matlab非线性规划.ppt
非线性规划ppt课件

g3(x) x1 x2 x3 0
;
20
一维搜索方法
目标函数为单变量的非线性
规划问题称为一维搜索问题
min t0 (0ttmax )
其中 t R 。
(t)
➢精确一维搜索方法 0.618法 Newton法
➢非精确一维搜索方法 Goldstein法 Armijo法
;
21
0.618法(近似黄金分割法)
定义 4.1.2 对于非线性规划(MP),若 x* X ,并且存在 x* 的一个
领域 N ( x* ) x Rn x x* ( 0, R) ,使
f (x* ) f (x), x N (x* ) X ,
则称 x* 是(MP)的局部最优解或局部极小点,称 f ( x* ) 是(MP)的局部
函数(t) 称为在[a,b]上是单谷的,如果存在一个 t * [a, b] ,使得(t) 在[a, t * ]上严格递减,且在[t * , b] 上严格递增。区间[a,b]称为(t) 的单 谷区间。
第 1 步 确定单谷区间[a,b],给定最后区间精度 0 ;
第 2 步 计算最初两个探索点
t1 a 0.382(b a) b 0.618(b a)
;
22
0.618法例题
• 例4.3.1 用0.618法求解
min(t) t3 2t 1 t0
(t) 的单谷区间为[0,3], 0.5
解答
例4.3.1解答 • 迭换换代tbtb 过程0311..62..∧✓18可0036145436481由-00下101.2.∧...0✓871110650431表48611 给0-0100.2.∨...0✓1470出2064308168821 --000100...∨...00✓4178376340791868681 01..7140486 a2112a
Matlab非线性规划

Matlab⾮线性规划⾮线性规划在matlab⾮线性规划数学模型可以写成⼀下形式:minf(x)\\ s.t.\begin{cases} Ax \le B \\ Aeq·x = Beq\\ C(x) \le 0\\ Ceq(x) = 0 \end{cases}f(x)为⽬标函数,A,B,Aeq,Beq为线性约束对应的矩阵和向量,C(x),Ceq(x)为⾮线性约束。
Matlab求解命令为:X = fmincon(fun, x0, A, B, Aeq, Beq, LB, UB, NONLCON, OPTIONS) fun为⽬标函数,x0为初值,A,B,Aeq,Beq为线性约束对应的矩阵和向量,LB,UB分别为x的下限和上限,NONLCON为⾮线性约束(需要写⾃定义函数),OPTIONS为优化参数。
【例】求下列⾮线性规划问题minf(x) = x^2_1+x^2_2+8\\ s.t.\begin{cases} x_1^2-x_2 \ge 0\\ -x_1-x_2^2+2=0\\ x_1,x_2 \ge 0 \end{cases}编写函数⽂件:fun1.m,fun2.mfunction f = fun1(x)f = x(1)^2 + x(2)^2 + 8;endfunction [g,h] = fun2(x)g = -x(1)^2 + x(2);%g代表不等式约束,即代表约束条件-x(1)^2 + x(2) <= 0。
matlab默认g<=0,所以题⽬中的条件被改成了相反数。
%如果有多个不等式约束,写成g(1) = 关于x的函数; g(2) = 关于x的函数;······h = -x(1) - x(2)^2 + 2;%h代表等式约束,即代表约束条件 -x(1) - x(2)^2 + 2 = 0。
%如果有多个等式约束,写成h(1) = 关于x的函数; h(2) = 关于x的函数;······end注:在写fun2时,可以把线性和⾮线性约束的等式和不等式约束都按照这种格式写到这个函数⾥⾯,这样的话fun2就包含了所有约束条件,在后⾯运⾏fmincon()时不需要再写A,B,Aeq,Beq,直接⽤[]略过。
数学建模第四部分-非线性规划

约束条件
产量、库存 与需求平衡 条件不变
能 力 限 制
x1 30 x2 40 x3 45 x4 20
x1 15w1 30 x2 15w2 40 5w1
x3 15w3 45 5w2 5w1
x4 15w4 20 5w1 5w2 5w3
非负限制
x3 y2 y3 35
x4 y3 25
x1 , x2 , x3 , x4 , y1 , y2 , y3 0
第四部分 非线性规划
模型求解
LINDO求解
最优解: x1~ x4:15,40,25,20; y1~ y3: 0,15,5 .
周次 1 2 3 4 需求 15 25 35 25 产量 15 40 25 20 库存 0 15 5 0 能力 30 40 45 20 成本 5.0 5.1 5.4 5.5
库存1000吨 B x22
x21
x11 x12
Hale Waihona Puke 第四部分 非线性规划约束 条件
汽油含原油A 的比例限制
A B
x11 0.5 x11 x21 x11 x21
x12 0.6 2 x12 3x22 x12 x22
x21 x22
x11 x12
甲(A50%) 乙(A60%)
0
500
1000
1500
z1 y1 , z2 y1 y2 , z3 y2 y3 , z4 y3 z1 z2 z3 z4 1, zk 0 (k 1,2,3,4) IP模型,LINDO求 解,得到的结果与 y1 y2 y3 1, y1 , y2 , y3 0 或 1
4周生产计划的总费用为528 (千元)
MATLAB及其在理工课程中的应用-线性规划和非线性规划7

建模与计算实验
• 某公司经营两种物品,第一种物品每吨售价30元,第二种物品每吨售 价450元,根据统计,售出每吨第一种物品所需要的营业时间平均是0. x2 5小时,第二种物品是 0.25x2 小时,其中 是第二种物品售出 2 的数量。已知该公司在这段时间内的总营业时间为800小时,试问决定 使其营业额最大的营业计划?
线性规划与非线性规划的MATLAB指令
1.编写目标函数文件
function f=ch10_2fun(x) f=-x(1)^2*x(2)*x(3)^2/(2*x(1)^3*x(3)^2+3*x(1)^2*x(2)^2 +2*x(2)^2*x(3)^3+x(1)^3*x(2)^2*x(3)^2);
2.编写约束函数文件
当约束条件中缺A,b,Aeq,beq,lb,ub时,可用[]代替; fun、nonlcon写成M函数形式; function f=fun(x)、function [c,ceq]=nonlcon(x) [x,f]=fmincon(…) 同时返回解x处的函数值;
线性规划与非线性规划的MATLAB指令
线性规划与非线性规划的MATLAB指令
非线性规划 模型
min f x s.t. Aeq x beq, A x b, c x 0, ceq x 0, lb x ub
根据约束条件,调用格式为 x=fmincon(@fun,初值,A,b) x=fmincon(@fun,初值,A,b,Aeq,beq) x=fmincon(@fun,初值,A,b,Aeq,beq,lb,ub) x=fmincon(@fun,初值,A,b,Aeq,beq,lb,ub,@nonlcon)
非线性规划培训课件.ppt

k
xk
f(xk)
||f(xk)||
pk
0
2 2
1040 100.079968
1040
1
1.901.09083572
3.803.9178054
3.844158 30.8.13895704
格局部最优解。
精品
全局最优解的充分条件
定理 4.4.4 设 f : R n R , x* Rn ,f 是 Rn 上的可微凸函 数。若有 f (x*) 0 ,则 x* 是(UMP)的全局最优解。 证:因为 f 是 Rn 上的可微凸函数,由凸函数的判别定理
4.2.3,可知 x Rn ,有 f x* x x* f x f x* 。 由于 f (x*) 0 ,因此 x Rn , 0 f x f x* ,即
f x* tp f x* 。 取 t 充分小,可使 x* tp N x* ,与(1)矛盾。
精品
局部最优解的充分条件
定理 4.4.3 设 f : R n R 在点 x Rn 处的 Hesse 矩阵 2 f (x*)
存在。若 f x* 0 ,并且 2 f x* 正定,则 x* 是(UMP)的严
df
小点,因此
xk tpk dt
0。
令 xk tpk x1k tp1k , xnk tpnk ,, xnk tpnk u1, u2 ,, un u ,
由复合函数求导法则,
df xk tpk f u du1 f u du2 f u dun
即, t 0, , f x tp f x。可知 p 是 f 在 x 处的下降
方向(定义 4.1.3)。
数学建模MATLAB之线性规划PPT课件

足条件的情况下使总加工费最小为13800.
第15页/共45页
例2 问题二的解答 问题
改写为:
m z 4 i 3 0 n x x 1 2 6 s . t . 5 3 x x 1 2 ( 4 )5
能力增减不影响利润 4)
SLACK OR SURPLUS
0.000000 0.000000 40.000000
REDUCED COST
X1
20.000000
X2
30.000000
ROW SLACK OR SURPLUS DUAL PRICES
NO. ITERATIONS= 2
reduced cost 值 表示当该非基变 量增加一个单位 时(其他非基变 量保持不变),目 标函数减少的量 (对max型问题) .
解 编写M文件如下:
c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6];
A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08];
b=[850;700;100;900];
的整数规划应用专门的方法求解.
第18页/共45页
返回
用LINDO、LINGO优化工具箱解线性规划
第19页/共45页
一、LINDO软件包
下面我们通过一个例题来说明LINDO 软件包的使用方法.
第20页/共45页
LINDO和LINGO软件能求解的优化模型
连续优化
优化模型 整数规划(IP)
MATLAB非线性规划问题

MATLAB⾮线性规划问题⼀.⾮线性规划课题实例1 表⾯积为36平⽅⽶的最⼤长⽅体体积。
建⽴数学模型:设x、y、z分别为长⽅体的三个棱长,f为长⽅体体积。
max f = x y (36-2 x y)/2 (x+y)实例2 投资决策问题某公司准备⽤5000万元⽤于A、B两个项⽬的投资,设x1、x2分别表⽰配给项⽬A、B的投资。
预计项⽬A、B的年收益分别为20%和16%。
同时,投资后总的风险损失将随着总投资和单位投资的增加⽽增加,已知总的风险损失为2x12+x22+(x1+x2)2.问应如何分配资⾦,才能使期望的收益最⼤,同时使风险损失为最⼩。
建⽴数学模型:max f=20x1+16x2-λ[2x12+x22+(x1+x2)2]s.t x1+x2≤5000x 1≥0,x2≥0⽬标函数中的λ≥0是权重系数。
由以上实例去掉实际背景,其⽬标函数与约束条件⾄少有⼀处是⾮线性的,称其为⾮线性问题。
⾮线性规划问题可分为⽆约束问题和有约束问题。
实例1为⽆约束问题,实例2为有约束问题。
⼆.⽆约束⾮线性规划问题:求解⽆约束最优化问题的⽅法主要有两类:直接搜索法(Search method)和梯度法(Gradient method),单变量⽤fminbnd,fminsearch,fminunc;多变量⽤fminsearch,fminnuc 1.fminunc函数调⽤格式:x=fminunc(fun,x0)x=fminunc(fun,x0,options)x=fminunc(fun,x0,options,P1,P2)[x,fval]=fminunc(…)[x,fval, exitflag]=fminunc(…)[x,fval, exitflag,output]=fminunc(…)[x,fval, exitflag,output,grad]=fminunc(…)[x,fval, exitflag,output,grad,hessian]=fminunc(…)说明:fun为需最⼩化的⽬标函数,x0为给定的搜索的初始点。
Matlab非线性规划应用

1 绪论1.1 课题的背景1.1.1 Matlab简介MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。
MATLAB和Mathematica、Maple并称为三大数学软件。
它在数学类科技应用软件中在数值计算方面首屈一指。
MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB 成为一个强大的数学软件。
在新的版本中也加入了对C,FORTRAN,C++,JA VA 的支持。
可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。
MATLAB的应用范围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。
附加的工具箱(单独提供的专用MATLAB 函数集)扩展了MATLAB环境,以解决这些应用领域内特定类型的问题。
1.1.2 非线性规划(nonlinear programming)非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。