制冷原理及设备—第1章_制冷方法

合集下载

制冷设备的工作原理及组成

制冷设备的工作原理及组成

制冷设备的工作原理及组成1. 引言嘿,大家好!今天咱们聊聊制冷设备,听起来是不是很高大上?其实,它的工作原理就像咱们的冰箱,简单明了。

让我们一起“冷”静一下,看看这些设备是怎么让我们的饮料变得冰冰凉凉的!2. 制冷的基本原理2.1 热力学的秘密首先,制冷设备的核心是热力学原理,简单来说,就是“热量总是从高温物体转移到低温物体”。

这个道理就像夏天的时候,我们总想找个阴凉地儿待着,谁愿意待在烈日下呢?制冷设备就是借助这种原理,把热量从一个地方“转移”到另一个地方,让你在酷热的夏天里也能享受清凉。

2.2 制冷循环的魔法接下来,咱们要提到制冷循环。

这个过程就像做菜,分为几个步骤:首先,制冷剂(就是那种能吸热的液体)在蒸发器里吸收热量,然后变成气体;接着,这个气体被压缩机压缩,温度升高,最后在冷凝器里放出热量,变成液体,循环往复。

就这样,冰箱里永远保持着那个让人心动的低温。

3. 制冷设备的组成3.1 主要部件制冷设备的组成就像一个团队,各司其职。

首先是压缩机,它是整个制冷设备的心脏,负责把气体压缩并送到冷凝器。

然后是冷凝器,它就像一个散热器,把热量排出去,保持设备的高效运行。

接下来是蒸发器,咱们的制冷剂在这里工作,吸热降温。

最后,别忘了膨胀阀,它帮助控制制冷剂的流动,保持循环的平衡。

3.2 配件的重要性除了主要部件,还有一些小配件也不可忽视,比如过滤器和风扇。

过滤器就像一个守门员,阻止脏东西进入设备,保护设备的健康。

而风扇则负责让空气流动,帮助散热和循环,保证一切顺畅运行。

可以说,这些小配件在大局上也起着至关重要的作用。

4. 小结总之,制冷设备就像我们的好朋友,夏天里提供清凉,冬天里让我们享受温暖。

了解它们的工作原理和组成,就像打开了一个神秘的宝箱,里面藏着无数的知识和乐趣。

希望大家在享受冷饮的同时,能对这些神奇的设备有更深入的了解!冷静对待生活的每一个“热”瞬间,让我们一起享受生活的美好吧!。

制冷原理及设备吴业正

制冷原理及设备吴业正

制冷原理及设备吴业正在制冷技术的发展历程中,制冷原理及其相关设备起着至关重要的作用。

制冷技术广泛应用于各个领域,例如家用空调、冷库、冷链物流等。

本文将介绍制冷原理及其常见设备,帮助读者更好地理解和应用这一技术。

一、制冷原理1. 蒸发冷却原理:制冷循环中最基本的原理之一。

液体在吸热蒸发时会带走周围的热量,使环境温度下降。

蒸发冷却原理被广泛应用于冰箱、空调等设备中。

2. 压缩冷却原理:制冷设备常见的工作原理之一。

通过压缩气体使其温度升高,然后将热量排出,使环境温度降低。

这种原理常见于空调、冷冻设备等。

3. 热泵原理:这是一种将热能从低温热源转移到高温热源的原理。

通过热泵设备,可以将低温环境中的热量转移到高温环境中,实现环境温度调节。

二、制冷设备1. 压缩机:是制冷设备中的核心部件,主要用于压缩制冷剂,使其温度和压力升高。

常见的压缩机有往复式压缩机和螺杆式压缩机。

2. 冷凝器:用于将高温高压的制冷剂放出的热量散发出去,使制冷剂转变为高温高压液体。

3. 蒸发器:用于吸收热量使制冷剂蒸发,实现冷却效果。

蒸发器有多种类型,例如板式蒸发器、管壳式蒸发器等。

4. 膨胀阀:调节制冷剂在蒸发器和冷凝器之间的流量,控制制冷剂的蒸发过程,实现温度调节。

5. 冷媒:制冷设备中的介质,用于传递热能。

常见的制冷剂包括氟利昂、氨、丁烷等。

6. 风扇和冷却塔:用于排出热量,使环境温度下降,保持设备正常运行。

三、应用领域1. 家用空调:家庭生活中最常见的制冷设备之一。

通过制冷循环过程,调节室内温度,提供舒适的居住环境。

2. 商用冷库:用于冷藏和冷冻各种物资,例如食品、药品等。

通过控制温度和湿度,延长物品的保鲜期。

3. 冷链物流:保持货物在冷藏状态下运输,确保货物质量和安全。

冷链物流广泛用于食品、医药等行业。

4. 工业冷却:在工业生产过程中,对设备和物料的温度进行控制,以确保生产过程的稳定性和质量。

5. 航空航天:在航空航天领域,制冷技术用于航空器和航天器的温度控制和环境调节。

制冷方法

制冷方法

第2章制冷方法制冷的方法很多,常见的有:物质相变制冷,气体膨胀制冷,绝热放气制冷,电、磁制冷。

本章介绍现有的各种制冷方法,概述其基本原理和应用领域。

利用天然冷源也是获得低温的一个方面(例如,采集和贮存天然冰、冬灌蓄冷、深井水空调等)。

面对工业化伴随而来的环境问题压力,利用天然冷源的环保意义日益突出。

天然冷源利用会受到更多重视。

2.1 物质相变制冷2.1.1 相变制冷概述物质有三种集态:气态、液态、固态。

物质集态的改变称为相变。

相变过程中,由于物质分子重新排列和分子热运动速度的改变,会吸收或放出热量,这种热量称为潜热。

物质发生从质密态到质稀态的相变时,将吸收潜热;反之,当它发生由质稀态向质密态的相变时,放出潜热。

相变制冷就是利用前者的吸热效应而实现的。

利用液体相变的,是液体蒸发制冷;利用固体相变的,是固体融化或升华冷却。

液体蒸发制冷以流体作制冷剂,通过一定的机器设备构成制冷循环,可以对被冷却对象实现连续制冷。

它是制冷技术中使用的主要方法。

固体相变冷却则是以一定数量的固体物质作制冷剂,作用于被冷却对象,实现冷却降温。

一旦固体全部相变,冷却过程即告终止。

1.固体相变冷却常用的制冷剂是冰、冰盐、干冰,此外还有一些其他固体物质。

(1) 冰冷却冰冷却是最早使用的降温方法,现在仍广泛应用于日常生活、工农业、科学研究等各种领域。

冰融化和冰升华均可用于冷却,实际主要是利用冰融化冷却。

常压下冰在0℃融化,冰的融化潜热为335 kJ/kg。

能够满足0℃以上的制冷要求。

冰冷却时,常借助空气或水作中间介质以吸收被冷却对象的热量。

此时,换热过程发生在水或空气与冰表面之间。

被冷却物体所能达到的温度一般比冰的融化温度高5-10℃。

厚度10 cm左右的冰块,其比表面积在25-30 m2/m3之间。

为了增大比表面积,可以将冰粉碎成碎冰。

水到冰表面的表面传热系数为116 W/(m2·K)。

空气到冰表面的表面传热系数与二者之间的温度差以及空气的运动情况有关。

第1章蒸气压缩式制冷的热力学原理概要

第1章蒸气压缩式制冷的热力学原理概要

第4章 制冷技术第一节 蒸气压缩式制冷的热力学原理1、蒸气压缩式制冷的工作原理任何液体在沸腾过程中将要吸收热量,液体的沸腾温度(即饱和温度)和吸热量随液体所处的压力而变化,压力越低,沸腾温度也越低。

而且不同液体的饱和压力、沸腾温度和吸热量也各不相同。

只要根据所用制冷液体(称制冷剂)的热力性质,创造一定的压力条件,就可以在一定范围内获得所要求的低温。

要实现制冷循环必须要有一定的设备,而且要以消耗能量作为补偿。

蒸气压缩式制冷循环就是用压缩机等设备,以消耗机械功作为补偿,对制冷剂的状态进行循环变化,从而使用冷场合获得连续和稳定的冷量及低温。

研究蒸气压缩式制冷循环的主要目的,是为了分析影响制冷循环的各种因素,寻求节省制冷能耗的途径。

2、 理想制冷循环——逆卡诺循环逆卡诺循环是使工质(制冷剂)在吸收低温热源的热量后通过制冷装置,并以外功作补偿,然后流向高温热源。

逆向循环是一种消耗功的循环,制冷循环就是按逆向循环进行的,在温—熵或压—焓图上,循环的各个过程都是依次按逆时针方向变化的。

逆卡诺循环由两个等温过程和两个绝热(等熵)过程组成,是一种理想循环。

逆卡诺循环是可逆的理想制冷循环,它不考虑工质在流动和状态变化过程中的内部和外部不可逆损失。

虽然逆卡诺循环无法实现,但是通过该循环的分析所得出的结论对实际制冷循环具有重要的指导意义。

3、逆卡诺循环必须具备的条件利用液体气化制冷的逆卡诺循环必须具备的条件是:高、低温热源温度恒定;工质在冷凝器和蒸发器中与外界热源之间无传热温差;工质在流经各个设备时无内部不可逆损失;膨胀机输出的功为压缩机所利用。

作为实现逆卡诺循环的必要设备是压缩机、冷凝器、膨胀机和蒸发器。

4.制冷系数ε制冷循环常用制冷系数ε表示它的循环经济性能,制冷系数等于单位耗功量所制得的冷量。

对于逆卡诺循环而言:)())(()(00000'-''=-'-'-'='=T T T S S T T S S T w q k b a k b a c c ε 从公式可知,逆卡诺循环的制冷系数c ε仅与高、低温热源温度有关,而与制冷剂的热物理性能无关。

制冷原理(好)

制冷原理(好)

制冷原理(好)制冷原理⼀、制冷原理从低于环境温度的物体中吸取热量,并将其转移给环境介质的过程,称为制冷。

冰箱制冷原理主要是根据物质由液体变成⽓体时吸热和由⽓体变成液体时放热的原理。

即压缩机将低温低压的制冷剂⽓体吸⼊⽓缸,经过压缩机压缩,变成⾼温⾼压的⽓态并排到冷凝器内,在冷凝器内,⾼温⾼压的⽓体与温度较低的环境进⾏交换,温度降低并冷凝为液体;液体通过⽑细管节流,降低压⼒后进⼊蒸发器,在蒸发器内吸热汽化,(未汽化的暂留在储液管⾥),汽化后被吸回压缩机,重新压缩。

如此周⽽复始,不断循环,使箱内温度降低,实现冰箱制冷。

⼆、电冰箱制冷过程电冰箱的制冷在制冷系统中分为压缩、冷凝、节流、蒸发四个过程。

压缩:压缩机在运⾏中,吸⼊来⾃蒸发器的低压、低温制冷剂蒸⽓,压缩成⾼压⾼温的过热蒸⽓,排⼊冷凝器内。

冷凝:在冷凝器内制冷剂蒸⽓向空⽓中散热降温,变成⾼压中温液体。

节流:⾼压液体通过⽑细管节流,使压⼒急剧降低⽽进⼊蒸发器。

蒸发:经过⽑细管节流的制冷剂在蒸发器内膨胀,沸腾吸热,变成低压低温蒸⽓,⼜被压缩机吸⼊。

三、电冰箱制冷循环图⽰意图单循环制冷系统⽰意图(见图1)(由⼀个温控器对冷藏室和冷冻室的温度进⾏控制)(图1)双循环制冷系统:由两个温控器和⼀个电磁阀或两台压缩机对冷藏室和冷冻室的温度进⾏控制,双系统冰箱的优点是将冷藏室温控器关闭,单独对冷冻室进⾏制冷电磁阀⽰意图(见图2)(图2)⼀、家⽤电冰箱的组成家⽤电冰箱的外形多种多样,但主要结构⼤致相同,⼀般均由箱体、制冷系统、电⽓系统等⼏个部分组成。

⼆、家⽤电冰箱分类按箱门型式分类:单门冰箱、双门冰箱及多门冰箱。

按使⽤⽓候类型分类:亚温带、温带、亚热带和热带。

按冷冻室温度及其所能达到的温度分类:1星、2星、3星、4星共四个星级。

按制冷⽅式分类:压缩式、吸收式和半导体式电冰箱(电机压缩式按冷却⽅式⼜可分为直冷式和间冷式两种)。

四、不同星级温度及⾷品有效贮存期B CD 191 W E改进设计号,以A、B…….表⽰⽆霜冰箱⽤汉语拼⾳字母W表⽰规格代号,有效容积以阿拉伯数字表⽰,单位为L⽤途分类代号C:冷藏箱;CD:冷藏冷冻箱;D:冷冻箱产品代号,B表⽰家⽤电冰箱箱体⼀、家⽤电冰箱的箱体主要由外箱、内箱、箱门、绝热层和附件等组成,外箱与内箱之间均匀充满硬质聚氨酯泡沫塑料(PU),具有绝热良好、重量轻、粘结性强且不吸⽔等优点。

制冷原理与装置

制冷原理与装置
BACK NEXT
2、制冷剂的特性与选择
说明:从最早的乙醚、到氨、到氟利
昂、到现在的环保制冷剂,制冷剂对 制冷技术的发展有很大的影响。 3、制冷设备的结构及特点
说明:制冷设备是制冷技术在实际工
程中,实现制冷目的的关键所在。制 冷设备结构性能的好坏,对制冷装置 的影响是显而易见的。
BACK NEXT
HOME BACK NEXT
火箭推力系统与高能物理 所有大型的发射的飞行器均使用液氧作氧 化剂;宇宙飞船的推进也使用液氧和液氢; 观察研究大型粒子加速器产生的粒子的氢泡 室要用到液氢。
LHC-CERN 27km超导磁 体过冷态超 流氦冷却
HOME BACK NEXT
第一章 制冷的热力学基础
§1-1 相变制冷 ★ §1-2 绝热膨胀制冷 ★ §1-3 制冷热力学特性分析 ★
1951年半导体制冷技术的开发、应用为制
冷技术又开拓了一个新领域,它对卫星、 激光、航天技术等高科技的进一步发展, 提供了一定的技术保证。
BACK NEXT
四、国内发展概况(简介) 解放前冷库容量不足三万吨。解放后有
了较大的发展,1954年研制成功第一台 制冷压缩机,1959年冷库容量达到35万 吨,1967试制成功蒸汽喷射式制冷机, 1968年第一台吸收式制冷机问世,1971 年第一台螺杆式式制冷压缩机问世, 1982年冷库容量达到250万吨。
等)为工质,通过对其压缩,然后对这些高
压气体进行绝热膨胀(或绝热放气),从而
获得温度很低的液化气体。
BACK NEXT
三、制冷技术的研究内容 1、各种制冷方法、制冷原理和制冷系统
说明:制冷方法很多,简介普冷范围常用
的四种制冷方法,重点讲解蒸汽压缩式制 冷的基本原理、制冷循环及其热力计算方 法、制冷剂的特性与选择以及制冷设备的 结构特点和传热计算。制冷系统在本课程 的设备部分作总体介绍,详细内容留待后 续课程《制冷装置设计》讲解。

制冷原理和制冷循环

第一节制冷原理和制冷循环1.1制冷技术的应用制冷就是从某一物体或空间吸取热量并将其转移给周围环境介质使该物体或空间的温度低于环境的温度并维持这一低温的过程。

用于完成制冷过程的设备称为制冷机或制冷装置用于存放低温物体的空间称为冷藏室或冷库实现热量转移的工作介质称制冷剂单位时间内从被冷物体或空间吸收的热量称为制冷量。

实现制冷的途径有天然制冷和人工制冷。

天然制冷是以天然冰为冷源利用冰融化过程吸收融解热而实现制冷。

人工制冷是借助制冷装置并消耗一定的外功或热能作―代价‖将低温物体或空间的热量转移至高温环境介质而实现制冷的。

船舶制冷的目的是实现货物的冷藏运输并为船舶空调提供冷源。

在船舶上制冷技术广泛应用于货物冷藏运输、食品冷藏、渔类保鲜、天然气液化和贮运、冷藏集装箱―冷藏链‖运输和船舶舱室的空气调节等。

船舶冷藏包括海上渔船、商业冷藏船、海上运输船的冷藏货舱和船舶伙食冷库。

另外尚有海洋工程船舶的制冷及液化天然气的贮运槽船等。

渔业冷藏船通常与海上捕捞船组成船队。

船上制冷装置为本船和船队其他船舶的渔获物进行冷却、冷冻加工和贮存。

商业冷藏船作为食品冷藏链中的一个环节完成各种水产品或其他冷藏食品的转运保证运输期间食品必要的运送条件。

运输船上的冷藏货舱主要担负进出口食品的贮运。

船舶伙食冷库为船员提供各类冷藏的食品满足船舶航行期间船员生活的必需。

此外各类船舶制冷装置还为船员提供在船上生活所需的冷饮和冷食。

为保证舰艇战斗力和适应长时间隐蔽潜航弹药贮存等也普遍应用制冷技术。

1.2食品冷藏及冷藏条件对不同的食品应分别采用―冷却‖、―冷冻‖和―速冻‖的处理方法。

所谓―冷却‖就是把食品温度降到细胞膜不致冻结的程度通常是在05℃之间。

但微生物在这样的温度下还具有一定的繁殖能力食品不能储存过久。

所谓―冷冻‖就是把食品温度降到0℃以下而使之冻结。

采用这种方法可使微生物几乎完全停止敝骋蚨 2厥奔浣铣ぁ5 辰崴俣裙 崾瓜赴 つ诖蟛糠炙 侄辰嵝纬山洗蟊 У彼 杀 碧寤 嵩龃笤?10造成细胞膜内层破裂使食品减少或丧失原有的风味和营养价值。

制冷原理与设备课件3.1、3.2


Department of Power Engineering
3.1 制冷剂概述
制冷剂替代步伐刻不容缓
以德国及北欧一些国家为 代表,主要采用天然工质 为替代物。美、日为代表,支持来自开发氢氟烃(HFCs) 类替代物
Department of Power Engineering
3.1 制冷剂概述 氟利昂类制冷剂
第一篇 基础篇
模块三 制冷剂与载冷剂(1)
Department of Power Engineering
3.1 制冷剂概述
3.1 制冷剂概述
3.1.1 制冷剂的发展与应用 制冷剂(Refrigerant)又称制冷工质,是制冷循环 的工作介质,利用制冷剂的相变来传递热量,即 制冷剂在蒸发器中汽化时吸热,在冷凝器中凝结 时放热。 多数制冷剂在大气压力和环境温度下呈气态。
3.1 制冷剂概述
表3-2 饱和碳氢化合物制冷剂
制冷剂代号 化学名称 R50 R170 R290 甲烷 乙烷 丙烷 化学分子式 制冷剂代号 化学名称 CH4 CH3CH3 CH3CH2CH3 R600a R600 异丁烷 丁烷 化学分子式 CH(CH3)3 CH3CH2CH2 CH3
Department of Power Engineering
五氯氟乙烷 CCl 3CCl 2F CCl 3CF3
1,1,2-三氯 1,2,2三氟乙 CCl 2FCClF2 烷 2,2-二氯 1,1,1-三氟乙 CHCl 2CF3 烷 1,1, -二氯乙 CH3CHCl 2 烷
R123
R134a R152a
CH2FCF3 CH3CHF2
R150a
Department of Power Engineering

吴业正制冷原理及设备

吴业正制冷原理及设备制冷技术在现代社会的各个领域起着至关重要的作用。

其中,吴业正制冷原理及设备以其高效、可靠的性能获得了广泛的应用。

本文将介绍吴业正制冷原理及设备的特点和工作原理。

一、吴业正制冷设备的特点吴业正制冷设备以其高效、节能的特点成为目前制冷行业的热门选择。

其主要特点包括:1. 高效节能:吴业正制冷设备采用先进的压缩制冷技术,能够实现高效的制冷效果。

与传统制冷设备相比,其能耗更低,有效降低了能源消耗。

2. 环保低噪音:吴业正制冷设备采用环保冷媒,减少了对大气层的破坏,并且噪音低,不会对周围环境和人体健康造成干扰。

3. 安全可靠:吴业正制冷设备具备稳定的性能和高度的安全性。

针对不同的工况需求,设备可以调整运行参数,确保其安全可靠。

二、吴业正制冷原理吴业正制冷原理主要基于压缩制冷循环。

以下是其工作流程:1. 压缩机工作:吴业正制冷设备通过压缩机将低温低压的制冷剂吸入,并将其压缩成高温高压的气体。

2. 冷凝过程:高温高压的制冷剂通过冷凝器散热,从而使其冷凝成高温高压的液体。

3. 膨胀阀控制:高温高压的液体制冷剂通过膨胀阀控制,流速减缓,压力降低。

4. 蒸发过程:降压后的制冷剂进入蒸发器,吸收周围热量,使得其从液体转化为低温低压的气体。

5. 循环重复:低温低压的气体再次被压缩机吸入,循环进行,实现不断的制冷效果。

三、吴业正制冷设备在实际应用中的案例吴业正制冷设备广泛应用于各个领域,以下是几个典型的案例:1. 医疗冷链:吴业正制冷设备可以用于医疗冷链物流,确保药品和疫苗的冷藏条件,保证其质量和安全。

2. 工业制冷:吴业正制冷设备可应用于工业生产中的冷却和制冷过程,提高生产效率和产品质量。

3. 商业冷藏:吴业正制冷设备广泛应用于超市、餐饮业等领域,为食品提供低温冷藏条件,确保食品的新鲜度和安全性。

4. 家用冷暖:吴业正制冷设备也适用于家庭冷暖需求,为居民提供舒适的居住环境。

综上所述,吴业正制冷原理及设备以其高效、可靠的性能在制冷领域取得了广泛应用。

制冷技术 制冷热力学原理

因此,液体蒸发制冷循环必须具备以下四个 基本过程:低压下蒸发汽化、蒸气升压、高压气 体液化、高压液体降压。其中将低压蒸汽提高压 力需要能量补偿。
制冷原理
利用某种物质状态变化,从较低温度的热源吸取一 定的热量,通过一个消耗功(或热量)的补偿过程, 向较高温度的热源放出热量。 为了实现上述能量转换,首先 必须有使制冷机能达到比低温 热源更低温度的过程,并连续 不断地从被冷却物体吸取热量。
可逆循环和不可逆循环
循环由过程构成 可逆
过程
不可逆
可逆循环 循环
不可逆循环
➢不可逆过程可分成两类:内部不可逆和外部 不可逆。 ➢制冷剂在其流动或状态变化过程中因摩擦、 扰动及内部不平衡而引起的损失,都属于内部 不可逆; ➢蒸发器、冷凝器及其他换热器中有温差时的 传热损失,属于外部不可逆。
逆循环
逆循环:逆时针方向(消耗功把热量由低温
p 热1源送至高温热源)T
2
2
V
净效应:对内作功
1
S
净效应:放热
动力循环与制冷(热泵)循环
• 动力Power循环—正循环 输入热,通过循环输出功
• 制冷Refrigeration循环—逆循环 输入功量(或其他代价),从低温热源取热
• 热泵Heat Pump循环—逆循环 输入功量(或其他代价),向高温热用户供热
自然界自发过程都具有方向性
自发过程的方向性
功量 功量
摩擦生热
100% 发电厂 40%
热量 热量
放热
自发过程具有方向性、条件、限度
热力学第二定律的表述与实质
热二律的表述有 60-70 种
热功转换
传热
1851年 开尔文-普朗克表述
热功转换的角度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档