钙钛矿结构及其制备方法

合集下载

钙钛矿电池的结构

钙钛矿电池的结构

钙钛矿电池是一种新型的太阳能电池,采用钙钛矿结构的半导体材料作为光敏材料。

它具有优异的光电转换效率和较低的制造成本,被广泛认为是下一代太阳能电池的候选技术之一。

钙钛矿电池的基本结构包括透明导电玻璃(TCO)衬底、n型电子传输层、钙钛矿光敏层、p型传输层和金属背接触。

下面我会逐层详细介绍它们的结构和功能。

1. 透明导电玻璃((TCO)衬底:作为钙钛矿电池的底部,透明导电玻璃衬底具有高透明度和良好的电导率。

它可以允许光线进入电池,并且提供一个电流的集电点。

2. n型电子传输层:位于衬底上方,n型电子传输层主要起到电子输运的作用。

它通常采用二氧化钛((TiO2)或氧化锌((ZnO)等材料,并通过电子传输和集电网格将电子引导到电池的外部线路。

3. 钙钛矿光敏层:钙钛矿光敏层是钙钛矿电池的关键部分。

典型的钙钛矿材料是一种有机无机杂化材料,包括有机阳离子(通常是甲胺阳离子)和无机阳离子(通常是铅离子)。

这种结构使得钙钛矿光敏层具有优异的光电转换性能。

4. p型传输层:p型传输层位于钙钛矿光敏层的顶部,主要用于传输正空穴,并帮助钙钛矿吸收更多的光线。

常用的材料有有机材料,如聚(3,4-乙烯二氧噻吩)(PEDOT:PSS)。

5. 金属背接触:金属背接触位于电池的顶部,用于收集电子和正空穴,并将它们引导到电池外部的电路中。

总而言之,钙钛矿电池的结构包括透明导电玻璃衬底、n型电子传输层、钙钛矿光敏层、p 型传输层和金属背接触。

这种结构的设计旨在实现高效的光电转换并收集产生的电子和正空穴,以产生可用的电能。

钙钛矿电池的结构设计和材料选择对于提高光电转换效率和稳定性至关重要。

钙钛矿分类

钙钛矿分类

钙钛矿分类钙钛矿是一种具有出色光电性能的材料,广泛应用于太阳能电池、光电器件等领域。

本文将从钙钛矿的结构、性质、应用等方面进行介绍,以便读者对钙钛矿有更深入的了解。

一、钙钛矿的结构钙钛矿的化学式为ABX3,其中A为一价阳离子,B为二价阳离子,X为阴离子。

钙钛矿的晶体结构为立方晶系,通常以立方相和四方相存在。

在立方相中,阳离子A和阳离子B分别占据晶体的A位和B位,阴离子X填充在阳离子的八面体空隙中。

二、钙钛矿的性质1. 光电性能:钙钛矿具有良好的光电转换效率,是太阳能电池的理想材料之一。

其吸收光谱范围广,可有效转换可见光和近红外光。

2. 光学性能:钙钛矿具有高光学透明度和较高的折射率,适用于光电器件的制备。

3. 电学性能:钙钛矿具有高载流子迁移率和低电子亲和能,有利于电子输运和载流子分离。

4. 热学性能:钙钛矿具有较高的热稳定性和热导率,能够在高温环境下保持较好的性能。

三、钙钛矿的应用1. 太阳能电池:钙钛矿太阳能电池具有高转换效率、低成本和制备工艺简单等优点,是目前研究的热点之一。

2. 光电器件:钙钛矿可以制备光电二极管、光电发光二极管等光电器件,具有高亮度和较长的寿命。

3. 光催化:钙钛矿可用于光催化反应,如水分解、有机污染物降解等,具有良好的催化性能。

4. 光传感器:钙钛矿光传感器具有高灵敏度和快速响应的特点,可应用于光学成像、光谱分析等领域。

5. 其他应用:钙钛矿还可用于电致变色材料、光存储材料、光电存储器件等领域。

四、钙钛矿的发展趋势1. 提高稳定性:钙钛矿材料在长时间使用和高温环境下容易发生分解和退化,未来的研究重点是提高钙钛矿材料的稳定性。

2. 提高效率:钙钛矿太阳能电池的转换效率已经达到了较高水平,但仍有进一步提高的空间,未来的研究将致力于提高钙钛矿太阳能电池的效率。

3. 降低成本:目前钙钛矿材料的制备成本较高,未来的研究将致力于降低钙钛矿材料的制备成本,推动其在大规模工业化生产中的应用。

xrd纯相钙钛矿结构

xrd纯相钙钛矿结构

xrd纯相钙钛矿结构(实用版)目录1.钙钛矿结构简介2.XRD 技术在钙钛矿结构研究中的应用3.纯相钙钛矿结构的特点4.纯相钙钛矿结构在材料科学中的重要性正文1.钙钛矿结构简介钙钛矿结构(Perovskite structure)是一种具有特殊晶体结构的材料,其原子排列呈现出 ABX3 型式。

在这种结构中,A 位、B 位和 X 位分别代表不同的原子,通常包括金属和非金属元素。

纯相钙钛矿结构指的是在钙钛矿结构中,A、B 和 X 位原子均为同种元素。

纯相钙钛矿结构具有高的晶体对称性和较低的结构缺陷,因此在材料科学研究中具有重要意义。

2.XRD 技术在钙钛矿结构研究中的应用X 射线衍射(XRD)技术是一种广泛应用于材料结构分析的重要手段。

通过 XRD 技术,研究者可以获得材料的空间点阵常数、晶胞参数等关键信息,从而对材料的微观结构进行精确描述。

在钙钛矿结构研究中,XRD 技术发挥着至关重要的作用,可以帮助研究者深入了解纯相钙钛矿结构的特点及其在材料科学中的应用潜力。

3.纯相钙钛矿结构的特点纯相钙钛矿结构具有以下特点:(1)高晶体对称性:纯相钙钛矿结构具有较高的晶体对称性,如立方晶系、四方晶系等。

这种高对称性使得纯相钙钛矿结构具有较低的结构缺陷,从而有利于材料的性能优化。

(2)元素组成多样性:纯相钙钛矿结构中,A、B 和 X 位原子可以是不同元素,如金属和非金属元素。

这使得纯相钙钛矿结构具有丰富的元素组成,可以根据实际需求进行设计和调整。

(3)可调结构参数:纯相钙钛矿结构的晶胞参数可以通过改变原子半径、离子电荷等因素进行调控。

这为实现对材料性能的优化提供了可能。

4.纯相钙钛矿结构在材料科学中的重要性纯相钙钛矿结构在材料科学中具有重要意义,主要体现在以下几个方面:(1)高性能材料研究:纯相钙钛矿结构具有高晶体对称性和低结构缺陷,有利于实现高性能材料的设计与制备。

例如,钙钛矿太阳能电池、钙钛矿发光二极管等新兴技术均基于纯相钙钛矿结构。

基于两步法的钙钛矿薄膜制备以及其在低温钙钛矿电池的应用

基于两步法的钙钛矿薄膜制备以及其在低温钙钛矿电池的应用

摘要基于两步法的钙钛矿薄膜制备以及其在低温钙钛矿电池的应用近年来,受能源危机及环境问题的影响,人们一直在寻找一种能够替代传统化石能源方法。

其中太阳能电池以低成本及可再生的优势吸引了越来越多人的注意。

在过去的五年当中,钙钛矿太阳能电池(PSC)效率飙升,成为太阳能电池领域里冉冉升起的一颗新星。

虽然钙钛矿电池器件效率一直在上升,但是依然存在一些问题制约着钙钛矿太阳能电池的发展, 例如:1.在平面结构钙钛矿太阳能电池中,理想的钙钛矿层成为获得高能量转换效率的必要条件之一。

人们发现在CH3NH3PbI3中存在适量的碘化铅晶体能够钝化钙钛矿薄膜晶界,抑制电子空穴的复合,提升短路电流。

两步顺序沉积法已经广泛用于在钙钛矿太阳能电池中。

这种方法将PbI2前驱体薄膜浸渍到碘化甲胺(CH3NH3I,MAI)中制备CH3NH3PbI3活性层。

通过该方法制备的PSC的光伏性能的差异总是被归因于不同浸渍时间将会引起PbI2完全/不完全转化为CH3NH3PbI3。

2.无机金属氧化物电子传输层被广泛地用于钙钛矿太阳能电池中。

大多数无机电子传输层需要高温以形成导电性良好和无缺陷的薄膜。

而这些方法将会限制其在柔性器件中的使用以及将来商业化的应用。

因此,如何得到一种可低温柔性制备的电子传输层成为钙钛矿太阳能电池领域里一项重要的问题之一。

针对以上两个问题我们提出两种解决方案:1.为了解决第一个问题,我们采用溶剂蒸汽退火(SVA)方法制备大晶粒尺寸的PbI2晶体,以制备得到高质量的钙钛矿薄膜。

使用该方法,发现在CH3NH3I溶液中增加的PbI2浸渍时间会降低得到的PSC的能量转换效率,而钙钛矿膜中PbI2 / CH3NH3PbI3的含量并没有明显的变化。

我们通过紫外-可见光吸收,X射线衍射,傅里叶变换红外光谱(FT-IR)和扫描电子显微镜的测试探究了这种变化的来源。

我们将这种光伏性能的异常减少是因为CH3NH3PbI3壳层对PbI2核的插层/脱嵌。

钙钛矿钝化分子

钙钛矿钝化分子

钙钛矿钝化分子概述钙钛矿是一种具有优异光电性能的材料,被广泛应用于太阳能电池、光催化和光电器件等领域。

然而,由于其表面易受到环境中的水分、氧气和杂质等的影响,导致其稳定性和性能下降。

为了解决这个问题,科学家们提出了一种方法——钙钛矿钝化分子。

钙钛矿的特性光电转换效率高钙钛矿材料具有优异的光电转换效率。

其晶格结构使得它在吸收光线后能够有效地将光能转化为电能。

相比传统硅基太阳能电池,钙钛矿太阳能电池具有更高的效率和更低的制造成本。

容易受到环境影响然而,尽管钙钛矿具有出色的光学和电学特性,但其表面容易受到水分、氧气和杂质等环境因素的影响。

这些外界因素会导致表面形成非晶态层或产生缺陷,从而降低钙钛矿的稳定性和性能。

钙钛矿钝化分子的作用为了解决钙钛矿表面易受到环境影响的问题,科学家们提出了一种新颖的方法——钙钛矿钝化分子。

这些特殊设计的分子可以与钙钛矿表面发生化学反应,形成一层保护膜,有效地阻隔外界因素对钙钛矿的侵蚀。

防止水分侵入水分是导致钙钛矿退化的主要因素之一。

通过引入具有亲水性功能基团的分子,可以形成一层覆盖在钙钛矿表面上的保护膜,阻止水分进入并与其发生反应。

这种保护膜不仅可以减少氧气和水分对表面产生的损害,还可以提高光电转换效率和稳定性。

抑制氧气侵蚀氧气也是导致钙钛矿退化的重要因素之一。

通过引入具有亲氧基团的功能分子,可以形成一层覆盖在表面上的保护膜,有效地隔绝氧气的侵蚀。

这种保护膜能够减少氧气与钙钛矿之间的反应,从而提高其稳定性和寿命。

修复缺陷钙钛矿表面的缺陷会导致电子和离子的迁移受阻,进而影响光电转换效率。

通过引入具有修复功能基团的分子,可以在表面形成一层覆盖膜,并填充或修复表面缺陷。

这样可以改善表面的电子传输性能,提高光电转换效率。

钙钛矿钝化分子的制备方法分子设计制备钙钛矿钝化分子需要合理设计功能基团和结构。

功能基团应具有与钙钛矿表面发生化学反应的活性,例如亲水基团、亲氧基团等。

结构上应具有良好的空间匹配性,以便与钙钛矿表面形成紧密结合。

钙钛矿 单晶 生长

钙钛矿 单晶 生长

钙钛矿单晶生长钙钛矿是一种重要的功能材料,其单晶生长方法备受关注。

本文将介绍钙钛矿单晶生长的基本原理、常见的生长方法以及相关应用领域。

1. 基本原理钙钛矿是一种具有ABX3结构的晶体,其中A和B位是金属离子,X位是阴离子。

在钙钛矿单晶生长过程中,通过控制原料的成分和生长条件,使得A、B和X离子按照一定比例有序排列,从而形成完整的钙钛矿晶体结构。

2. 常见的生长方法(1)溶液法生长:溶液法是最常用的钙钛矿单晶生长方法之一。

一般采用热溶液法或溶胶-凝胶法。

通过控制溶液中金属离子的浓度、温度和pH值等参数,使其达到成核和生长所需条件,最终获得单晶。

(2)气相法生长:气相法生长适用于高温条件下的钙钛矿单晶生长。

一般采用化学气相沉积(CVD)或物理气相沉积(PVD)方法。

通过在适当的气氛中使金属元素或化合物发生热解、氧化还原等反应,形成单晶薄膜或大体积单晶。

(3)浮区法生长:浮区法是一种常用的大体积钙钛矿单晶生长方法。

通过在熔体中引入悬浮的种子晶体,在控制的温度梯度和熔融区域中,通过溶质扩散和迁移使种子晶体逐渐生长,最终得到大型单晶。

3. 相关应用领域由于钙钛矿具有优异的光电性能和电化学性能,广泛应用于太阳能电池、光电转换器件、催化剂、传感器等领域。

通过精确控制钙钛矿单晶的生长,可以获得具有高效率和稳定性能的器件。

总之,钙钛矿单晶生长是一项重要且具有挑战性的工作。

通过选择合适的生长方法、优化生长条件,可以获得高质量、大尺寸的钙钛矿单晶。

钙钛矿的应用前景广阔,有望在能源、光电子等领域发挥重要作用。

有机-无机钙钛矿材料

有机-无机钙钛矿材料

光 电 转 换 效 率 % 年份 几种薄膜太阳能电池光电转换效率近20年来的提升情况
钙钛矿
PV—有机太阳能电池 DSSC—染料敏化太阳能电池 a-Si—非晶硅太阳能电池
14
二、有机-无机杂化钙钛矿的应用
钙钛矿太阳能电池结构
电极 传输电子,阻碍空穴 钙钛矿吸收层(300 nm) 传输空穴,阻碍电子 空穴迁移层 导电玻璃
5
二、有机-无机杂化钙钛矿结构
1.钙钛矿结构
结构通式:ABO3
晶体结构:立方晶系
A
O B
典型的钙钛矿结构材料为CaTiO3 A :碱土或稀土离子rA > 0. 0.051nm
O2-和半径较大的Ca2+共同组成立方紧密堆 积(面心结构),Ti4+填充在位于体心的八面 体间隙中。(注:待会删,陈蓉可演讲时讲)
载流子迁移率高、 扩散长度长 光吸收能力强 发光效率高
能带工程
制备工艺低成本
应 用 广 泛
二、有机-无机杂化钙钛矿的应用
1.光吸收性质——钙钛矿太阳能电池
优点: •节能 •环保
缺点: •光电转换效率低
13
二、有机-无机杂化钙钛矿的应用
基于有机-无机杂化钙钛矿材料 (CH3NH3PbX3) 制备的太阳 电池效率自 2009 年从 3.8% 增长到 19.6%。
有机铵阳离子 A 填充在共顶连接 的八面体形成的空隙之中
二、有机-无机杂化钙钛矿结构
介电约 束效应 量子约 束效应
联合作用
较大的激子结合能 强的室温光致发光特性 较高的载流子迁移率 非线性光学效应…
调节无机和 有机的组分
在光电领域 的巨大应用
前景
三、有机-无机杂化钙钛矿材料的性能

钙钛矿型催化材料的制备

钙钛矿型催化材料的制备

引言 (1)1.钙钛矿型催化剂的结构 (1)2.钙钛矿型催化材料的制备方法 (2)2.1固相反应法 (2)2.2共沉淀法 (2)2.3非晶态配合物法 (2)2.4溶胶-凝胶法 (2)2.5机械混合法 (4)2.6水热合成法 (4)2.7燃烧合成法 (5)结论 (7)参考文献 (8)致谢 (9)钙钛矿型氧化物具有独特的物理性质(如铁磁性、铁电性、超导性、热导性、吸附性等)。

更重要的是,由于钙钛矿型氧化物在元素组配和晶体结构方面具有灵活的可“化学剪裁”的设计特点使得此类材料在催化氧化、环境催化、催化加氢、加氢裂解、光催化、固体燃料电池及化学传感器等方面得到了广泛的研究和应用。

钙钛矿型氧化物是一类完全氧化型催化材料,加之其化学结构的高温稳定性,使它们在煤、天然气和燃料催化燃烧等方面的应用日益受到重视,成为催化化学领域的研究热点,同时钙钛矿型催化材料的制备成为钙钛氧化物新的研究方向。

1.钙钛矿型催化剂的结构钙钛矿最初是指以CaTiO3形式存在的无机矿物,后来就成为具有化学式ABO且与CaTiO3有相同晶体结构类型化合物的代称。

结构与天然钙钛矿ABO3类似的稀土复合氧化物是目前研究较多的具有多种特殊物理化学性能的新型固体材料之一。

理想的钙钛矿型复合氧化物ABO3为立方结构,如图1所示。

在这中,A位为半径较大的稀土金属离子,周围有12个氧阴离子配位,形成积,处于这些八面体所构成的空穴中心;B位为半径较小的过渡金属离子阴离子为6配位,B位过渡金属离子被八面体分布的氧所包围,;O位于立条棱的中心,见图1。

钙钛矿稳定性主要来自于刚性的BO6八面体堆积伦(Madelung)能。

在ABO3计量化合物中,为满足电中性要求,A n+、B m+是:n+m=6,但没有A的价态比B的高的化合物。

这种配位型式和立方最密每个堆积球周的配位情况是相同的。

因此要求B是优先选用八面体配位子。

占据大十二面体间隙的A离子大小必须合适。

这是由于十二面体和八境中,A和B的稳定性需要限制了A和B化合的可能性,并且在氧化物骨架中大的正离子,由于它要和氧负离子作立方最密堆积,所以A的大小应和氧的大小相当,B离子是小的离子,处于八面体配位之中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主权利要求: 一种催化净化CO、NOx、HC的稀有 过渡金属催化剂,其特征在于所述的 催化剂包括下述重量百分比的原料: 氧化铝15-25%氧化铈15-3 5%氧化锆20-35%氧化镧10 -35%氧化钇10-35%氧化钛 5-15%; 制备方法是:取上述原料按配比混合 均匀后,即在碱性溶液中共沉淀析出 ,过滤,沉淀物用加热器加热至50 -100摄氏度,用去离子水水洗至 呈中性,脱水,80-100摄氏度 干燥,400-550摄氏度灼烧, 然后破碎、粉碎至1-3微米的微粉 ,加入硝酸锰细粉,混合均匀。
钙钛矿型化合物的应用存在两大关键, 一是如何获得较大的比表面,二是需要在高温下焙烧合成 (>1073K)[。
到目前为止,钙钛矿型催化剂在汽车尾气净化方面还
没有得到实际应用,但是人们已积累了大量有关这类
材料的物理和固态化学性质的信息,所取得的成果是
丰富的和令人鼓舞的。钙钛矿型复合氧化物的化学特 性可以概括为:1)几乎所有的稳定元素都可以进入 ABO3晶格,形成钙钛矿结构;2)处于A位和B位的阳 离子都可以被部分取代;3)化合价、化合比和晶格空 位可以在较大的范围内变化和控制;4)对缺陷氧和过 量氧能够起到稳定作用,因而稳定了不寻常价态离子; 5)少量贵金属的加入可以提高催化活性。这些性质使 得这类化合物在结构材料、耐火材料、电子材料、磁 性材料、催化材料等方面具有广泛的用途。
少涂覆次数、使用寿命长等,是目前理想 的高标准排放的催化载体。
述长石含有氧化铝35-65%、氧化硅 15-30、氧化铁0-0.5%及小于
3%的钾、钠和钙;。
发明专利名称:
以红柱石为主成份的发动机尾气催化蜂窝载体及制备方法
专利号:201010189927
技术简要说明:
主权利要求: 以红柱石为主成份的发动机尾气催化蜂窝
本发明公开了一种以红柱石为主成份的发 载体,包括下述重量百分比的原料:红柱
动机尾气催化蜂窝载体及制备方法。本发 石50-80%、高岭土10-30%、
明配方包括了红柱石、高岭土、滑石粉、 滑石5-20%、长石5-10%;上述
长石粉,主要利用了红柱石在加热转化成 原料均指的是粉碎度为150-800目
莫来石的过程中,可以形成良好的莫来石 的细粉;所述红柱石含有氧化铝35-6
网络,体积膨胀约4%的特点制备而成。 5%、氧化硅35-43、氧化铁0.5
用本发明方法制备的催化蜂窝载体,可拦 -1%及小于3%的钾、钠和钙;所述高
截柴油发动机的黑烟颗粒物,其功能涂覆 岭土含有氧化铝15-45%、氧化硅4
催化剂后可达到更好的尾气净化功能,它 5-55、氧化铁0.5-1%及小于3
Байду номын сангаас
比起其它材料制作的蜂窝载体具有成品率 %的钾、钠和钙;所述滑石粉含有镁25
高、更高的抗热震性能、导热快、强度高、-35%,氧化硅50-65%、氧化铁
吸水率高、易于涂覆均匀、涂覆量高、将 0-0.5%、氧化铝0-15%、;所
过渡金属原子半径
发明专利名称:
一种催化净化CO、NOX、HC的稀有过渡金属催化剂
专利号:ZL 2009 1 0114068.1
技术简要说明: 本发明公开了一种催化净化CO、NOx、 HC的稀有过渡金属催化剂。目前,利用贵 金属和γ-氧化铝的载体作用,对废气中的 有害物质进行催化净化,存在着在高温下γ -氧化铝载体会向α-氧化铝转化而呈现中 毒状态;使用钯、铂、铑等贵金属作为催 化剂,其成本过于昂贵问题。而本发明提 供了一种稀有过渡金属催化剂,克服现有 催化净化剂中氧化铝高温下易失效,并需 要贵金属的不足之处。本发明具备“储氧 功能”,“抗毒性功能”,“结构稳定功 能”,具有活性高、热稳定性好、抗老化、 使用寿命长,特别是具有抗铅中毒的特点 及一定范围内加大涂覆量,其催化净化效 果会随涂覆量的增加而提高的特点。其催 化、净化处理量达90%以上,特别是对 CO的处理净化可达100%。
perovskite structure,立方晶系(CaTiO3为代表的一类ABO3型三元化合物), 面心立方格子,由O离子和半径较大的A离子共同组成立方最紧密堆积, 而半径较小的B离子则填于1/4的八面体空隙中。
过渡金属原子半径
.稀土钙钛矿型复合氧化物一个有趣的研究方向是可通过改变八位离子大小、 价态以达到凋节B位离子的价态及氧缺位,同时还伴随着晶体尺寸、晶系、 格子崎变的产生.由此我们可以期待*一O和*一O键的相互作用得到改善。
相关文档
最新文档