离散数学第五版课后答案
离散数学第5版答案

⇔0↔q
(矛盾律)
⇔ ( p → q) ∧ (q → 0)
(等价等值式)
⇔ (¬0 ∨ q) ∧ (¬q ∨ 0)
(蕴含等值式)
⇔ (1∨ q) ∧ ¬q
(同一律)
⇔ 1∧ ¬q
(零律)
⇔ ¬q
(同一律)
到最后一步已将公式化得很简单。由此可知,无论 p 取 0 或 1 值,只要 q 取 0 值,原公式取值为 1,即 00 或 10 都为原公式的成真赋值,而 01,11 为成假赋 值,于是公式为非重言式的可满足式。
(蕴含等值式)
⇔ p ∨ ¬q ∧ q
(德·摩根律)
⇔ p ∨ (¬q ∧ q)
(结合律)
⇔ p∧0
(矛盾律)
⇔0
(零律)
由最后一步可知,(3)为矛盾式。
(5)用两种方法判(5)为非重言式的可满足式。
真值表法
p
q
¬p
¬p → q q → ¬p (¬p → q) → (q → ¬p)
0
0
1
0
1
1
0
1
1
(10)p:小李在宿舍里. p 的真值则具体情况而定,是确定的。 (12) p ∨ q ,其中, p : 4 是偶数,q : 4 是奇数。由于 q 是假命题,所以,q 为假命题, p ∨ q 为真命题。 (13)p ∨ q ,其中,p : 4 是偶数,q : 4 是奇数,由于 q 是假命题,所以,p ∨ q 为假命题。 (14) p:李明与王华是同学,真值由具体情况而定(是确定的)。 (15) p:蓝色和黄色可以调配成绿色。这是真命题。 分析 命题的真值是唯一确定的,有些命题的真值我们立即可知,有些则不 能马上知道,但它们的真值不会变化,是客观存在的。 1.3 令 p : 2 + 2 = 4, q : 3 + 3 = 6, 则以下命题分别符号化为 (1) p → q (2) p → ¬q (3) ¬p → q (4) ¬p → ¬q (5) p ↔ q (6) p ↔ ¬q (7) ¬p → q (8) ¬p ↔ ¬q 以上命题中,(1),(3),(4),(5),(8)为真命题,其余均为假命题。 分析 本题要求读者记住 p → q 及 p ↔ q 的真值情况。p → q 为假当且仅当 p 为真,q 为假,而 p ↔ q 为真当且仅当 p 与 q 真值相同.由于 p 与 q 都是真命题, 在 4 个蕴含式中,只有(2) p → r ,其中,p 同(1),r:明天为 3 号。 在这里,当 p 为真时,r 一定为假, p → r 为假,当 p 为假时,无论 r 为真 还是为假, p → r 为真。
离散数学课后习题答案

1.3.1习题1.1解答1设S = {2,a,{3},4},R ={{a},3,4,1},指出下面的写法哪些是对的,哪些是错的?{a}∈S,{a}∈R,{a,4,{3}}⊆S,{{a},1,3,4}⊂R,R=S,{a}⊆S,{a}⊆R,φ⊆R,φ⊆{{a}}⊆R⊆E,{φ}⊆S,φ∈R,φ⊆{{3},4}。
解:{a}∈S ,{a}∈R ,{a,4,{3}} ⊆ S ,{{a},1,3,4 } ⊂ R ,R = S ,{a}⊆S ,{a}⊆ R ,φ⊆ R ,φ⊆ {{a}} ⊆ R ⊆ E ,{φ} ⊆ S ,φ∈R ,φ⊆ {{3},4 } 2写出下面集合的幂集合{a,{b}},{1,φ},{X,Y,Z}解:设A={a,{b}},则ρ(A)={ φ,{a},{{b}},{a,{b}}};设B={1,φ},则ρ(B)= { φ,{1},{φ},{1,φ}};设C={X,Y,Z},则ρ(C)= { φ,{X},{Y},{Z},{X,Y },{X,Z },{ Y,Z },{X,Y,Z}};3对任意集合A,B,证明:(1)A⊆B当且仅当ρ(A)⊆ρ(B);(2)ρ(A)⋃ρ(B)⊆ρ(A⋃B);(3)ρ(A)⋂ρ(B)=ρ(A⋂B);(4)ρ(A-B) ⊆(ρ(A)-ρ(B)) ⋃{φ}。
举例说明:ρ(A)∪ρ(B)≠ρ( A∪B)证明:(1)证明:必要性,任取x∈ρ(A),则x⊆A。
由于A⊆B,故x⊆B,从而x∈ρ(B),于是ρ(A)⊆ρ(B)。
充分性,任取x∈A,知{x}⊆A,于是有{x}∈ρ(A)。
由于ρ(A)⊆ρ(B),故{x}∈ρ(B),由此知x∈B,也就是A⊆B。
(2)证明:任取X∈ρ(A)∪ρ(B),则X∈ρ(A)或X∈ρ(B)∴X⊆A或X⊆B∴X⊆(A∪B)∴X∈ρ(A∪B)所以ρ(A)∪ρ(B) ⊆ρ( A∪B)(3)证明:先证ρ(A)∩ρ(B) ⊆ρ( A∩B)任取X∈ρ(A)∩ρ(B),则X∈ρ(A)且X∈ρ(B)∴X⊆A且X⊆B∴X⊆ A∩B∴X∈ρ( A∩B)所以ρ(A)∩ρ(B) ⊆ρ( A∩B)再证ρ( A∩B) ⊆ρ(A)∩ρ(B)任取Y∈ρ(A∩B),则Y⊆ A∩B∴Y⊆A且Y⊆B∴Y∈ρ(A)且Y∈ρ(B)∴Y∈ρ(A)∩ρ(B)所以ρ( A∩B) ⊆ρ(A)∩ρ(B)故ρ(A)∩ρ(B) = ρ( A∩B)得证。
《离散数学》课后习题解答--第5章

习题5.11.设A=⎨a,b,c⎬,B=⎨1,2,3⎬,试说明下列A到B二元关系,哪些能构成A到B的函数?⑴f1=⎨<a,1>,<a,2>,<b,1>,<c,3>⎬⑵f2=⎨<a,1>,<b,1>,<c,1>⎬⑶f3=⎨<a,2>,<c,3>⎬⑷f4=⎨<a,3>,<b,2>,<c,3>,<b,3>⎬⑸f5=⎨<a,2>,<b,1>,<b,2>⎬解:⑴不能构成函数。
因为<a,1>∈f1且<a,2>∈f1⑵能构成函数⑶不能构成函数。
因为dom f3≠A⑷不能构成函数。
因为<b,2>∈f4且<b,3>∈f4⑸能构成函数。
2.试说明下列A上的二元关系,哪些能构成A到A的函数?⑴A=N(N为自然数集合),f1=⎨<a,b>| a∈A∧b∈A∧a+b<10⎬⑵A=R(R为实数集合),f2=⎨<a,b>| a∈A∧b∈A∧b=a2⎬⑶A=R(R为实数集合),f3=⎨<a,b>| a∈A∧b∈A∧b2=a⎬⑷A=N(N为自然数集合),f4=⎨<a,b>| a∈A∧b∈A∧b为小于a的素数的个数⎬⑸A=Z(Z为整数集合),f5=⎨<a,b>| a∈A∧b∈A∧b=|2a|+1⎬解:⑴不能构成函数。
由于1+1<10且1+2<10,所以<1,1>∈f1且<1,2>∈f1。
⑵能构成函数。
⑶不能构成函数。
由于12=1且(-1)2=1,所以<1,1>∈f3且<1,-1>∈f3。
⑷能构成函数。
⑸能构成函数。
3. 回答下列问题。
⑴设A=⎨a,b⎬,B=⎨1,2,3⎬。
求B A,验证|B A|= |B||A|。
离散数学第五版前3章课后习题答案

第1章习题1.1(2) 简单命题(3),(4),(5)不是命题(6) 复合命题1.5p∧,其中,p:2是偶数,q:2是素数。
(1)qp→,其中,p:天下大雨,q:他乘公共汽车上班(5)qq→,其中,p,q的含义同(5)(6)pq→,其中,p,q的含义同(5)(7)p1.7(1)对(1)采用两种方法判断它是重言式。
真值表法表1.2给出了(1)中公式的真值表,由于真值表的最后一列全为1,所以,(1)为重等值演算法→)p∨∨q(rp∨⇔(蕴含等值式)∨⌝qp∨(r)p∨⌝⇔)((结合律)p∨∨rqp⇔1(排中律)∨rq∨⇔(零律)1由最后一步可知,(1)为重言式。
(3)用等值演算法判(3)为矛盾式(→⌝)p∧qq⌝⇔)((蕴含等值式)⌝q∨qp∧⇔(德·摩根律)⌝∧p∧qq∧⇔(结合律)⌝(q)qp∧0∧⇔p (矛盾律)0⇔(零律)由最后一步可知,(3)为矛盾式。
(10)非重言式的可满足式 1.8(1)从左边开始演算)()(q p q p ⌝∧∨∧)(q q p ⌝∨∧⇔ (分配律)1∧⇔p (排中律) .p ⇔ (同一律)(2)从右边开始演算)(r q p ∧→)(r q p ∧∨⌝⇔ (蕴含等值式) )()(r p q p ∨⌝∧∨⌝⇔ (分配律) ).()(r p q p →∧→⇔ (蕴含等值式)1.9(1)))((p q p →∧⌝ ))((p q p ∨∧⌝⌝⇔ (蕴含等值式)p q p ⌝∧∧⇔(德·摩根律) q p p ∧⌝∧⇔)((结合律、交换律)q ∧⇔0 (矛盾式).0⇔(零律)由最后一步可知该公式为矛盾式。
(2))())()((q p p q q p ↔↔→∧→)()(q p q p ↔↔↔⇔(等价等值式)由于较高层次等价号两边的公式相同,因而此公式无成假赋值,所以,它为重言式。
1.12 (1) 设(1)中公式为A.)())((r q p r q p A ∧∧→∧∨⇔ )())((r q p r q p A ∧∧∨∧∨⌝⇔)()(r q p r q p A ∧∧∨⌝∨⌝∧⌝⇔ )()()(r q p r p q p A ∧∧∨⌝∧⌝∨⌝∧⌝⇔)())(())((r q p r q q p r r q p A ∧∧∨⌝∧⌝∨∧⌝∨∨⌝∧⌝∧⌝⇔)()()()()(r q p r q p r q p r q p r q p A ∧∧∨⌝∧∧⌝∨⌝∧⌝∧⌝∨∧⌝∧⌝∨⌝∧⌝∧⌝⇔)()()()(r q p r q p r q p r q p A ∧∧∨⌝∧∧⌝∨∧⌝∧⌝∨⌝∧⌝∧⌝⇔7210m m m m A ∨∨∨⇔于是,公式A 的主析取范式为7210m m m m ∨∨∨易知,A 的主合取范式为6543M M M M ∨∨∨A 的成真赋值为000, 001, 010, 111A 的成假赋值为011,100,101,110(2)设(2)中公式为B)()(p q q p B ∨⌝→→⌝⇔ )()(p q q p ∨⌝→∨⌝⌝⇔ )()(p q q p ∨⌝→∨⇔ )()(p q q p ∨⌝∨∨⌝⇔ p q q p ∨⌝∨⌝∧⌝⇔)())(())(()(q q p q p p q p ⌝∨∧∨⌝∧⌝∨∨⌝∧⌝⇔)()()()()(q p q p q p q p q p ∧∨⌝∧∨⌝∧∨⌝∧⌝∨⌝∧⌝⇔ )()()(q p q p q p ∧∨⌝∧∨⌝∧⌝⇔320m m m ∨∨⇔所以,B 的主析取范式为320m m m ∨∨.B 的主合取范式为1M B 的成真赋值为00,10,11. B 的成假赋值为01. 1.14 设p:A 输入;设q:B 输入; 设r:C 输入;由题的条件,容易写出C B A F F F ,,的真值表,见表1.5所示.由真值表分别写出它们的主析范邓范式,而后,将它们都化成与之等值的}{↓中的公式即可.)()()()(r q p r q p r q p r q p F A ∧∧∨⌝∧∧∨∧⌝∧∨⌝∧⌝∧⇔)()()()(r r q p r r q p ∨⌝∧∧∨∨⌝∧⌝∧⇔)()(q p q p ∧∨⌝∧⇔ )(q q p ∨⌝∧⇔ p ⇔)()(r q p r q p F B ∧∧⌝∨⌝∧∧⌝⇔)()(r r q p ∨⌝∧∧⌝⇔ )(q p ∧⌝⇔ )(q p ∧⌝⌝⌝⇔ )(q p ⌝∨⌝⇔q p ⌝↓⇔)(q q p ↓↓⇔. )(r q p F C ∧⌝∧⌝⇔r q p ∧∨⌝⇔)(r q p ∧↓⇔)( ))((r q p ∧↓⌝⌝⇔ ))((r q p ⌝∨↓⌝⌝⇔ r q p ⌝↓↓⌝⇔)()())()((r r q p q p ↓↓↓↓↓⇔1.19 (1)证明 ①r q ∨⌝ 前提引入②r ⌝ 前提引入③q ⌝ ①②析取三段论 ④)(q p ⌝∧⌝ 前提引入 ⑤q p ∨⌝ ④置换⑥p ⌝ ③⑤析取三段论 (2)附加前提证明法:证明 ①r 附加前提引入 ②r p ⌝∨ 前提引入③p ①②析取三段论④)(s q p →→ 前提引入 ⑤s q → ③④假言推理 ⑥q 前提引入 ⑦s ⑤⑥假言推理 (5)归缪法:证明 ①q 结论的否定引入②s r ∨⌝ 前提引入 ③s ⌝ 前提引入④r ⌝ ②③析取三段论 ⑤r q p →∧)( 前提引入 ⑥)(q p ∧⌝ ④⑤拒取式 ⑦q p ⌝∨⌝ ⑥置换⑧p 前提引入⑨q ⌝ ⑦⑧析取三段论 ⑩q q ⌝∧ ①⑨合取 ⑪0 ⑩置换 1.20 设p :他是理科生q :他是文科生 r :他学好数学 前提 r p q r p ⌝→⌝→,,结论q通过对前提和结论的观察,知道推理是正确的,下面用构造证明法给以证明。
离散数学(第五版)清华大学出版社第4章习题解答

离散数学(第五版)清华大学出版社第4章习题解答4.1 A:⑤;B:③;C:①;D:⑧;E:⑩4.2 A:②;B:③;C:⑤;D:⑩;E:⑦4.3 A:②;B:⑦;C:⑤;D:⑧;E:④分析题4.1-4.3 都涉及到关系的表示。
先根据题意将关系表示成集合表达式,然后再进行相应的计算或解答,例如,题4.1中的Is ={<1,1>,<2,2>}, Es ={<1,1>,<1,2>,<2,1>,<2,2>}Is ={<1,1>,<1,2>,<2,2>};而题4.2中的R={<1,1>,<1,4>,<2,1>,<3,4>,<4,1>}.为得到题4.3中的R须求解方程x+3y=12,最终得到R={<3,3>,<6,2>,<9,1>}.求RoR有三种方法,即集合表达式、关系矩阵和关系图的主法。
下面由题4.2的关系分别加以说明。
1°集合表达式法将domR,domRUran,ranR的元素列出来,如图4.3所示。
然后检查R的每个有序对,若<x,y>∈R,则从domR中的x到ranR中的y画一个箭头。
若danR中的x 经过2步有向路径到达ranR中的y,则<x,y>∈RoR。
由图4.3可知RoR={<1,1>,<1,4><4,1>,<4,4>,<2,1>,<2,4>,<3,1>}.如果求FoG,则将对应于G中的有序对的箭头画在左边,而将对应于F中的有序对的箭头画在右边。
对应的三个集合分别为domG,ranUdomF,ranF,然后,同样地寻找domG到ranF的2步长的有向路径即可。
2° 矩阵方法若M是R的关系矩阵,则RoR的关系矩阵就是M·M,也可记作M,在计算2 48乘积时的相加不是普通加法,而是逻辑加,即0+0=0,0+1=1+0=1+1=1,根据已知条件得⎡1 0 0 1⎤⎡1 0 0 1⎤⎡1 0 0 1⎤⎢1 0 0 0⎥⎢1 0 0 0⎥⎢1 0 0 1⎥2 ⎢⎥⎢⎥⎢⎥M =⎢⎥⋅⎢⎥=⎢⎥⎢0 0 0 1⎥⎢0 0 0 1⎥⎢1 0 0 0⎥⎣1 0 0 0⎦⎣1 0 0 0⎦⎣1 0 0 1⎦M2中含有7个1,说明RoR中含有7个有序对。
离散数学(第五版)清华大学出版社第

离散数学(第五版)清华大学出版社第1章习题解答1.1除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。
分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。
本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。
其次,4)这个句子是陈述句,但它表示的判断结果是不确定。
又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。
(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。
这里的“且”为“合取”联结词。
在日常生活中,合取联结词有许多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,一面……”、“……和……”、“……与……”等。
但要注意,有时“和”或“与”联结的是主语,构成简单命题。
例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。
1.2(1)p:2是无理数,p为真命题。
(2)p:5能被2整除,p为假命题。
(6)p→q。
其中,p:2是素数,q:三角形有三条边。
由于p与q都是真命题,因而p→q为假命题。
(7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。
由于p为假命可编辑范本题,q为真命题,因而p→q为假命题。
(8)p:2000年10月1日天气晴好,今日(1999年2月13日)我们还不知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。
(9)p:太阳系外的星球上的生物。
它的真值情况而定,是确定的。
1(10)p:小李在宿舍里. p的真值则具体情况而定,是确定的。
离散数学(第五版)清华大学出版社第5章习题解答

离散数学(第五版)清华大学出版社第5章习题解答5.1 A:③; B:⑥; C:⑧; D:⑩; E:⑨分析S 为n 元集,那么S×S有n2个元素.S 上的一个二元运算就是函数n2n2f:S×S→S.这样的函数有n 个.因此{a,b}上的二元运算有n =16个.下面说明通过运算表判别二元运算性质及求特导元素的方法.1 °交换律若运算表中元素关于主对角线成对称分布,则该运算满足交换律.2 °幂等律设运算表表头元素的排列顺序为x1,x2,Lxn,如果主对角线元素的排列也为x1,x2,Lxn,则该运算满足幂等律.其他性质,如结合律或者涉及到两个运算表的分配律和吸收律,在运算表中没有明显的特征,只能针对所有可能的元素x,y,z等来验证相关的算律是否成立.3 °幺元e设运算表表头元素的排列顺序为x1.,x2,Lxn,如果元素xi所在的行和列的元素排列顺序也是x1,x2,Lxn,则xi为幺元.4 °零元θ.如果元素xi所在的行和列的元素都是xi,则xi是零元.5 °幂等元.设运算表表头元素的排列顺序为x1,x2,Lxn,如果主对角线上第i个元素恰为xii∈{1,2,L,n}那么xi是幂等元.易见幺元和零元都是幂等元.6 °可逆元素及其逆元.设xi为任意元素,如果xi所在的行和列都有幺元,并且这两个幺元关于主对角线成对称分布,比如说第i行第j列和第j行第i列的两个位置,那么xj与xi互为逆元.如果xi所在的行和列具有共同的幺元,则幺元一定在主对角线上,那么xi的逆元就是xi自己.如果xi所在的和地或者所在的列没有幺元,那么x 不是可逆元素.不难看出幺元e一定是可逆元素,且e−1=e;而i零元θ不是可逆元素.以本题为例,f1,f2,f3的运算表是对称分布的,因此,这三个运算是可交换的,62而f4不是可交换的.再看幂等律.四个运算表表头元素排列都是a,b,其中主对角线元素排列为a,b的只有f4,所以, f4遵从幂等律.下面考虑幺元.如果某元素所在的行和列元素的排列都是a,b,该元素就是幺元.不难看出只有f2中的a满足这一要求,因此,a 是f2的幺元,其他三个运算都不存在幺元.最后考虑零元.如果a所在的行和列元素都是a,那么a就是零元;同样的,若b所在的行和列元素都是b,那么b 就是零元.检查这四个运算表,f1中的a满足要求,是零元,其他运算都没有零元.在f4的运算表中,尽管a和b的列都满足要求,但行不满足要求.因而f4中也没有零元.5.2 A:①; B:③; C:⑤; D:⑦; E:⑩分析对于用解析表达式定义的二元运算°和*,差别它们是否满足交换律,结合律,幂等律,分配律和吸收律的方法总结如下:任取x,y,根据°运算的解析表达式验证等式xoy=yox是否成立.如果成立°运算就满足交换律.2 ° °运算的地合律任取x,y,z根据°运算的解析表达式验证等式(xoy)oz=xo(yoz)是否成立. 如果成立, °运算就是可结合的.3 ° °运算的幂等律任取x,根据°运算的解析表达式验证等式xox=x是否成立.如果成立,°运算满足幂等律.4 ° °运算对*运算的分配律任取x,y,z , 根据°和* 运算的解析表达式验证等式xo(y*z)=(xoy)*(xoz)和(y*z)ox=(yox)*(zox)是否成立。
离散数学(第五版)清华大学出版社第6章习题解答

离散数学(第五版)清华大学出版社第6章习题解答6.1 A:⑨; B:⑨; C:④; D:⑥; E:③分析对于给定的集合和运算判别它们是否构成代数系统的关键是检查集合对给定运算的封闭性,具体方法已在5.3节做过说明. 下面分别讨论对各种不同代数系纺的判别方法.1°给定集合S和二元运算°,判定<S, °>是否构成关群、独导点和群.根据定义,判别时要涉及到以下条件的验证:条件1 S关于°运算封闭:条件2 °运算满足结合集条件3 °运算有幺元,条件4 °∀x∈S,x−1∈S.其中关群判定只涉及条件1和2;独导点判定涉及条件1、2、和3;而群的判定则涉及到所有的四个条件。
2 ° 给定集合S和二元运算°和*,判定<S, °, *>是否构成环,交换环,含幺环,整环,域.根据有关定义需要检验的条件有:条件1 <S, °>S构成交换群,条件2 <S, *> 构成关群,条件3 * 对°运算的分配律,条件4 * 对运算满足交换律,条件5 * 运算有幺元,条件6 * 运算不含零因子——消去律,条件7 |S|≥2,∀x∈S,x≠0,有x−1∈S(对*运算).其中环的判定涉及条件1,2和3;交换环的判定涉及条件1,2,3和4;含幺环的判定涉及条件1,2,3和5;整环的判定涉及条件1-6;而域的判定则涉及全部7个条件. 3° 判定偏序集<S,≤>或代数系统<S,o,*>是否构成格、分本配格、有补格和布尔格. 73若<S,≤>为偏序集,首先验证∀x,y∧y和x∨y是否属于S.若满足条件则S为格,且<S,∨,∧>构成代数系统.若<S,o,*>是代数系统且°和*运算满足交换律、结合律和吸收律,则<S,o,*>构成格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学第五版课后答案【篇一:离散数学课后答案(四)】txt>4.1习题参考答案-------------------------------------------------------------------------------- 1、根据结合律的定义在自然数集n中任取 a,b,c 三数,察看 (a。
b)。
c=a。
(b。
c) 是否成立?可以发现只有 b、c 满足结合律。
晓津观点:b)满足结合律,分析如下: a) 若有a,b,c∈n,则(a*b)*c =(a-b)-c a*(b*c) =a-(b-c)在自然数集中,两式的值不恒等,因此本运算是不可结合的。
b)同上,(a*b)*c=max(max(a,b),c) 即得到a,b,c中最大的数。
a*(b*c)=max(a,max(b,c))仍是得到a,b,c中最大的数。
此运算是可结合的。
c)同上,(a*b)*c=(a+2b)+2c 而a*(b*c)=a+2(b+2c),很明显二者不恒等,因此本运算也不是可结合的。
d)运用同样的分析可知其不是可结合的。
-------------------------------------------------------------------------------- 2、d)是不封闭的。
--------------------------------------------------------------------------------其不满足交换律、满足结合律、不满足幂等律、无零元、无单位元晓津补充证明如下:(1)a*b=pa+qb+r 而b*a=pb+qa+r 当p,q取值不等时,二式不相等。
因此*运算不满足交换律。
(2)设a,b,c∈r则(a*b)*c=p(pa+qb+r)+qc+r=p^2a+pab+pr+qc+r 而a*(b*c)=pa+q(pb+qc+r)+r=pa+qpb+q^2c+qr+r 二式不恒等,因此*运算是不满足结合律的。
(3)a*a=pa+qa+r≠a 所以运算不满足幂等律。
(4)反证法。
设有单位元e,则应有a*e=pa+qe+r=a, e*a=pe+qa+r=a,可知e=(a-pa-r)/q 或e=(a-qa-r)/p 当p,q,r ,a取值不同时,可得不同的e,这与单位元若有时只是唯一的定理相矛盾。
(5)反证法。
设有零元o,则应有a*o=pa+qo+r=o ,o*a=po+qa+r=o ,同上分析,零元不止一个,因此与零元唯一的定理相矛盾。
-------------------------------------------------------------------------------- 5、 (a) : 可交换、具有幂等性、有幺元 a 、c是b的逆元晓津答案:可交换,但不具有幂等性。
幺元e=a,表中有a*a=a,b*c=a,c*b=a,则可得a的逆元是a,b有逆元c,c有逆元b.(b) : 可交换、不具有幂等性、有幺元 a , 因为a*a=a,b*b=a,所以a有逆元a,b有逆元b.(c) : 不可交换、具有幂等性,无幺元。
(d) : 可交换、不具有幂等性、有幺元 a ,a有逆元a.-------------------------------------------------------------------------------- 6、证明:设a,b,c∈i+ a*(b△c)=a^(b.c)(a*b)△(a*c)=(a^b).(a^c)=a^(b+c)可见:a*(b△c)≠(a*b)△(a*c) 根据:a*(b△c)≠(a*b)△(a*c)可知*对△是不可分配的-------------------------------------------------------------------------------- 7、解:晓津证明如下:(1)我们先证明n=1时,该运算*在z1 上的运算是可结合的:此时,设有a,b,c∈z1 则有a=0,b=0,c=0 (a*b)*c=(((a.b)mod n).c )modn=0 a*(b*c)=(a.((b.c)mod n) )mod n=0两式相等,因此当n=1时,*运算是可结合的。
(2)由上可设当n=k时,*运算是可结合的。
(3)设n=k+1时,有:(a*b)*c= (((a.b) mod (k+1)).c )mod (k+1) =(a.b.c mod (k+1) )mod (k+1) a*(b*c)=(a.((b.c)mod (k+1)) )mod (k+1) =(a.b.c mod(k+1) ) mod (k+1)可见两式是完全相同的结果。
因此有当n=k+1时,*运算满足结合律。
所以对于任意n∈n,*在zn上是可结合的。
4.2节习题参考答案-------------------------------------------------------------------------------- 1、解: zn={0,1,2,3}(1)我们先证明k=1时,该运算*在z1 上的运算是可结合的:此时,设有a,b,c∈z1 则有a=0,b=0,c=0 (a*b)*c=(((a.b)mod k).c )mod k=0 a*(b*c)=(a.((b.c)mod k) )mod k=0两式相等,因此当k=1时,*运算是可结合的。
(2)由上可设当k=k 时,*运算是可结合的。
(3)设k=k+1时,有:(a*b)*c= (((a.b) mod (k+1)).c )mod (k+1)=(a.b.c mod (k+1) ) mod (k+1) a*(b*c)=(a.((b.c)mod (k+1)) )mod (k+1)=(a.b.c mod (k+1) ) mod (k+1)可见两式是完全相同的结果。
因此有当k=k+1时,*运算满足结合律。
所以对于任意k∈k,*在zk上是可结合的。
由此可知其是个半群。
-------------------------------------------------------------------------------- 2、证明:二元运算□是可结合的。
根据结合律:(x□y)□z=x□(y□z)(x□y)□z=(x*a*y)*a*z x□(y□z)=x*a*(y*a*z) 由于*满足结合律,故:(x*a*y)*a*z=x*a*(y*a*z) = (x□y)□z=x□(y□z) = 二元运算□是可结合的-------------------------------------------------------------------------------- 3、构成一个半群,证明详见第一题,其具有封闭性、结合性。
-------------------------------------------------------------------------------- 4、(1)、由运算。
可知,a。
b∈r ,可知其在r上具有封闭性。
(2)、对于任意 a,b,c∈r(a。
b)。
c=(a+b+ab)。
c=a+b+ab+c+ac+bc+abc a。
(b。
c)=a。
(b+c+bc)=a+b+c+bc+ab+ac+abc 可见: (a。
b)。
c=a。
(b。
c)即。
在r上是可结合的。
(3) 因为 [0]。
[i]=i ,所以[0]是r,o上一个幺元根据上述 r,o是独异点晓津认为题中所给r,o中的o应为o;答案中的(3)幺元是0,而不是[0]. -------------------------------------------------------------------------------- 5、晓津证明如下:反证法:若v不是独异点,则v不存在幺元. 而因为x是任意的,则当x=a时,有 a*u=v*a=a即此时u,v分别是a的右、左幺元。
因为在一个系统中若同时存在左右幺元,则二者必相等,因此此时u=v=e。
这与假设矛盾,因此由v是一个半群,又v具有幺元,得知v是独异点。
-------------------------------------------------------------------------------- 6、证明: v=s,o是半群,故。
在s上是可结合的x。
ol=ol。
x 根据定义4.1.5可知:ol。
x=ol故x。
ol也是一个左零元晓津不同意见:可结合不等于可交换。
在这里应当把(x。
ol)看作一个元素,这整个元素是一个左零元。
另,题中s,o应为s,。
证明如下:因为v是半群,所以运算是封闭的,可结合的。
若有x,y,ol∈s,则有x。
ol∈s且有(x。
ol)。
y=x。
(ol。
y)=x。
ol 即x。
ol是s中任意y的左零元。
-------------------------------------------------------------------------------- 7、解:子半群如下:v1=z1,,v2=z2,,v3=z3,,v4=z4,其中v1,v2,v3 ,v4都是v的子独异点,因为这四个半群中均有幺元e=1。
-------------------------------------------------------------------------------- 8、证明如下:设s,*为一个独异点,则它有一个幺元.设在s,*中e是关于*的幺元,若对于任意a∈s,存在b∈s且b*a=e,则b是a的左逆元。
令左逆元的集合为l,则ls, 所以*在l 上是结合的。
对任意的a,b∈l,则必存在x,y∈s,使a*x=e,b*y=e; 则(a*b)*(y*x)=a*(b*y)*x=a*e*x=a*x=e; 故a*b是y*x的左逆元,∴a*b∈l∴*在l上是封闭的 (本段证明由阮允准补充)即l,*是一个半群。
因为e是s中关于*的幺元,所以它同时也是l中关于*的幺元。
因此l,*是一个子独异点。
-------------------------------------------------------------------------------- 9、答:从表中看:4.3习题参考答案证明:根据定理4.3.4,设g,*是一个群,对于a,b∈g。
必存在惟一的x∈g,使 a*x=b 设 a*b=g 因为 a*b=a*c 所以 a*c=g由于 b在a中是惟一的,而c在a中也是惟一。
所以 b=c晓津的证明如下:已知a,*为群,则对于任意a,必逆元a-1和幺元e,则有: a-1*(a*b)=a-1*(a*c) 即有(a-1*a)*b=(a-1*a)*c e*b=e*c 所以有b=c证明:根据定理4.2.2设h,*是独异点,对于a,b∈h,且a,b均有逆元。