离散数学傅彦课后习题答案
离散数学第8,9章课后习题答案

第8章 习题参考答案1. 在一次10周年同学聚会上,想统计所有人握手的次数之和,应该如何建立该问题的图论模型?解:将每个同学分别作为一个节点,如果两个人握过一次手就在相应的两个节点之间画一条无向边,于是得到一个无向图。
一个人握手的次数就是这个节点与其他节点所连接的边的条数,进而可得出所有人握手的次数之和。
2. 在一个地方有3户人家,并且有3口井供他们使用。
由于土质和气候的关系,有些井中的水常常干枯,因此各户人家要到有水的井去打水。
不久,这3户人家成了冤家,于是决定各自修一条路通往水井,打算使得他们在去水井的路上不会相遇。
试建立解决此问题的图论模型。
解:将3户人家分别看做3个节点且将3口井分别看做另外3个节点,若1户人家与1口井之间有一条路,则在该户人家与该口井对应的节点之间连一条无向边,这样就得到一个无向图。
3. 某人挑一担菜并带一条狼和一只羊要从河的一岸到对岸去。
由于船太小,只能带狼、菜、羊中的一种过河。
由于明显的原因,当人不在场时,狼要吃羊,羊要吃菜。
通过建立图论模型给出问题答案。
解:不妨认为从北岸到南岸,则在北岸可能出现的状态为24=16种,其中安全状态有下面10种:(人,狼,羊,菜),(人,狼,羊),(人,狼,菜),(人,羊,菜),(Φ),(人,羊),(菜),(羊),(狼),(狼,菜);不安全的状态有下面6种:(人)(人,菜)(人,狼)(狼,羊,菜)(狼,羊)(羊,菜)。
线将北岸的10种安全状态看做10个节点,而渡河的过程则是状态之间的转移,这样就得到一个无向图,如图8-1所示。
图8-1从上述无向图可以得出安全的渡河方案有两种:第1种:(人,狼,羊,菜)→(狼,菜)→(人,狼,菜)→(狼)→(人,狼,羊)→(羊)→(人,羊)→(Φ)。
(人,狼,羊,菜)(人,狼,羊)(人,狼,菜)(人,羊,菜)(人,羊) (狼,菜) (羊) (狼) (菜) (Φ)第2中:(人,狼,羊,菜)→(狼,菜)→(人,狼,菜)→(菜)→(人,羊,菜)→(羊)→(人,羊)→(Φ)。
离散数学第五版前3章课后习题答案

第1章习题1.1(2) 简单命题(3),(4),(5)不是命题(6) 复合命题1.5p∧,其中,p:2是偶数,q:2是素数。
(1)qp→,其中,p:天下大雨,q:他乘公共汽车上班(5)qq→,其中,p,q的含义同(5)(6)pq→,其中,p,q的含义同(5)(7)p1.7(1)对(1)采用两种方法判断它是重言式。
真值表法表1.2给出了(1)中公式的真值表,由于真值表的最后一列全为1,所以,(1)为重等值演算法→)p∨∨q(rp∨⇔(蕴含等值式)∨⌝qp∨(r)p∨⌝⇔)((结合律)p∨∨rqp⇔1(排中律)∨rq∨⇔(零律)1由最后一步可知,(1)为重言式。
(3)用等值演算法判(3)为矛盾式(→⌝)p∧qq⌝⇔)((蕴含等值式)⌝q∨qp∧⇔(德·摩根律)⌝∧p∧qq∧⇔(结合律)⌝(q)qp∧0∧⇔p (矛盾律)0⇔(零律)由最后一步可知,(3)为矛盾式。
(10)非重言式的可满足式 1.8(1)从左边开始演算)()(q p q p ⌝∧∨∧)(q q p ⌝∨∧⇔ (分配律)1∧⇔p (排中律) .p ⇔ (同一律)(2)从右边开始演算)(r q p ∧→)(r q p ∧∨⌝⇔ (蕴含等值式) )()(r p q p ∨⌝∧∨⌝⇔ (分配律) ).()(r p q p →∧→⇔ (蕴含等值式)1.9(1)))((p q p →∧⌝ ))((p q p ∨∧⌝⌝⇔ (蕴含等值式)p q p ⌝∧∧⇔(德·摩根律) q p p ∧⌝∧⇔)((结合律、交换律)q ∧⇔0 (矛盾式).0⇔(零律)由最后一步可知该公式为矛盾式。
(2))())()((q p p q q p ↔↔→∧→)()(q p q p ↔↔↔⇔(等价等值式)由于较高层次等价号两边的公式相同,因而此公式无成假赋值,所以,它为重言式。
1.12 (1) 设(1)中公式为A.)())((r q p r q p A ∧∧→∧∨⇔ )())((r q p r q p A ∧∧∨∧∨⌝⇔)()(r q p r q p A ∧∧∨⌝∨⌝∧⌝⇔ )()()(r q p r p q p A ∧∧∨⌝∧⌝∨⌝∧⌝⇔)())(())((r q p r q q p r r q p A ∧∧∨⌝∧⌝∨∧⌝∨∨⌝∧⌝∧⌝⇔)()()()()(r q p r q p r q p r q p r q p A ∧∧∨⌝∧∧⌝∨⌝∧⌝∧⌝∨∧⌝∧⌝∨⌝∧⌝∧⌝⇔)()()()(r q p r q p r q p r q p A ∧∧∨⌝∧∧⌝∨∧⌝∧⌝∨⌝∧⌝∧⌝⇔7210m m m m A ∨∨∨⇔于是,公式A 的主析取范式为7210m m m m ∨∨∨易知,A 的主合取范式为6543M M M M ∨∨∨A 的成真赋值为000, 001, 010, 111A 的成假赋值为011,100,101,110(2)设(2)中公式为B)()(p q q p B ∨⌝→→⌝⇔ )()(p q q p ∨⌝→∨⌝⌝⇔ )()(p q q p ∨⌝→∨⇔ )()(p q q p ∨⌝∨∨⌝⇔ p q q p ∨⌝∨⌝∧⌝⇔)())(())(()(q q p q p p q p ⌝∨∧∨⌝∧⌝∨∨⌝∧⌝⇔)()()()()(q p q p q p q p q p ∧∨⌝∧∨⌝∧∨⌝∧⌝∨⌝∧⌝⇔ )()()(q p q p q p ∧∨⌝∧∨⌝∧⌝⇔320m m m ∨∨⇔所以,B 的主析取范式为320m m m ∨∨.B 的主合取范式为1M B 的成真赋值为00,10,11. B 的成假赋值为01. 1.14 设p:A 输入;设q:B 输入; 设r:C 输入;由题的条件,容易写出C B A F F F ,,的真值表,见表1.5所示.由真值表分别写出它们的主析范邓范式,而后,将它们都化成与之等值的}{↓中的公式即可.)()()()(r q p r q p r q p r q p F A ∧∧∨⌝∧∧∨∧⌝∧∨⌝∧⌝∧⇔)()()()(r r q p r r q p ∨⌝∧∧∨∨⌝∧⌝∧⇔)()(q p q p ∧∨⌝∧⇔ )(q q p ∨⌝∧⇔ p ⇔)()(r q p r q p F B ∧∧⌝∨⌝∧∧⌝⇔)()(r r q p ∨⌝∧∧⌝⇔ )(q p ∧⌝⇔ )(q p ∧⌝⌝⌝⇔ )(q p ⌝∨⌝⇔q p ⌝↓⇔)(q q p ↓↓⇔. )(r q p F C ∧⌝∧⌝⇔r q p ∧∨⌝⇔)(r q p ∧↓⇔)( ))((r q p ∧↓⌝⌝⇔ ))((r q p ⌝∨↓⌝⌝⇔ r q p ⌝↓↓⌝⇔)()())()((r r q p q p ↓↓↓↓↓⇔1.19 (1)证明 ①r q ∨⌝ 前提引入②r ⌝ 前提引入③q ⌝ ①②析取三段论 ④)(q p ⌝∧⌝ 前提引入 ⑤q p ∨⌝ ④置换⑥p ⌝ ③⑤析取三段论 (2)附加前提证明法:证明 ①r 附加前提引入 ②r p ⌝∨ 前提引入③p ①②析取三段论④)(s q p →→ 前提引入 ⑤s q → ③④假言推理 ⑥q 前提引入 ⑦s ⑤⑥假言推理 (5)归缪法:证明 ①q 结论的否定引入②s r ∨⌝ 前提引入 ③s ⌝ 前提引入④r ⌝ ②③析取三段论 ⑤r q p →∧)( 前提引入 ⑥)(q p ∧⌝ ④⑤拒取式 ⑦q p ⌝∨⌝ ⑥置换⑧p 前提引入⑨q ⌝ ⑦⑧析取三段论 ⑩q q ⌝∧ ①⑨合取 ⑪0 ⑩置换 1.20 设p :他是理科生q :他是文科生 r :他学好数学 前提 r p q r p ⌝→⌝→,,结论q通过对前提和结论的观察,知道推理是正确的,下面用构造证明法给以证明。
离散数学习题答案

离散数学 习题 参考答案2、构造公式¬(p ∨q)与¬p ∧¬q 的真值表。
3、构造公式 p 、p ∧p 、p ∨p 的真值表。
4、构造公式 p ∨(q ∧r)、(p ∨q)∧(p ∨r)的真值表。
5、构造公式 p ∨(p ∧r)、p 的真值表。
6、构造公式 p ∧(p ∨r)、p 的真值表。
7、构造公式 p↔q 、¬q↔¬p 的真值表。
8、构造公式(p→q)∧(p→¬q)、¬p 的真值表。
9、构造公式 p 、¬¬p 的真值表。
10、构造公式 p ∨¬p 、p ∧¬p 的真值表 略一、分别用等算演算与真值表法,判断下列公式是否存在主析取范式或主合取范式,若有,请写出来。
(1)(¬p→q)→(¬q ∨p) (2)(¬p→q)→(q ∧r)(3)(p ∨(q ∧r))→(p ∨q ∨r) (4) ¬(q→¬p)∧¬p (5)(p ∧q)∨(¬p ∨r) (6)(p→(p ∨q))∨r (7)(p ∧q)∨r(8) (p→q)∧(q→r) (9) (p ∧q)→q(10) ¬(r↔p)∧p ∧q存在主析取范式=成真赋值对应的小项的析取 =m 00∨m 10∨m 11=(¬p ∧¬q)∨(p ∧¬q)∨(p ∧q)主析取范式=成假赋值对应的大项的合取 =M 01=p ∨¬q等值演算:(¬p→q)→(¬q ∨p) ⇔¬ (¬¬p ∨q)∨(p ∨¬q) ⇔¬ (p ∨q)∨(p ∨¬q) ⇔ (¬p ∧¬q)∨(p ∨¬q) ⇔ (¬p ∨(p ∨¬q))∧(¬q ∨(p ∨¬q)) ⇔ (¬p ∨p ∨¬q)∧(¬q ∨p ∨¬q) ⇔ (1∨¬q)∧(p ∨¬q) ⇔ (p ∨¬q)这是大项,故为大项的合取,称为主合取范式(¬p→q)→(¬q ∨p) ⇔ (p ∨¬q) ⇔ (p)∨(¬q) ⇔ (p ∧1)∨( 1∧¬q) ⇔ (p ∧(q ∨¬q))∨( (p ∨¬p)∧¬q) ⇔ (p ∧q)∨ (p ∧¬q)∨(p ∧¬q)∨(¬p ∧¬q) ⇔ (p ∧q)∨ (p ∧¬q)∨(¬p ∧¬q)因为一个公式的值不是真,就是假,因此当我们得到一个公的取值为真的情况时,剩下的组合是取值为假, 因此当得到小项的析取组成的主析取范式后,可以针对剩下的组合写出主合取范式。
离散数学习题解答 第十四章习题解答(1)

(2) S S ; 不是群。
设f是S S的一个映射,但不是一一映射。
f没有逆映射,即没有逆元.
S S ; 不是群。
14.10G;为群,是可交换的,当且仅当,对任意
a,b G, 有(ab)2 a2b2。 证明:(1)必要性。
G;为可交换群,
(ab)2 (ab)(ab) a(ba)b a(ab)b (aa)(bb) a2b2 (2)充分性。 (ab)2 a2b2 a(ba)b a(ab)b
由消去律得ba ab,即G;可交换。
14.11已知G;为不可交换群,当G 2时,必存在
a,b G, a b, a e,b e,但ab ba.
证明:G;为群
a G, 有aa1 a1a e. (1) 若a a1 ,命题得证。 (2)若a a1,即G中每一个元素的逆元为其自身, 那么ab (ab)1 b1a1 ba, 满足交换律,与题设 矛盾。 由(1),(2)可得必存在a,b G, a b, ab ba.
2.有单位元e
0m
。
,n
0 m,n
M1m,n (Q)
M1m,n (Q) 0m,n
(5) n ;
解答:是拟群。
1.满足结合性。 (i j) k i ( j k) 2.有单位元e 0。 0 i i 0
14.4指出下列代数系统中那些是群?那些 是可交换群?为什么?
(1);,其中 定义如下:a,b , a b a b 2;
S S的映射组成的集合,则S S; 不是群。
证明:(1)TS;为群
1.封闭性。若f , g TS , f g TS 2.结合性。 ( f g) h f (g h)
3.有单位元恒等变换I.为一一映射,存在逆元f 1.
综上所述,TS;为群。
离散数学习题解答 习题-

今 fft'P 乂'二b,(“勺广,反私
少: = wo 今什</吵£
人根推6》峰_,a ^JLx/
由o相吻什f(t-5V’一么H .祕毕件
- 氏 I b , l/ b^b f O ,
6 h =江扒
乡 fen 6 6^ 令 Cb)Q
4= V <6)26认) 茗t g^Jzst^ b - fv^ -^r 以rz
W JL 二 / A,n / H e£
j -铋卜< 以二⑽化
、b吾⑷ f, 故卑或喊象, 香屮,
^i>? C O)
^3 -、'。:、 C f ^'(C* - I
㈧V]炎IM,刪十/]
十么) ^A
fM么)
- X =(卜说o f^*) \ eA
3)
) (Al+UcM \ &4
(tL H介)(认如 一
L h) /
Ms/i [I)
/^-3)
? 9 (f 叫 )二广久 + L)f 认 t“八二(^.i)tt^b^i) 二 ifc< )+仍) j -曲(H-hD C ^b^tb^\\ 二(A4*-U “〉十 f A.bx + hiAa)^ -(fti+ t>i t ) “▲ + “€)-和, 艸) 屮為圬态_寺才 1斧x切厂叫卜U“年“十b“二仲 二枝呼'?uc敝碱宇.#
⑷今州pi咧~ ■/>城解峥和吨呼仗W4象均i > it ^^4. 件 中、£4; ®, 幻一* Go也多]
仆d)二竹叫-I。],卿)二於睁Z4J
A* 今
令X/十十/ 一/二Xt/十扣
:)c^D 十 xcxV/> 二
离散数学第二版最全课后习题答案详解

离散数学第二版最全课后习题答案详解离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、电气工程等领域都有着广泛的应用。
对于学习离散数学的同学们来说,课后习题的解答是巩固知识、加深理解的重要环节。
本文将为您提供离散数学第二版的最全课后习题答案详解,希望能对您的学习有所帮助。
在开始讲解具体的习题答案之前,让我们先简要回顾一下离散数学的主要内容。
离散数学包括集合论、数理逻辑、图论、代数结构等几个部分。
集合论是离散数学的基础,它研究集合的性质、运算和关系。
在集合论的习题中,常见的问题包括集合的表示、集合的运算(并集、交集、补集等)、集合的包含关系以及集合的基数等。
例如,有这样一道习题:设集合 A ={1, 2, 3},B ={2, 3, 4},求 A ∪ B 和A ∩ B。
答案是:A ∪ B ={1, 2, 3, 4},A ∩ B ={2, 3}。
这是因为并集是包含两个集合中所有元素的集合,而交集是同时属于两个集合的元素组成的集合。
数理逻辑是研究推理和证明的工具,它包括命题逻辑和谓词逻辑。
在数理逻辑的习题中,需要掌握命题的符号化、逻辑公式的等价变换、推理规则的应用等。
比如,给出这样一个命题:“如果今天下雨,那么我就不去公园”,将其符号化。
我们可以设“今天下雨”为 P,“我去公园”为 Q,那么这个命题可以符号化为P → ¬Q。
图论是研究图的性质和应用的分支。
图的概念在计算机网络、交通运输等领域有着重要的应用。
图论的习题常常涉及图的表示、顶点的度、路径、连通性、图的着色等问题。
假设有这样一道题:一个无向图有 10 个顶点,每个顶点的度都为 6,求这个图的边数。
根据顶点度数之和等于边数的两倍这个定理,我们可以计算出边数为 30。
代数结构则包括群、环、域等概念,在这部分的习题中,需要理解和运用代数结构的定义和性质来解决问题。
接下来,我们具体来看一些习题的详细解答。
例 1:设集合 A ={x | x 是小于 10 的正奇数},B ={x | x 是小于 10 的正偶数},求 A B。
大学_《离散数学》课后习题答案

《离散数学》课后习题答案《离散数学》简介1、集合论部分:集合及其运算、二元关系与函数、自然数及自然数集、集合的基数2、图论部分:图的基本概念、欧拉图与哈密顿图、树、图的矩阵表示、平面图、图着色、支配集、覆盖集、独立集与匹配、带权图及其应用3、代数结构部分:代数系统的基本概念、半群与独异点、群、环与域、格与布尔代数4、组合数学部分:组合存在性定理、基本的计数公式、组合计数方法、组合计数定理5、数理逻辑部分:命题逻辑、一阶谓词演算、消解原理离散数学被分成三门课程进行教学,即集合论与图论、代数结构与组合数学、数理逻辑。
教学方式以课堂讲授为主,课后有书面作业、通过学校网络教学平台发布课件并进行师生交流。
《离散数学》学科内容随着信息时代的到来,工业革命时代以微积分为代表的连续数学占主流的地位已经发生了变化,离散数学的重要性逐渐被人们认识。
离散数学课程所传授的思想和方法,广泛地体现在计算机科学技术及相关专业的诸领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到认知系统,无不与离散数学密切相关。
由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系,因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理。
离散数学是传统的逻辑学,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。
离散数学的应用遍及现代科学技术的诸多领域。
离散数学也可以说是计算机科学的基础核心学科,在离散数学中的有一个著名的典型例子-四色定理又称四色猜想,这是世界近代三大数学难题之一,它是在1852年,由英国的一名绘图员弗南西斯格思里提出的,他在进行地图着色时,发现了一个现象,“每幅地图都可以仅用四种颜色着色,并且共同边界的国家都可以被着上不同的颜色”。
离散数学课后习题答案

离散数学课后习题答案1.3.1习题1.1解答1设S = {2,a,{3},4},R ={{a},3,4,1},指出下⾯的写法哪些是对的,哪些是错的?{a}∈S,{a}∈R,{a,4,{3}}?S,{{a},1,3,4}?R,R=S,{a}?S,{a}?R,φ?R,φ?{{a}}?R?E,{φ}?S,φ∈R,φ?{{3},4}。
解:{a}∈S ,{a}∈R ,{a,4,{3}} ? S ,{{a},1,3,4 } ? R ,R = S ,{a}?S ,{a}? R ,φ? R ,φ? {{a}} ? R ? E ,{φ} ? S ,φ∈R ,φ? {{3},4 }2写出下⾯集合的幂集合{a,{b}},{1,φ},{X,Y,Z}解:设A={a,{b}},则ρ(A)={ φ,{a},{{b}},{a,{b}}};设B={1,φ},则ρ(B)= { φ,{1},{φ},{1,φ}};设C={X,Y,Z},则ρ(C)= { φ,{X},{Y},{Z},{X,Y },{X,Z },{ Y,Z },{X,Y,Z}};3对任意集合A,B,证明:(1)A?B当且仅当ρ(A)?ρ(B);(2)ρ(A)?ρ(B)?ρ(A?B);(3)ρ(A)?ρ(B)=ρ(A?B);(4)ρ(A-B) ?(ρ(A)-ρ(B)) ?{φ}。
举例说明:ρ(A)∪ρ(B)≠ρ( A∪B)证明:(1)证明:必要性,任取x∈ρ(A),则x?A。
由于A?B,故x?B,从⽽x∈ρ(B),于是ρ(A)?ρ(B)。
充分性,任取x∈A,知{x}?A,于是有{x}∈ρ(A)。
由于ρ(A)?ρ(B),故{x}∈ρ(B),由此知x∈B,也就是A?B。
(2)证明:任取X∈ρ(A)∪ρ(B),则X∈ρ(A)或X∈ρ(B)∴X?A或X?B∴X?(A∪B)∴X∈ρ(A∪B)所以ρ(A)∪ρ(B) ?ρ( A∪B)(3)证明:先证ρ(A)∩ρ(B) ?ρ( A∩B)任取X∈ρ(A)∩ρ(B),则X∈ρ(A)且X∈ρ(B)∴X?A且X?B∴X? A∩B∴X∈ρ( A∩B)所以ρ(A)∩ρ(B) ?ρ( A∩B)再证ρ( A∩B) ?ρ(A)∩ρ(B)任取Y∈ρ(A∩B),则Y? A∩B∴Y?A且Y?B∴Y∈ρ(A)且Y∈ρ(B)∴Y∈ρ(A)∩ρ(B)所以ρ( A∩B) ?ρ(A)∩ρ(B)故ρ(A)∩ρ(B) = ρ( A∩B)得证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学傅彦课后习题答案
离散数学傅彦课后习题答案
离散数学是计算机科学中的一门重要课程,它涵盖了许多基础的数学概念和理论,为我们理解和应用计算机科学提供了坚实的基础。
在学习离散数学的过程中,我们经常会遇到许多习题,这些习题旨在帮助我们巩固所学的知识,并提高我们的问题解决能力。
本文将为大家提供一些离散数学中常见的习题答案,希望能对大家的学习有所帮助。
1. 集合论
习题:证明集合A和它的幂集P(A)的基数不相等。
解答:首先,我们知道一个集合的基数表示该集合中元素的个数。
对于集合A 来说,它的基数为n。
而它的幂集P(A)中的元素是A的所有子集,即包含0到n个元素的集合。
因此,P(A)的基数为2的n次方。
由于n和2的n次方是不相等的,所以集合A和它的幂集P(A)的基数也是不相等的。
2. 图论
习题:证明在任意一个简单图中,度数为奇数的顶点的个数一定是偶数个。
解答:假设图中度数为奇数的顶点个数为奇数个,记为n。
那么这n个顶点的度数之和为奇数。
但是,图中每条边都会贡献两个顶点的度数,因此度数之和必须是偶数。
这与前提矛盾,所以假设不成立。
因此,度数为奇数的顶点的个数一定是偶数个。
3. 逻辑与命题演算
习题:判断以下命题是否为永真式:(p∨q)→(¬p→q)
解答:我们可以通过真值表的方法来判断该命题是否为永真式。
首先列出命题
中的所有原子命题,即p和q。
然后根据原子命题的取值情况,计算整个命题的取值。
最后,观察整个命题在所有情况下的取值是否都为真。
如果是,则说明该命题为永真式;如果存在一种情况使得命题的取值为假,则说明该命题不是永真式。
根据真值表的计算,可以得出该命题为永真式。
4. 树与图
习题:证明一棵有n个顶点的树有n-1条边。
解答:首先,我们知道一棵树是一个连通且无环的图。
当树的顶点数为1时,显然边数为0,命题成立。
假设当树的顶点数为n时,边数为n-1,即命题成立。
现在考虑树的顶点数为n+1的情况。
我们可以将这棵树的一个叶子节点去掉,得到一棵有n个顶点的树。
根据假设,这棵树有n-1条边。
然后,我们再将叶子节点连接回去,这样就增加了一条边。
所以,一棵有n+1个顶点的树有(n-1)+1=n条边。
根据数学归纳法,命题成立。
通过以上几个习题的解答,我们可以看到离散数学中的一些基本概念和定理的应用。
在学习离散数学的过程中,我们需要理解并掌握这些概念和定理,以便能够灵活运用于问题的解决中。
希望本文提供的习题答案能够对大家的学习有所帮助,同时也希望大家在解答习题的过程中能够思考和探索,提高自己的问题解决能力。