2009-03-01'GPS导航基本原理与应用1(曾庆化)
第一章绪论 第二节导航定位卫星及其星座

GPS测量定位技术
一、GPS卫星及星座
GPS系统主要是为美国海陆空三军服务的,它具有广 泛的军事用途,例如,为地面部队迅速行动指明方位, 为核潜艇导航,为弹道导弹导航,检测全球核爆炸,摄 取全球性的军事情报,反潜艇,反导弹等等。因此, GPS卫星的内部设备复杂而繁多,例如,为了战略部队 的应急通讯,美国在GPS卫星上安装战略通信机,其重 量达16.03㎏,体积为0.0124m3,采用240-272MHZ、 318-400MHZ和7900-8000MHZ的微波信号,辐射功率 为20W。
GPS测量定位技术
二、前苏联GLONASS全球卫星导航系统
1.卫星星座 GLONASS卫星星座的轨道为三个等间隔椭圆轨道,轨 道面间的夹角为120°,轨道倾角64.8°,轨道的偏心率为 0.01,每个轨道上等间隔地分布8颗卫星。卫星离地面高 度 为 19100km , 运 行 周 期 为 11 小 时 15 分 。 由 于 GLONASS卫星的轨道倾角大于GPS卫星的轨道倾角,所 以在高纬度(50°以上)地区的可视性较好。 每颗GLONASS卫星上装有铯原子钟,以产生高稳定的 时标,并向所有星载设备提供同步信号。星载计算机将从 地面控制站接收到的信息进行处理,生成导航电文向地面 的用户广播。
GPS测量定位技术
第一章 绪论
•学习目标 •第一节 卫星大地测量及其发展 •第二节 导航定位卫星及其星座 •第三节 GPS在国民经济建设中的应用 •本章小结 •思考题与习题
GPS测量定位技术
第一章 绪论
学习目标
•了解GPS系统的构成,卫星的个数及寿命,卫星的 运行周期及发射功率,原子钟的精度,定位信号频 率。GPS的地面控制系统和截止2003年10月,目前GPS在轨工作卫星为28颗,其中 17号星在2003年6月6日至7月23日期间列为不健康状况,7 月9日其星钟从Cs4转为Rb2,卫星移到D6星位上又开始正 常运行。现在工作的卫星编号从1号至31号之间,只有12号、 19号、22号为空缺。28颗卫星中有3颗为BLOCKII卫星,17 颗为BLOCKIIA卫星,8颗为BLOCKIIR卫星,正在用铯钟(Cs) 运行的有11颗卫星,其余均用铷钟(Rb),在1993年11月22 日启用的卫星达15颗,即工作差不多十年以上的卫星数目 过半数,最早的一颗卫星还是1989年6月发射的。原先21号 星是1990年8月2日发射的,去年9月25日出现异常情况, 于2003年1月27日宜布退出服务,现已为2003年3月31日 发射的卫星所接替,后者在4月12日投入正式服务。
GPS概论第五章GPS卫星定位基本原理PPT课件

线性化后:
i
X ( 0 0)x ii dX Y(0 0)yii dY Z (0 0)zii dZ (0)i NctV RctV S (Vio)niVtrop
x(i0X )i0dX y(i 0)Yi0dY z(i0Z )i0dZ (0)iNctV RctV S (Vio)niVtrop
误差方程为:
• 定义
– 单独利用一台接收机确定待定点在地固坐标系中绝对位 置的方法
• 定位结果-与所用星历同属一坐标系的绝对坐标
– 采用广播星历时属WGS-84
– 采用IGS – International GPS Service精密星历时为 ITRF – International Terrestrial Reference Frames
~ N 0 Int ( ) Fr ( )
• 整周计数 Int
载波相位观测值
• 整周未知数(整周模糊度) N 0
19
载波相位测量的观测方程
原始形式:
(iN i) ictR V ctS V (V i o)in V trop i iN i ictR V ctS V (V i o)in V trop
接收机根据自身 的 钟 在 tR时 刻 所 接 收 到 卫 星 在 tS 时刻所发送信号 的相位
(tS)
tR tS
R
R
理想情况
实际情况
18
载波相位观测值 ti
• 观测值
Fr i Int() i N 0
首次观测:
0 Fr ( ) 0
t0
以后的观测:
Fr 0 N0
i Int ( ) i Fr ( ) i 通常表示为:
载波波长为原来波长的一半,信 号质量较差(信噪比低,降低了 30dB)
gps培训课件

2023 gps培训课件•gps概述•gps应用领域•gps技术目录•gps市场•gps前景•gps常见问题解答01 gps概述1gps发展历程23基于地面无线电导航系统,由美国海军研发,1978年投入使用。
第一代GPS技术基于卫星的导航系统,由美国国防部研发,1995年开始民用。
第二代GPS技术现代化计划,提高定位精度、可靠性和效能。
第三代GPS技术03导航计算根据接收机接收到的卫星信号,计算出接收机的速度、航向、经纬度等信息,实现导航功能。
gps工作原理01卫星发射信号GPS卫星发送无线电信号,包含卫星位置、速度和时间等信息。
02地面接收信号GPS接收机接收到卫星信号后,通过计算得出接收机的三维位置和时间。
gps特点GPS技术可以实现高精度定位,精度达到米级甚至厘米级。
高精度定位全球覆盖高速度和高效率高可靠性GPS卫星覆盖范围广泛,全球任何地方都可以实现无障碍接收信号。
GPS技术可以实现高速、高效的导航和定位,适用于各种移动设备。
GPS技术可靠性高,适用于各种恶劣环境和气候条件。
02 gps应用领域测量领域工程测量GPS技术可用于城市、公路、铁路等工程测量,以及水利工程、精密设备安装等精密工程测量。
地形测量GPS技术可以高精度地测量地形,如山区、丘陵等地形复杂区域。
控制测量全球定位系统在测量领域的应用包括精密控制测量,用于高精度地测定控制点坐标和地球重力场参数等。
车辆导航GPS卫星导航系统可以提供车辆位置、速度和航向等实时信息,为车辆导航提供高精度、实时的指引。
导航领域航海导航GPS技术可以用于航海导航,提供高精度、实时的船只位置、速度和航向信息,为船只的安全航行提供保障。
航空导航GPS技术可以用于航空导航,提供高精度、实时的飞机位置、速度和航向信息,确保飞机安全飞行。
GPS技术可以快速准确地确定海上遇险船只的位置,为搜救人员提供高精度的遇险船只位置信息。
海上搜救在地震搜救过程中,GPS技术可以快速准确地确定被困人员的位置,为救援人员提供高精度的救援路线和方案。
GPS定位原理与应用1

地球参考架 ITRF
ITRS is realised by the International Terrestrial Reference Frame (ITRF) based upon estimated coordinates and velocities of a set of stations observed byVLBI, LLR, GPS, SLR, and DORIS.
earth, including oceans and atmosphere
• Orientation: BIH 1984.0, ensured by
no-net rotation (NNR) condition
• Unit of length: meter (SI)
Chen xiandong, Xi’an university of science and technology
Chen xiandong, Xi’an university of science and technology
1.2 卫星导航
• 第一代卫星导航系统: TRANSIT, CICADA. • 第二代卫星导航系统:
GPS, GLONASS, GALILEO • 广域增强导航系统:
WAAS,EGNOS,… • 我国的卫星导航系统:
Chen xiandong, Xi’an university of science and technology
• celestial vs. terrestrial
天球坐标系ICRS : 便于描述人造地球卫星的在轨位置;
地球坐标系ITRS: 便于描述地面点的位置.
天球坐标系 ICRS
Chen xiandong, Xi’an university of science and technology
GPS导航应用基础知识课件

C/A码
• 名称
– 粗码/捕获码(Coarse/Acquisition Code)
• 码率
– 1.023MHz
• 周期
– 1ms
• 1周期含码元数
– 1023
• 码元宽度
– 293.05m
• 调制载波
– L1
40
P码
• 名称
– 精码(Precise Code)
• 码率
– 10.23MHz
• 周期
正模型 • 编制成导航电文,并通过注入
站送往卫星 • 通过注入站向卫星发布各种指
令
27
用户部分
28
用户部分的组成
• 用户 • 接收设备
29
用户部分的功能
• 用户部分的功能
– 测定从接收机至GPS卫星的 距离
– 接收卫星星历 – 利用上述信息确定自身的三
维位置、三维运动速度和钟 差等参数
30
第3节 GPS卫星的信号结构
大地坐标与WGS-84
1
大地/椭球坐标系
• 定义
– 以参考椭球为依据建立的坐标系被称为大地坐 标系,又被称为椭球坐标系。
• 大地坐标
– 大地纬度(B) – 大地经度(L) – 大地高/椭球高(H)
2
WGS 84
• World Geodetic System 1984 • 1984年世界大地系统 • GPS系统内部所采用坐标参照系 • GPS卫星所发送的广播星历基于此系统
31
GPS卫星信号的成分
32
GPS卫星信号的成分① L
C/A1 L
P1 D
P
2
• 载波
D2
– 可运载调制信号的高频振荡波
GPS定位原理及应用分析

《GPS定位原理及应用》授课教案第一章绪论1。
1 GPS卫星定位技术的发展1。
1.1 早期的卫星定位技术1、无线电导航系统1)罗兰——C:工作在100KHZ,由三个地面导航台组成,导航工作区域2000KM,一般精度200-300M.2)Omega(奥米茄):工作在十几千赫。
由八个地面导航台组成,可覆盖全球。
精度几英里。
3)多卜勒系统:利用多卜勒频移原理,通过测量其频移得到运动物参数(地速和偏流角),推算出飞行器位置,属自备式航位推算系统。
误差随航程增加而累加。
缺点:覆盖的工作区域小;电波传播受大气影响;定位精度不高2、早期的卫星定位技术卫星三角网:以人造地球卫星作为空间观测目标,由地面观测站对其进行摄影测量,测定测站至卫星的方向,来确定地面点的位置的三角网。
卫星测距网:用激光技术测定测站至卫星的距离作为观测值的网则称为卫星测距网。
20世纪60~70年代,美国国家大地测量局在英国和德国测绘部门协助下,建立了一个共45个点的全球卫星三角网,点位精度5米。
卫星三角网的缺点:易受卫星可见条件和天气条件影响,费时费力,定位精度低。
1。
1。
2 子午卫星导航(多普勒定位)系统及其缺陷多普勒频移:多普勒效应是为纪念Christian Doppler而命名的,他于1842年首先提出了这一理论。
他认为电磁波频率在电磁源移向观察者时变高,而在波源远离观察者时变低.因此可利用频率的变化多少来确定距离的变化量。
多普勒效应的一个常被使用的例子是火车,当火车接近观察者时,其汽鸣声会比平常更刺耳.你可以在火车经过时听出刺耳声的变化。
同样的情况还有:警车的警报声和赛车的发动机声。
子午卫星导航系统(NNSS):将卫星作为空间动态已知点,通过在测站上接受子午卫星发射的无线电信号,利用多普勒定位技术,进行测速、定位的卫星导航系统。
子午卫星导航系统的优点:经济快速、精度均匀、不受天气和时间的限制,且可获得测站的三维地心坐标。
子午卫星导航系统的缺点:由于卫星数量少,故不能实时定位、定位时间长、定位精度也低。
GPS测量原理及应用-PPT课件
– P码: » 码速10.23MHz, TP=266天9小时45分55.5秒, LP=235469592765000, 码元长度29.3052m。 » 实际被截为7天一个周期,共38段,每一段赋予不 同的卫星,卫星的PRN号也由此得到。
电源
二、结构(续)
• 天线(含前置放大器) • 信号处理器 • 微处理器 • 显示、控制及存储设备 • 振荡器 • 电源
三、接收机的类型
根据工作原理: 码相关型 平方型 码相位型 混合型
根据测定测距码的 类型: C/A码 P(Y)码
根据信号通道类型: 多通道 序贯通道 多路复用通道
根据接收信号的频 率:
() 1 L1Pj0, j为 当 0除 和 iT, P 序 i为 列 整 的 T数 是 P L 周 , 的 P序 期 整 列 的 数 的 长 倍 周 度 外
1. 测距码(续)
• 伪随机噪声码(续)
– 伪随机噪声码
• 可复制性 • 生成方式 • GPS的测距码
– 当前星座:26颗
一、GPS的空间部分(续)
GPS卫星星座(=35 ,=90)
一、GPS的空间部分(续)
• 作用
– 发送导航定位信息 – 其他特殊用途(如通讯、检测核暴等)
二、GPS的控制部分
• 组成:主控站、注入站和监测站。 • 主控站
– 作用:
• 收集各检测站的数据,编制导航电文,监控卫星 状态
• GPS卫星的类型:
– Block Ⅰ(实验卫星) – Block Ⅱ(正式工作卫星) – Block ⅡA(正式工作卫星) – Block ⅡR(正式工作卫星) – Block ⅡF(正式工作卫星)
GPS全球定位系统原理与应用解析
第三代卫星尚在设计中,以取代第二代卫 星,改善全球定位系统。其特点是:可对自己 进行自主导航;每颗卫星将使用星载处理器, 计算导航参数的修正值,改善导航精度,增强 自主能力和生存能力。椐报道,该卫星在没有 与地面联系的情况下可以工作6个月,而其精 度可与有地面控制时的精度相当。
Block Ⅰ卫星
为使GPS具有高精度连续实时三维导航和定 位能力,以及良好的抗干扰性能,在设计上采 取了若干改善措施。
Slide 6
GPS系统的特点
全球性连续覆盖,全天候工作 定位精度高 观测时间短 测站间无需通视 可提供三维坐标 操作简便 功能多,用途广
Slide 7
GPS定位系统的组成
GPS定位技术是利用高空中的GPS卫星,向 地面发射L波段的载频无线电测距信号,由地 面上用户接收机实时地连续接收,并计算出接 收机天线所在的位置。因此,GPS定位系统是 由以下三个部分组成: (1)GPS卫星星座(空间部分) (2)地面监控系统(地面控制部分) (3)GPS信号接收机(用户设备部分)
双频接收机
双频接收机可以同时接收L1,L2载波信 号。利用双频对电离层延迟的不一样,可以消除 电离层对电磁波信号延迟的影响,因此双频接收 机可用于长达几千公里的精密定位。
按接收机通道数分类:
GPS接收机能同时接收多颗GPS卫星的信号, 为了分离接收到的不同卫星的信号,以实现对卫 星信号的跟踪、处理和量测,具有这样功能的器 件称为天线信号通道。根据接收机所具有的通道 种类可分为:
Slide 5
卫星定位技术发展的回顾
为满足军事和民用对连续实时和三维导航 的迫切要求,1973年美国国防部开始组织陆海 空三军,共同研究建立新一代卫星导航系统的 计划,这就是目前所称的“导航卫星授时测距/ 全球定位系统”(Navigation Satellite Timing and ranging / Global Positioning System)简称全球定位系统(GPS)。
精品课程《GPS原理及应用》课件第5章 GPS卫星导航
利用(2)式解算运动载体的实时点位时,后续点位 的初始坐标值可以依据前一个点位坐标来假定,因 此,关键是要确定第一个点位坐标的初始值,才能 精确求得第一个点位的三维坐标。
5.2.2 伪距差分动态定位
所谓差分动态定位(DGPS)就是用两台 接收机在两个测站上同时测量来自相同GPS 卫星的导航定位信号,用以联合测得动态用户 的精确位置,其中一个测站是位于已知坐标点, 设在该已知点(又称基准点)的GPS信号接 收机,叫做基准接收机。它和安设在运动载体 上的GPS信号接收机(简称动态接收机)同 时测量来自相同GPS卫星的导航定位信号。
基准接收机所测得的三维位置与该点已知值进 行比较,便可获得GPS定位数据的改正值。 如果及时将GPS改正值发送给若干台共视卫 星用户的动态接收机,而改正后者所测得的实 时位置,便叫做实时差分动态定位。
由式(1)可知,基准站R测得至GPS卫星j的 伪距为
5.2.3 动态载波相位差分测量
GPS载波相位测量方位不仅适用于静态 定位,同样也适用于动态定位,并且已取得厘 米级的三维位置精度。 由载波相位观测方程得出动态差分方程:
不仅如此,GPS卫星的入轨运行,还为 大地测量学、地球动力学、地球物理学、天体 力学、载人航天学、全球海洋学和全球气象学 提供了一种高精度和全天候的测量新技术。 GPS在导航领域的应用,有着比GPS静 态定位更广阔的前景,两者相比较,GPS导 航具有:用户多样、速度多变、定位实时、数 据和精度多变等特点。因此,应该依据GPS 动态测量的这些特点,选购适宜的接收机,采 用适当的数据处理方法,以便获得所要求的运 动载体的状态参数的测量精度。
定时有着广泛的应用。从日常生活到航天 发射,从出外步行到航空航海,都离不开定时。 随着使用目的的不同,人们对时间准确度的要 求也不一样。 GPS卫星都安装有4台原子时钟,GPS 时间受美国海军天文台经常性监测。GPS系 统的地面主控站能够以优于±5ns的精度,使 GPS时间和世界协调时之差保持在 以 内。此外,GPS卫星还向用户播发自己的钟 差、钟速和钟漂等时钟参数,加之利用GPS 信号可以测得站址的精确位置,因此,GPS 卫星可以成为一种全球性的用户无限的时间信 号源,用以进行精确的时间比对。
卫星定位导航原理与应用
课程名称: 卫星定位导航原理与应用
课程名称:卫星定位导航原理与应用
英文名称: Principles and applications of Satellites Positioning and Navigation
课程类型: ■讲授课程 □实践(实验、实习)课程 □研讨课程 □专题讲座 □其它
第五节 其他误差
1.地球自转的影响
2.地球潮汐改正
第七章 卫星定位导航应用(2学时)
第一节 在飞机精密进场着陆中的应用
第二节 在空中交通管制(ATC)中的应用
第三节 在无人驾驶飞机中的应用
第四节 在弹道轨迹测量中的应用
第五节 在航空摄影测量中的应用
第六节 在自动车辆定位导航系统中的应用
第七节 在航海导航定位中的应用
2.GPS对距离测量的影响
第二节 与信号传播有关的误差
1.电离层折射
2.对流层折射
3.多路径效应
第三节 与卫星有关的误差
1.卫星星历误差
2.卫星钟的钟误差
3.相对论效应
第四节 与信号传播有关的误差
1.接收机钟误差
2.接收机的位置误差
3.天线相位中心位置的偏差
考核方式: 大作业和读书报告
教学方式: 讲授
适用专业: 信息与通信工程
适用层次: 硕士■ 博士 □
开课学期:
总学时/讲授学时: 32 / 32
学分: 2
先修课程要求: 通信原理、随机过程、数值分析
课程组教师姓名
职 称
专 业
年 龄
学术专长
叶斌
副教授
模式识别与智能系统
43
模式识别与图象处理、卫星定位导航