有1名女性观众的概率 ????→ 分分析类1名女性观众或两名女性观众 3.建联系,找解题突破口 由频率分布直方图确定“超级体育迷”的人数?????→列法列出 举举

高中数学概率测试题.doc

高中数学概率测试题 高中数学概率测试题一、选择题(本题有8个小题,每小题5分,共40分) 1. 给出下列四个命题: ①三个球全部放入两个盒子,其中必有一个盒子有一个以上的球是必然事件 ②当x为某一实数时可使x 0 是不可能事件③明天广州要下雨是必然事件 ④从100个灯泡中取出5个,5个都是次品是随机事件, 其中正确命题的个数是( ) A.0 B. 1 C. 2 D. 3 2. 某人在比赛(没有和局)中赢的概率为0.6,那么他输的概率是( ) A.0.4 B. 0.6 C. 0.36 D. 0.16 3. 下列说法一定正确的是( ) A.一名篮球运动员,号称百发百中,若罚球三次,不会出现三投都不中的情况 B.一枚硬币掷一次得到正面的概率是21,那么掷两次一定会出现一次正面的情况2 C.如买彩票中奖的概率是万分之一,则买一万元的彩票一定会中奖一元 D.随机事件发生的概率与试验次数无关 4.某个班级内有40名学生,抽10名同学去参加某项活动,每个同学被抽到的概率是

其中解释正确的是( ) A.4个人中必有一个被抽到 B. 每个人被抽到的可能性是 C.由于抽到与不被抽到有两种情况,不被抽到的概率为1, 41 41 D.以上说话都不正确4 5.投掷两粒均匀的骰子,则出现两个5点的概率为( ) A.1115 B. C. D. 1861236 3211 B. C. D. 55486.从{a,b,c,d,e}的所有子集中任取一个,这个集合恰是集合{a,b,c}的子集的概率是( ) A. 7.若A与B是互斥事件,其发生的概率分别为p1,p2,则A、B同时发生的概率为( ) A.p1 p2 B. p1 p2 C. 1 p1 p2 D. 0 8.在等腰直角三角形ABC中,在斜边AB上任取一点D,则AD的长小于AC的长的概 率为( ) A.122 B. 1 C. D. 222 高中数学概率测试题二、填空题(共4个小题,每小题5分,共20分) 9.如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心的概率是方片的概率是1,取到41,则取到黑色牌的概率是_____________ 4 10.同时抛掷3枚硬币,恰好有两枚正面向上的概率为_______________ 11.10件产品中有两件次品,从中任取两件检验,则至少有1件次品的概率为_________ 12.已知集合A {(x,y)|x2 y2 1},集合B {(x,y)|x y a 0},若A

2020高考数学概率统计(大题)

全国一卷真题分析---概率统计 1.(2011年)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的 概率为0.3,设各车主购买保险相互独立. (Ⅰ)求该地1位车主至少购买甲、乙两种保险中的l种的概率; (Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数.求X的期望. 2.(2012年)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果 当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进16朵玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,N n )的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表: 以100天记录的各需求量的频率作为 各需求量发生的概率. (ⅰ)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差; (ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由. 3.(2013年)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中 优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下, 这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为1 2, 且各件产品是否为优质品相互独立. (1)求这批产品通过检验的概率; (2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望. 1

高考数学概率与统计知识点汇编

高中数学之概率与统计 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式 ()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的 概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是: 第一步,确定事件性质?? ?? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算 ?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 例1. 在五个数字12345,,,,中,。 例2. 若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [解答过程]0.3提示:13 35C 33. 54C 10 2P ===?

高中概率测试题及答案

---- 第三章(概率)检测题 班级姓名学号10 小题,每小题3 分,共30 分,在每小题给出的四个选项中,只有一项是符合题(本题共一、选择题: 目要求的) 1.下列说法正确的是(). A.如果一事件发生的概率为十万分之一,说明此事件不可能发生 B.如果一事件不是不可能事件,说明此事件是必然事件 C.概率的大小与不确定事件有关 D .如果一事件发生的概率为99.999%,说明此事件必然发生1/5,已知袋中红球有3 个,则袋中共有除颜色外完全相2.从一个不透明的口袋中摸出红球的概率为 同的球的个数为().

B.8 个C..5 个10 个D.15 个A 3..下列事件为确定事件的有() (1)在一标准大气压下,20℃的纯水结冰 (2) 平时的百分制考试中,小白的考试成绩为105 分 (3)抛一枚硬币,落下后正面朝上 (4)边长为a,b 的长方形面积为ab A.1个B.2 个C.3个D.4个 4.从装有除颜色外完全相同的2 个红球和2 个白球的口袋内任取2 个球,那么互斥而不对立的两个().事件是个红球1 .至少有1 个白球,至少有.至少有A 1 个白球,都是白球B .至少有个白球D 个白球,恰有C.恰有 1 2 个白球,都是红球1 5.从数字1,2,3,4,5 中任取三个数字,组成没有重复数字的三位数,则这个三位数大于400 的().概率是C.2/7D.2/3B、3/42/5.A (54(”的概率是K )中抽取一张牌,抽到牌“.6.从一副扑克牌张) C.A .1/54 1/18 1/27 2/27D.B. ()的概率为.5 .同时掷两枚骰子,所得点数之和为7 -- ----

高中数学必修三 概率与统计

高中数学必修三:概率与统计 1.要从已编号(1-50)的50枚最新研制的某型号导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是( ). A.5,10,15,20,25B.3,13,23,33,43C.1,2,3,4,5D.2,4,8,16,32 2.从鱼塘捕得同一时间放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是1.5,1.6,1.4,1.6,1.3,1.4,1.2,1.7,1.8(单位:千克).依此估计这240尾鱼的总质量大约是( ).A.300克B.360千克C.36千克D.30千克 3.以下茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分) 已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y的值分别为()A.2,5B.5,5C.5,8D.8,8 4.为了考查两个变量x和y之间的线性关系,甲、乙两位同学各自独立作了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1,l2,已知两人得的试验数据中,变量x和y的数据的平均值都分别相等,且值分别为s与t,那么下列说法正确的是( ). A.直线l1和l2一定有公共点(s,t)B.直线l1和l2相交,但交点不一定是(s,t) C.必有直线l1∥l2 D.直线l1和l2必定重合 5..设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为$y=0.85x-85.71,则下列结论中不正确的是( ).A.y与x具有正的线性相关关系B.回归直线过样本点的中心(x,y)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重比为58.79kg

高中数学必修三-概率练习题

一、选择题(每小题3分共30分) 1、下列事件 (1)物体在重力作用下会自由下落; (2)方程x 2+2x+3=0有两个不相等的实根; (3)某传呼台每天某一时段内收到传呼次数不超过10次; (4)下周日会下雨,其中随机事件的个数为( ) A.1个 B.2个 C.3个 D.4个 2、5张卡片上分别写有A,B,C,D,E 5个字母,从中任取2张卡片,这两张卡片上的字母恰好是按字母顺序相邻的概率为( ) A.51 B. 52 C.103 D.10 7 3、掷一枚骰子三次,所得点数之各为10的概率为( ) A. 61 B.81 C.121 D.361 4、下列不正确的结论是( ) A.若P(A) =1.则P(A ) = 0. B.事件A 与B 对立,则P(A+B) =1 C.事件A 、B 、C 两两互斥,则事件A 与B+C 也互斥 D.若A 与B 互斥,则A 与B 也互斥 5、今有一批球票,按票价分别为:10元票5张,20元票3张,50元票2张.从这10张票中随机抽出3张,则票价之和为70元的概率是( ) A. 51 B. 52 C.61 D.4 1 6、在5件产品中,有3件一等品和2张二等品,从中任取2件,那么以 107为概率的事件是( ) A.都不是一等品 B.恰有一件一等品 C.至少有一件一等品 D.至多一件一等品 7、某射手命中目标的概率为P, 则在三次射击中至少有一次未命中目标的概率为( ) A.P 3 B.(1-P)3 C.1-P 3 D.1-(1-P)3 8、甲,乙两人独立地解决同一个问题,甲解决这个问题的概率为P 1,乙解决这个问题的概率为P 2,那么两人都没能解决这个问题的概率是( ) A.2-P 1-P 2 B.1-P 1 P 2 C.1-P 1-P 2+ P 1 P 2 D1-(1-P 1)(1-P 2) 9、设两个独立事件A 和B 都不发生的概率为9 1,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P(A)是( )

高二数学概率测试题

概率 1、下列事件中是随机事件的个数有( ) ①连续两次抛掷两个骰子,两次都出现2点;②在地球上,树上掉下的雪梨不抓住就往下掉;③某人买彩票中奖;④已经有一个女儿,那么第二次生男孩;⑤在标准大气压下,水加热到90℃是会沸腾。 A. 1 B. 2 C. 3 D. 4 2、先后抛掷两枚均匀的正方体骰子(它们的各个面分别是标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为,x y ,则2log 1x y 的概率为( ) A.16 B. 536 C.112 D.12 3、在长为12cm 的线段AB 上任取一点M ,并以线段AM 为边作正方 形,则这个正方形的面积介于236cm 与281cm 之间的概率为( ) A.14 B. 13 C.12 D.16 4、从一批产品中取出三件产品,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论正确的是( ) A. A 与C 互斥 B. B 与C 互斥 C. 任何两个均互斥 D. 任何两个均不互斥 5、从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85]( g )范围内的概率是( ) A. 0.62 B. 0.38 C. 0.02 D. 0.68 6、同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是

( ) A .21 B .41 C .31 D .81 7、一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出一球,则取出的两个球同色的概率是( ) A .21 B .31 C .41 D .52 8、我国西部一个地区的年降水量在下列区间内的概率如下表所示: 则年降水量在 [ 200,300 ] (m,m )范围内的概率是___ ________ 9、掷两枚骰子,出现点数之和为3的概率是____。 10、某小组有三名女生,两名男生,现从这个小组中任意选出一名组长,则其中一名女生小丽当选为组长的概率是___________。 11、甲盒中有一个红色球,两个白色球,这3个球除颜色外完全相同,有放回地连续抽取2个,每次从中任意地取出1个球,用列表的方法列出所有可能结果,计算下列事件的概率。 (1)取出的2个球都是白球; (2)取出的2个球中至少有1个白球。

高中数学概率与统计测试题

概率与统计 1.如果一个整数为偶数的 概率为 (1)a+b 为偶数的概率; (2)a+b+c 为偶数的概率。 0.6 ,且 a,b,c 均为整数,求 2.从 10 位同学 (其中 6 女,4 男)中随机选出 3 位参加测验,每位女同学能通过测验的概率 43 均为,每位男同学能通过测验的概率均为,求55 (1)选出的 3 位同学中,至少有一位男同学的概率; (2)10 位同学中的女同学甲和男同学乙同时被选中且通过测验的概率。 3.袋中有 6 个白球, 4 个红球,甲首先从中取出 3 个球,乙再从余下的 7 个球中取出 4 个球,凡取得红球多者获胜。试求 (1)甲获胜的概率; (2)甲,乙成平局的概率。 4.箱子中放着 3 个 1 元硬币, 3 个 5 角硬币, 4 个 1 角硬币,从中任取 3 个,求总钱数超过 1 元 8 角的概率。 5.有 10 张卡片,其号码分别位 1,2,3?,10,从中任取 3 张。 (1)求恰有 1 张的号码为 3 的倍数的概率; (2)记号码为 3 的倍数的卡片张数为ξ,求ξ的数学期望。 6.某种电子玩具按下按钮后,会出现白球或绿球,已知按钮第一次按下后,出现红球与绿球 1 的概率都是,从按钮第二次按下起,若前次出现红球,则下次出现红球、绿球的概率2 1 2 3 2 分别为, ;若前次出现绿球,则下次出现红球、绿球的概率分别为, ,记第 n(n ∈ 3 3 5 5 N,n ≥1) 次按下后,出现红球的概率为P n

(1)求P2的值; (2)当 n∈N,n ≥2 时,求用P n 1表示P n的表达式; (3)求P n关于 n 的表达式。 7.有甲、乙两个盒子 ,甲盒子中有 8 张卡片 ,其中两张写有数字 0,三张写有数字 1 ,三张写有数字 2 ;乙盒子中有 8 张卡片,其中三张写有数字 0,两张写有数字1,三张写有数字 2 , (1) 如果从甲盒子中取两张卡片,从乙盒子中取一张卡片,那么取出的 3 张卡片都写有 1 的概率是多少? (2)如果从甲、乙盒子中各取一张卡片,设取出的两张卡片数字之和为ξ,求ξ的分布列和期望。 8.甲、乙两位同学做摸球游戏,游戏规则规定:两人轮流从一个放有 1 个白球, 3 个黑球, 2 个红球且只有颜色不同的 6 个小球的暗箱中取球,每次每人只取一球,每取出一个后立即放回,另一个人接着取,取出后也立即放回,谁先取到红球,谁为胜者,现甲先取 (1) 求甲摸球次数不超过三次就获胜的概率; (2) 求甲获胜的概率。 9.设有均由 A,B,C 三个部件构成的两种型号产品甲和乙,当A或 B 是合格品并且 C 是合格 品时,甲是正品;当 A, B 都是合格品或者 C 是合格品时,乙是正品。若 A 、 B、C 合格的概率均是 P,这里 A ,B,C 合格性是互相独立的。 (1) 产品甲为正品的概率P1是多少? (2)产品乙为正品的概率P2 是多少? (3)试比较P1与P2的大小。 10.一种电路控制器在出厂时每四件一等品装成一箱,工人在装箱时不小心把两件二等品和两件一等品装入了一箱,为了找出该箱的二等品,我们对该箱中的产品逐一取出进行测试。 (1) 求前二次取出的都是二等品的概率; (2) 求第二次取出的是二等品的概率; (3)用随机变量ξ表示第二个二等品被取出时共取的件数,求ξ的分布列及数学

高中理科数学概率大题专项习题

1、如图,A、B两点之间有6条网线连接,它们能通过的最大信息量分别为1,1,2,2,3,4.从中任取三条线且使每条网线通过最大信息量,设这三条网线通过的最大信息量之和为ζ。 (1)当ζ≥6时,则保证线路信息畅通,求线路信息畅通的概率; (2)求ζ的分布列和数学期望。 2、某企业生产的一批产品中有一、二、三等品及次品共四个等级,1件不同等级产品的利润(单位:元)如表1,从这批产品中随机抽取1件产品,该件产品为不同等级的概率如表2。若从这批产品中随机抽取出1件产品的平均利润(即数学期望)为元。 (1)求a,b的值; (2)从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率。

m)表示每立方米空气中可入肺颗粒物的含量,这个值 3、空气质量指数(单位:μg/3 越高,就代表空气污染越严重。 某市2012年3月9日~4月7日(30天)对空气质量指数进行检测,获得数据后得到如下条形图: (1)估计该城市一个月内空气质量类别为良的概率; (2)在上述30个监测数据中任取2个,设X为空气质量类别为优的天数,求X的分布列。 4、某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是: [)[)[)[)[)[] 40,50,50,60,60,70,70,80,80,90,90,100 。 (1)求图中x的值; (2)从成绩不低于80分的学生中随机选取2人,该 2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的 数学期望。

5、某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件 产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],……, (510,515],由此得到样本的频率分布直方图,如图4 (1)根据频率分布直方图,求重量超过505克的产品数量, (2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列; (3)从该流水线上任取5件产品,求恰有2件产品的重量超过505克的概率。 p与运动员离飞碟的 6、一射击运动员进行飞碟射击训练, 每一次射击命中飞碟的概率 距离s (米)成反比, 每一个飞碟飞出后离运动员的距离s (米)与飞行时间t(秒)满足()() =+≤≤ s t t 15104 , 每个飞碟允许该运动员射击两次(若第一次射击命中,则不再进行第二次射击).该运动员在每一个飞碟飞出秒时进行第一次射击, 命中的概率为, 当第一次射击没有命中飞碟, 则在第一次射击后秒进行第二次射击,子弹的飞行时间忽略不计. (1) 在第一个飞碟的射击训练时, 若该运动员第一次射击没有命中, 求他第二次射击命中飞碟的概率; (2) 求第一个飞碟被该运动员命中的概率; (3) 若该运动员进行三个飞碟的射击训练(每个飞碟是否被命中互不影响), 求他至少命中两个飞碟的概率.

高中数学统计与概率测试题

高中数学统计与概率测试 题 Revised by Liu Jing on January 12, 2021

高中数学统计与概率测试题一选择题 1.某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是( ) A. 1000名学生是总体 B.每名学生是个体 C.每名学生的成绩是所抽取的一个样本 D.样本的容量是100 2.某班级在一次数学竞赛中为全班同学生设置了一等奖、二等奖、三等奖以及参与奖,各个奖品的单价分别为:一等奖20元、二等奖10元、三等奖5元,参与奖2元,获奖人数的分配情况如图,则以下说法不正确的是() A.获得参与奖的人数最多 B.各个奖项中三等奖的总费用最高C.购买奖品的费用平均数为元 D.购买奖品的费用中位数为2元3.滴滴公司为了调查消费者对滴滴打车出行的真实评价,采用系统抽样方法从2000人中抽取100人做问卷调查,为此将他们随机编号1,2,,2000,适当分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的100人中,编号落入区间[1,820]的人做问卷A,编号落入区间[821,1520]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C 的人数为() A. 23 B. 24 C. 25 D. 26

4.为了解城市居民的环保意识,某调查机构从一社区的120名年轻人、80名中年人、60名老年人中,用分层抽样方法抽取了一个容量为n的样本进行调查,其中老年人抽取3名,则n=( ) A. 13 B. 12 C. 10 D. 9 5 ,,, A B C D四位妈妈相约各带一个小孩去观看花卉展,她们选择共享电动车出行,每辆车只能带一大人和一小孩,其中孩子们表示都不坐自己妈妈的车,则A的小孩坐C妈妈或D妈妈的车概率是 A.1 3 B. 1 2 C. 5 9 D. 2 3 6.如图,海水养殖厂进行某水产品的新旧网箱养殖方法产量对比,收获时各随机抽取了100个网箱,测量各箱水产品产量(单位:kg),其频率分布直方图如图 根据频率分布直方图,下列说法正确的是 ①新网箱产量的方差的估计值高于旧网箱产量的方差的估计值 ②新网箱产量中位数的估计值高于旧网箱产量中位数的估计值 ③新网箱产量平均数的估计值高于旧网箱产量平均数的估计值 ④新网箱频率最高组的总产量的估计值接近旧网箱频率最高组总产量估计值的两倍 A.①②③ B.②③④ C.①③④ D.①④ 7.甲、乙两位射击运动员的5次比赛成绩(单位:环)如茎叶图所示,若两位运动员平均成绩相同,则成绩较稳定(方差较小)的那位运动员成绩的方差为() A. 5 B. 4 C. 3 D. 2

相关文档
最新文档