植物次生代谢产物及其在环境胁迫中的抵御作用

合集下载

植物代谢调控复习

植物代谢调控复习

第一章植物代谢调控:运用现代生物技术理论和方法研究植物代谢产物,尤其是次级代谢产物的人为调控生产的一门科学,是一门基于生物学和天然产物化学基础的交叉应用学科,旨在对于重要生物资源的再生和利用。

药用植物活性成分代谢调控的目的?①解决濒临灭绝的药用植物资源问题,对这些药用植物可采用人工驯化和规范化种植等方法生产。

②特殊生物资源的代谢调控生产技术,为工业化生产提供技术支持,比如采用组织快速繁殖和细胞培养的技术工业化生产紫草素。

③寻找不同于传统意义上的天然产物活性成分的生产方式,例如采用生物转化技术对一些植物活性物质结构修饰,得到理想的药用化合物。

第二章1.一次代谢:维持植物机体生命活动的代谢过程叫一次代谢。

糖类、脂肪、蛋白质在植物体内不可以相互转化。

糖类,蛋白质和脂肪是初级代谢产物,是植物维持生命活动的基本物质;2.二次代谢:以某些一次代谢产物为原料,经一系列特殊生物反应生成一些小分子物质的过生物碱、萜类和黄酮等是次级代谢产物,对生物的生存和适应具有重要的作用。

次生代谢物质结构的多样性决定了其生物活性的多样性,被人们作为寻找药物的源泉,例如人参中的人参皂苷,黄花蒿中的青蒿素以及红豆杉中的紫杉醇都被开发成治疗不同疾病的药物。

同位素跟踪/标记技术是早期的生物合成途径探索中采用的标记技术,现在普遍认为生物碱类物质是以氨基酸为合成前体,醋酸-丙二酸途径可以合成脂肪酸、酚类、蒽酮/蒽醌等物质。

1.氨基酸途径:以一些氨基酸为前体,经过一定的生物合成反应生成生物碱的合成途径。

不是所有的氨基酸都可以合成含氮类物质。

4.甲戊二羟酸途径:以甲戊二羟酸为前体,经过一定的生物合成反应生成萜类化合物和甾体类化合物的途径。

甲戊二羟酸是合成萜类化合物的前体,15个碳原子的焦磷酸金合欢酯FPP是合成倍半萜的前体,两分子FPP聚合成的30碳的角鲨烯是合成三萜和甾体物质的直接前体。

5. 桂皮酸—莽草酸途径:以莽草酸途径产生的芳香族氨基酸为前体,进一步合成桂皮酸,在经过不同分支途径合成苯丙素类化合物的途径。

植物中次生代谢物的合成途径和作用机制研究

植物中次生代谢物的合成途径和作用机制研究

植物中次生代谢物的合成途径和作用机制研究植物作为生命的基础,有着广泛的生物学研究价值。

其中,植物中次生代谢物的合成途径和作用机制是一个备受研究者关注的领域。

在这篇文章中,我们将就这个话题详细探讨。

一、次生代谢物的定义植物能够合成许多不参与生长和繁殖的化合物,这些化合物被称为次生代谢物。

与植物基本代谢物不同,次生代谢物在特定条件下才会被合成,而且它们大多数在天然界中没有实际的功能。

这些化合物可以分为许多不同的类别,包括生物碱、黄酮、类黄酮、酚酸、丙素和挥发性油等。

二、次生代谢物的合成途径植物次生代谢物的合成途径和生物活性的实验研究建立于20世纪中期。

当前,已知的合成途径包括植物酚酸途径、黄酮途径、生物碱途径、丙素途径和三萜途径等。

下面,我们将重点介绍这些途径的合成机制。

1、酚酸途径酚酸是植物中重要的次生代谢产物,参与植物的光合作用、营养吸收和生长发育等过程。

酚酸途径中,它的前体物是苯丙氨酸和白藜芦醇。

苯丙氨酸首先经过酚羧酸途径生成苯酚羧酸,进而形成香豆酸和各种酪氨酸衍生物。

而白藜芦醇是类黄酮的前体,也是许多次生代谢产物的中间体。

2、黄酮途径黄酮途径中,黄酮酸是所有黄酮化合物的前体,而白藜芦醇是黄酮类化合物的前体。

通过黄酮酸和白藜芦醇,可以合成许多不同的次生代谢物,如类黄酮、黄酮和异黄酮等。

3、生物碱途径生物碱是植物中比较常见的次生代谢产物之一,通常含有一种或多种含氮碱基的环境。

在生物碱途径中,维生素的双氮杂环分子是生物碱的前体。

这个分子首先通过色氨酸途径合成色胺酸,然后通过多种酶催化过程形成不同的生物碱类物质。

4、丙素途径丙素途径是一种催化植物次生代谢物合成的重要酶群。

它参与植物发育和响应各种胁迫条件的过程,并合成许多次生代谢产物,如抗氧化剂、生物碱和类黄酮等。

5、三萜途径三萜途径是植物中次生代谢物的主要合成途径。

三萜分子是所有类萜类物质的共同前体。

在三萜途径中,异戊烷基、恶臭醇和二萜酸是三萜产生的中间体,通过多次途径反应形成胆固醇、花生四烯酸和其他次生代谢物等。

初生代谢产物和次生代谢产物的概念

初生代谢产物和次生代谢产物的概念

初生代谢产物和次生代谢产物的概念初生代谢产物和次生代谢产物的概念1. 初生代谢产物和次生代谢产物的定义初生代谢产物和次生代谢产物是生物体内产生的两种不同类型的化合物。

初生代谢产物是在生物体内发育的早期阶段产生的化合物,主要用于维持生命和促进生长的基本代谢功能。

而次生代谢产物是在生物体内发育的后期阶段产生的化合物,不参与生物体的基本代谢,但具有一定的生理活性和适应性。

2. 初生代谢产物和次生代谢产物的生物功能初生代谢产物主要包括碳水化合物、蛋白质和脂类等生物大分子,以及氨基酸、酶、激素等生物小分子。

它们是维持生物体正常生长发育和代谢活动所必需的物质,是构成细胞、组织和器官的基本组成部分。

而次生代谢产物则包括生物碱、鞣质、挥发油、色素等化合物,具有抗菌、抗虫、抗氧化、防御等生理活性,在植物的适应环境和保护自身方面发挥着重要作用。

3. 初生代谢产物和次生代谢产物在生物体中的制备和调控初生代谢产物一般是通过生物体内的基础代谢途径合成的,如糖酵解、蛋白质合成、脂质代谢等。

它们的合成受到生物体内外环境的调控,如营养物质的供应、激素的调节等。

而次生代谢产物的合成一般是在特定的生物发育阶段或环境刺激下进行的,受到内在遗传和外部环境因素的影响,通常在生物体受到外界胁迫时产生。

4. 个人观点和理解在我看来,初生代谢产物和次生代谢产物在生物体内发挥着各自独特的作用。

初生代谢产物是维持生命的基础物质,是生物体正常生长和代谢活动不可或缺的。

而次生代谢产物则是植物为了适应环境和防御外界威胁而产生的重要物质,对于保护植物自身和与外界的相互作用至关重要。

总结回顾初生代谢产物和次生代谢产物作为生物体内重要的化合物,分别在维持生命和适应环境方面发挥着重要作用。

初生代谢产物是生物的基础代谢产物,次生代谢产物则是在特定条件下产生的具有生理活性的化合物。

这两种代谢产物相辅相成,共同维护着生物体的正常功能和适应性。

在撰写文章时,我尽力按照所提供的要求,以简单到复杂的方式全面评估了初生代谢产物和次生代谢产物的概念,希望这篇文章对您有所帮助。

次生代谢在中药生态农业中的作用及利用

次生代谢在中药生态农业中的作用及利用

次生代谢在中药生态农业中的作用及利用一、农业生产方式对药用植物次生代谢的影响植物的次生代谢是植物长期的进化过程中产生的,与植物对环境的适应密切相关,植物产生具有生态功能的次生代谢物帮助他在不同的环境条件下生存下来。

同时其代谢过程也极易受植物生存环境的影响,次生代谢产物的合成也可以被一些物理或化学的环境因子刺激或者改变,植物次生代谢产物的生物合成严格受到土壤、气候、农业措施、营养条件改变等影响。

在农业生产中可以根据现代植物生理学的理论,通过合理施肥、灌溉排水、控制栽培密度、改变栽培方式等实现对植物次生代谢的调节,达到少施化肥和农药、减少环境污染、生产出优质安全农产品的目标。

(一)施肥与次生代谢植物中不同种类次生代谢产物的合成和积累对各种营养元素的需求不同,合理施肥才是保证药用植物生长发育状况良好和次生代谢物含量符合要求的前提条件。

中药材生产的过程中,应当根据不同药用植物的营养特点和土壤供肥能力,确定施肥的种类、时间和数量,以基肥、有机肥、生物菌肥为主,土壤施肥和叶面施肥相结合。

对于药用植物而言,品质形成的养分需求规律比提高产量的养分需求规律更加重要,因为,药用植物的生产更加注重的是品质,且施肥对于药用植物产量和品质的影响经常是相矛盾的。

例如,通过比较道地和非道地野生苍术土壤的供肥能力发现,道地茅苍术土壤处于低钾水平,并通过苍术植株不同程度低钾胁迫受控实验分析显示,低钾胁迫组的株高、根茎粗、叶片数、分枝数、须根数、地上及地下鲜重与干重等指标均较正常组显著降低(P<0.05)。

但是,低钾胁迫组挥发油组分显示出质量分数较大的组分数目显著增多、各组分的量趋于均衡、茅术醇与β-桉油醇2个主要成分的量显著下降(P<0.05),表明适度低钾胁迫导致的苍术挥发油组分变化与道地药材苍术的挥发油特征相符。

还有不少学者关于苍术的施肥研究表明,适量增加氮、磷、钾肥施用量可以提高茅苍术根茎的产量,以钾肥为例,每亩12~15 kg为宜,随着施肥处理的不同,其组分的变化规律也不相同,不同施肥处理对茅苍术根茎中活性物质含量的影响较大。

6环境胁迫下次生代谢产物的积累及道地药材的形成

6环境胁迫下次生代谢产物的积累及道地药材的形成
CNB假说认为 [ 20] , 植物 体内 以碳 (C)为 基础 的次 生代 谢产物 (如酚类 、萜烯类等 )与植物体内 的 C/N(碳素 /营养 ) 比呈正相关 , 而以氮 (N)为基 础的次 生代谢 物质 (如 生物碱 等含 N化合物 )与植物体内 的 C/N比呈 负相关 。 这 一假说 在一定程度解释了不同植物次生代谢产物累积量与 碳素 /营 养平衡的关系 , 并成功地预测了许 多有关植物营养及光照对 其次生代谢产物的影响 。 CNB假说 的理论基 础是植 物营养 对其自身生长的影响大于其对光合作用的影响之上 , 在营养 胁迫时 , 植物生长的速度 大为减慢 , 而光合作用的变化 不大 , 植物会积累较多的碳 、氢 元素 , 体内 C/N比 增大 , 因此 , 以 C 为基础的酚类 、萜烯 类物质 增多 ;反之 , 在遮 荫条 件下 , 光合 作用降低 , 体内 C/N比降 低 , 酚类 、萜 烯类 物质 减少 。 研究 发现 , 益母草生物碱 含量由 北向南 减少 , 相反 , 青 蒿 、苍术等 药材的挥发油 (萜类 )含 量由北 向南 增多 , 与 我国 光温 条件 由北向南的变化 趋势 有一 定相关 性 [ 21] 。 这 一现象 , 似 乎可 以用 CNB假说来解释 。 3.3 最佳防御 (optimundefense, OD)假说
(中国中医科学院 中药研究所 , 北京 100700)
[ 摘要 ] 文章总结了环境对植物 , 特别是植物次生代谢产物 积累影响 的研究成果 , 并 在介绍环 境胁迫 影响次 生代谢产物积累的 4种假说的基础上 , 分析了环境对道 地药材 形成的 影响 , 指出逆 境可能 更利于中 药道地 性的形 成 , 提出了道地药材形成的逆境效应理论 , 并初步探讨了环境胁迫影响药材道地性研究的思路和方法 。

植物免疫诱抗剂的作用机理和应用研究进展

植物免疫诱抗剂的作用机理和应用研究进展

植物免疫诱抗剂的作用机理和应用研究进展一、概述植物免疫诱抗剂,作为一种新型的生物农药,近年来在农业领域引起了广泛的关注和研究。

其核心概念在于通过激活植物自身的防御机制,提高植物对病虫害的抵抗力,从而实现病害防治的目的。

相较于传统的化学农药,植物免疫诱抗剂具有显著的环境友好性和生物安全性,对人畜无害,不污染环境,因此在现代农业中展现出巨大的应用潜力。

植物免疫诱抗剂的作用机理复杂而精妙,它并不直接杀灭病虫害,而是通过诱导或激活植物产生一系列的免疫反应,使植物对病原物产生抗性或抑制病菌的生长。

这一过程中,植物免疫诱抗剂能够激活植物的防御基因表达,调控激素平衡,诱导抗病蛋白的合成,从而强化植物的免疫防线。

随着研究的深入,植物免疫诱抗剂的应用范围也在不断拓宽。

它不仅可以用于防治农作物的病虫害,提高作物的产量和品质,还可以应用于植物抗逆性的提高,帮助植物抵御逆境条件的挑战。

植物免疫诱抗剂还可以与其他防治措施协同作用,形成综合防治策略,提高防治效果。

尽管植物免疫诱抗剂的研究和应用取得了显著的进展,但仍面临着一些挑战和问题。

其作用机理尚未完全明确,剂量效应和长期影响仍需进一步探究;如何将其与现有的农业生产体系更好地融合,实现其可持续应用,也是未来研究的重要方向。

本文旨在对植物免疫诱抗剂的作用机理和应用研究进展进行综述,以期为相关领域的研究和应用提供参考和借鉴。

我们将从植物免疫诱抗剂的概念与分类、作用机理研究进展、应用效果评估以及未来发展趋势等方面进行详细阐述。

1. 植物免疫诱抗剂的定义与分类《植物免疫诱抗剂的作用机理和应用研究进展》文章段落植物免疫诱抗剂的定义与分类植物免疫诱抗剂,也被称为植物免疫激活剂或植物疫苗,是一类新型的生物农药。

它的核心定义在于能够激发植物产生诱导抗病性反应,从而提升植物对各类病害的抵抗能力。

这类物质通过诱导或激活植物自身的防卫和代谢系统,使植物在面对外界刺激或逆境条件时能够产生免疫反应,从而延迟或减轻病害的发生和发展。

植物次生代谢产物代谢调控的分子机制研究

植物次生代谢产物代谢调控的分子机制研究植物次生代谢产物是指在植物生长发育过程中所产生的非生理活性产物,它们不会直接参与到植物生命活动的主流程中,但却对植物的生存、繁殖、适应环境等方面具有重要的作用。

植物次生代谢产物具有非常广泛的生物学意义和价值,包括药用、香料、化妆品、染料等各个领域,随着生物技术的不断发展,对植物次生代谢产物代谢调控的分子机制的研究也越来越深入。

本文主要介绍目前植物次生代谢产物代谢调控的分子机制研究的进展情况。

一、植物次生代谢产物的类型及其代谢途径植物次生代谢产物主要包括黄酮类、酚酸类、苯丙素类、萜类、生物碱类、鞣质类等多种类型,它们的代谢途径十分复杂。

在过去的几十年中,植物对外界环境的响应机制成为了研究的热点。

例如,植物受到紫外线等辐射的刺激后,会产生一系列的次生代谢产物,这些产物的合成路径也被广泛地研究,其中黄酮类物质的研究得到了较为深入的了解。

二、植物次生代谢产物的调控机制植物次生代谢产物的合成和积累受到多种因素的调控,包括植物发育阶段、生理状态、环境胁迫等多个因素。

目前,植物次生代谢产物的合成和积累机制主要包括转录调控、翻译后修饰及酶催化反应等多个层面。

近年来,不少学者利用遗传学和生物化学方法研究了植物次生代谢产物的调控机制,在此基础上,发现植物次生代谢产物的调控主要通过下列几条途径。

1、转录调控转录调控是指转录因子调控植物次生代谢产物在转录水平上的合成与降解。

当前,有关植物次生代谢产物转录因子的研究比较多,其中最重要的因子有 MYB 系列和 WD40 系列,它们在多个类别的次生代谢产物的途径中发挥着重要的作用。

2、翻译后修饰在植物次生代谢产物的合成过程中,翻译后修饰也是非常重要的因素。

翻译后修饰主要包括蛋白质磷酸化、葡糖苷化、甲基化等多个过程。

通过这些过程,植物能够调节酶活性以及分子水平上的代谢途径。

3、酶促反应植物次生代谢产物的代谢途径包括一系列的酶催化反应。

与次生代谢产物合成相关的酶主要包括酰化酶、酶NADPH氧化还原酶、酯酶、羟基化酶等,不同的酶产生不同的次生代谢产物。

2025年高考生物复习新题速递之植物生命活动的调节(2024年9月)

2025年高考生物复习新题速递之植物生命活动的调节(2024年9月)一.选择题(共18小题)1.研究小组用不同浓度的生长素类似物(NAA)、赤霉素(GA3)分别对某植物种子进行浸种处理,待种子萌发后对苗长和根长进行测定,结果如图所示。

下列说法正确的是()A.生长素和赤霉素的主要合成部位都是幼嫩的芽、叶和种子,根部几乎不合成B.两种激素的不同浓度需要设置3个以上的重复组,对照组不做任何处理C.在本实验中GA3对幼苗苗长和根长的促进作用与浓度呈正相关D.实验不能说明NAA对根长的调控具有“低浓度促进,高浓度抑制”的特点2.为探究植物体内吲哚乙酸(IAA)的运输特点,研究人员用茎的某切段、放射性14C检测仪器、含14C ﹣IAA的琼脂块(供体块)、空白琼脂块(受体块)和抑制剂(可以与运输IAA的载体结合)进行如图所示实验,下列叙述错误的是()A.若AB为茎幼嫩部分切段,琼脂块①和②中出现较强放射性的是①B.若AB为茎成熟部分切段,琼脂块①和②均可能出现较强的放射性C.用抑制剂处理茎幼嫩部分切段,①放射性减少与IAA运输方式有关D.实验操作需要在黑暗中进行,避免因光照影响供体块中IAA的分布3.生长素是一种对植物生长发育有显著影响的植物激素。

下列关于生长素的叙述,正确的是()A.在顶端优势现象中,离顶芽越远的侧芽其发育受到的抑制程度越大B.生长素是由植物体内特定的腺体合成的C.单侧光会刺激燕麦胚芽鞘尖端产生生长素D.某浓度的生长素对同一植物芽和茎的促进生长作用可能相同4.为研究生长素类调节剂萘乙酸(NAA)对玉米种子发芽的影响,课题组用不同浓度的NAA溶液分别浸泡玉米种子一定时间,再在相同且适宜条件下使其萌发,一定时间后测定根和芽的长度,结果如图1所示。

图2为一株玉米幼苗水平放置一段时间后的生长情况。

下列说法正确的是()A.图1可以判断出促进生根的最适浓度为0.3mg•L﹣1B.图1结果表明高浓度的NAA溶液对芽和根的生长都具有抑制作用C.图2中的幼苗根尖产生的生长素极性运输方向从分生区到伸长区D.图2中生长素浓度a大于b,c大于d,故a生长快于b,c生长快于d5.6﹣BA是一种植物生长调节剂。

植物逆境胁迫下的生理生化反应及其调节方法

植物逆境胁迫下的生理生化反应及其调节方法植物在生长过程中,常常会面临着各种各样的逆境胁迫,比如高温、低温、缺水、盐碱等等,这些胁迫会对植物的生长和产量产生非常大的影响。

为了适应这些逆境胁迫,植物会通过一系列的生理和生化反应来进行调节,以保证自身的生长和生存。

一、高温胁迫下的生理生化反应高温胁迫对植物的生长和发育产生了不可忽视的影响。

当环境温度超过植物所能适应的范围时,植物会出现一系列生理和生化反应,以应对高温的挑战。

1.生理反应(1)气孔关闭当植物受到高温胁迫时,会引起气孔关闭,以减少水分蒸腾,防止植物因失水而死亡。

(2)生物节律改变高温胁迫会改变植物的生物节律,导致植物的生长和发育受到影响。

(3)根系生长减缓当植物受到高温胁迫时,根系生长减缓,其原因在于根部细胞活力下降,细胞分裂减少。

2.生化反应(1)ROS处理植物细胞会利用一系列的酶来清除肿瘤,则化物,以防止其引起毒性作用,其中ROS(Reactive Oxygen Species)是最为常见的一种代谢产物。

在高温胁迫下,ROS的产生会增加,因此植物会增强清除ROS的能力。

(2)碳水化合物代谢调节高温胁迫会影响植物的碳水化合物代谢,导致碳代谢通路发生变化。

植物会通过提高蔗糖的含量来调节碳代谢,保障细胞正常的能量供应。

(3)脂质代谢调节高温胁迫会引起植物膜结构的改变,膜的稳定性降低,因此植物会通过调节膜脂质的代谢来适应高温环境。

二、低温胁迫下的生理生化反应低温胁迫对植物的生长和发育同样产生了不可忽视的影响。

当环境温度降低到植物所能适应的极限范围时,植物会出现一系列生理和生化反应,以保障自身的生长和生存。

1.生理反应(1)调节细胞膜稳定性低温胁迫会引起细胞膜的稳定性下降,因此植物会采取一系列的策略来维持细胞膜的稳定性,例如调节膜脂质的组成以及增强细胞膜的质量等。

(2)根系生长促进低温胁迫会促进根系的生长,以增加植物吸收和利用水分和养分的能力。

(3)干物质积累低温胁迫会影响植物的光合作用,因此植物会增加干物质的积累,保障细胞的能量供应。

植物代谢物质

植物代谢物质植物代谢物质00植物次生代谢物质从其生物合成途径可以将次生物质分成酚类、类萜、含氮化合物和其他次生物质4大类。

植物次生代谢物质对害虫有忌避和毒杀作用,引诱害虫在寄主上产卵,使其后代有较好生存环境。

植物次生物质吸引传粉昆虫繁衍后代,同时也吸引某些共生生物。

植物次生代谢物质在昆虫和植物协同进化中具有信号转递功能。

/question/25112865.html植物次生代谢产物可分为苯丙素类、醌类、黄酮类、单宁类、萜类、甾体及其甙、生物碱七大类。

不同的产物有不同的作用。

植物次生代谢产物是植物对环境的一种适应,是在长期进化过程中植物与生物和非生物因素相互作用的结果。

在对环境胁迫的适应、植物与植物之间的相互竞争和协同进化、植物对昆虫的危害、草食性动物的采食及病原微生物的侵袭等过程的防御中起着重要作用。

/question/131129338.html?fr=qrl&cid=202&index=4&fr2=query植物体内有机物的代谢1.植物的初生代谢和次生代谢关于糖类脂类核酸和蛋白质的合成和分解过程,在生物化学课程中已将讨论过,在此不重复。

这里重点讨论它们之间的相互关系。

卡尔文循环、糖酵解、三羧酸循环和戊糖磷酸途径是有机体代谢的主干,它筑起了生命活动的舞台,是各种有机物代谢的基础,这个主干来源于光合作用,形成蔗糖和淀粉;通过呼吸作用,分解糖类,产生各种中间产物,进一步为脂类、核酸和蛋白质的合成提供底物。

糖和脂类是相互转变的,因为甘油可逆转为己糖,而脂肪酸分解为乙酰辅酶A后可再转变为糖。

氨基酸的碳架——α-酮酸主要来源于糖代谢的中间产物,糖与蛋白质之间可以互相转变,丙酮酸、乙酰辅酶A、α-酮戊二酸和草酰乙酸等中间产物在它们之间的转变过程中起着枢纽作用。

核苷酸的核糖来源于戊糖磷酸代谢,碱基则是由氨基酸及其代谢产物组成的。

糖类、脂类、核酸和蛋白质等是初生代谢产物(primary metabolites),植物体中还有许多其他有机物,如萜类、酚类和生物碱等,它们是由糖类等有机物次生代谢衍生出来的物质以,因此成为次生代谢产物(sevondarymetabolites)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 植物次生代谢产物的概念1891年,Kossel明确提出了植物次生代谢(secondary metabolism)的概念。

植物次生代谢产物是指植物体中一大类并非生长发育所必需的小分子有机化合物,其产生和分布通常有种属、器官、组织和生长发育期的特异性。

少数小分子有机物在代谢途径上与次生产物比较相似,但具有明显的生理功能,因而不把它们视为次生代谢产物,如萜类成分赤霉素、脱落酸、均为植物激素,另外如胡萝卜素为光合作用所必需。

随着研究的深入,植物次生代谢的概念有待进一步明确。

2 植物次生代谢物的种类植物次生代谢物种类繁多,结构迥异,人们至今已发现有黄酮类、酚类、香豆素、木质素、生物碱、糖苷、萜类、甾类、皂苷、多炔类、有机酸等。

一般分为酚性化合物、萜类化合物、含氮有机物三大类。

2.1 酚类主要包括黄酮类、简单酚类和醌类等,主要由磷酸烯醇式丙酮酸到分支酸的生物合成途径而来,称莽草酸途径.这也是芳香族化合物的来源。

黄酮类是以苯色酮环为基础具有C6、C3、CH6结构的酚类化合物。

生物前体为苯丙氨酸和马龙基辅酶A(malonyl CoA),据B环的连接位置又分为2-苯基衍生物(黄酮醇、黄酮等),3-苯基衍生物(异黄酮)和4-苯基衍生物(新黄酮)。

根据三碳结构的氧化程度又分为花色苷类、黄酮类、黄酮醇类及黄烷酮等。

黄酮类成分有许多用于心血管疾病的治疗如芦丁。

还有一些是植保素如异黄酮类。

简单酚类是含有一个被羟基取代苯环化合物,分布于植物各种组织、器官中,有些参与调节植物生长的作用,有些是植保素或与植物异株相克有关。

醌类是由苯式多环烃碳氢化合物(如萘、蒽等)衍生的芳香二氧化合物,根据其环系统可分为苯醌、萘醌和蒽醌。

醌类是植物主要呈色剂之一。

有些醌类是抗菌、抗癌的重要成分如胡桃醌和紫草宁。

2.2 萜类萜类是由异戊二烯单元组成的化合物,通过异戊二烯途径(又称甲羟戊酸途径)合成。

现在已研究发现,在植物细胞器质体中存在着第二条途径——丙酮酸/磷酸甘油醛途径,胡罗卜素、单萜和二萜通过该途径合成。

两条途径差异就是异戊烯基焦磷酸(IPP)形成机制不一样。

甲羟戊酸途径IPP前体为甲羟戊酸,而丙酮酸/磷酸甘油醛途径的前体是在转酮酶的作用下,由丙酮酸和3-磷酸甘油醛缩合而成的5-磷酸木酮糖,丙酮酸提供2-C骨架,而3-磷酸甘油醛则提供3-C 骨架。

根据萜类分子结构通常分为低等萜类和高等萜类,现已知萜类己超过2万种。

2.3 含氮化合物大多数含氮化合物是从普通氨基酸合成的,主要有生物碱、胺类、非蛋白氨基酸、生氰苷和芥子油苷,多具有防御作用。

生物碱是一类含氮的天然产物,多为药用植物主要有效成分,有些是植保素。

现已深入研究的有烟草的烟碱、吡咯啶生物碱、毒藜碱、毛莨科的小檗碱,曼陀罗的莨菪碱、东莨菪碱等。

胺类是NH3中的氢的不同取代物。

通常由氨基酸脱羧或醛转氨而产生,在植物中分布广泛,常存在于花部,具臭味。

有些胺类与植物的生长发育有关,如离体条件下多巴胺能促进石斛提前开花。

非蛋白氨基酸是不组成植物蛋白的氨基酸,常有毒,多存在于豆科。

因与蛋白氨基酸相似,易被错误掺入蛋白质,多为代谢拮抗物。

生氰苷是一类由脱羟氨基酸形成的O-糖苷,氰苷来自于2-C和氨基。

生氰苷是植物生氰过程中产生HCN的前体。

生氰苷与植物趋避捕食有关。

芥子油苷主要存在于芸薹属植物,其经硫葡糖苷酶(thioglucosidase)水解,生成糖苷配基(aglycone),然后自发分解为异硫氰苷(isothiocyanate)和腈(nitrile)。

这些产物对草食动物有毒。

但植物未受伤害之前芥子油苷和硫葡糖苷酶是分隔开的。

2.4 多炔类、有机酸类等多炔类主要分布于菊科、伞形科植物。

有机酸分布广泛。

研究表明有些有机酸如水杨酸、茉莉酸在植物信号传导中起重要作用。

3 植物次生产物对环境胁迫的防御作用植物生长环境中的温度、水分、光照、大气、盐分、养分等都会对植物的生长产生各种各样的影响甚至胁迫。

为了提高植物对生态环境的适应性,植物一方面可在形态结构上发生变化,另一方面可以在生理生化上发生变化,而一些次生物质则成为后一种适应的物质基础。

在植物耐旱、抗寒和耐盐性研究中都发现次生代谢产物都在其中发挥重要作用。

3.1 温度温度是调节植物代谢水平的主要环境因子,对植物的次生代谢也有很大影响。

有研究表明,黄豆在低温下培养24 h,根部总酚酸、染料木黄酮(genistein)、大豆黄素(daidzein)和染料木苷(genistin)的代谢水平显著增高。

低温条件下,在栀子、苹果、山梨、石榴中发现有与抗低温有关的多元醇如甘油、山梨醇、甘露醇等的积累。

冷平等(2001年)研究认为,在低温锻炼后,植物体内强还原性酚类物质花青素苷的含量显著增加,可以明显提高苹果、桃、及柿树的抗寒性。

Dudt JF等(1994年)通过研究认为,低温胁迫条件可能造成活性氧在树体内积累,而黄酮类物质上的羟基具有强的供电子能力,能以单电子转移的方式清除超氧负离子或其他自由基。

清除或控制由低温胁迫所产生的生物自由基可能是酚类物质保护植物机体免受损伤的重要机理之一。

闫杰研究也证明:水杨酸2.0 mmol/L浸种处理能显著缓解高温胁迫对幼苗造成的伤害,提高黄瓜幼苗的耐热性;水杨酸在黄瓜幼苗4叶1心期进行叶面喷施处理,高温胁迫条件下,水杨酸0.1 mmol/L显著提高幼苗的耐热性。

表明水杨酸可以提高黄瓜幼苗的耐热性及耐旱性,使其保护酶活性提高,增加Pro 含量,减少MDA积累对膜造成的伤害。

3.2 水分在干旱胁迫下,植物组织中次生代谢产物的浓度常常上升,包括氰甙、其他硫化物、萜类化合物、生物碱、单宁和有机酸等。

在受到中度干旱胁迫的针叶树中,低分子量萜类化合物的浓度升高,同时树脂酸和单萜的组成发生变化,而橡胶受到严重干旱胁迫后橡胶浆汁的流速和产量均下降。

干旱胁迫导致喜树(Cam ptotheca acum ina ta)叶片中喜树碱的含量增加,高山红景天(R hod iola sacha linensis)根中的红景天苷含量也因土壤含水量而变化,轻度的水分胁迫则有利于乌拉尔甘草(Glycyrrhiza uralensis)中甘草酸的积累。

渗透胁迫下多种植物在体内积累渗透调节物质甜菜碱,有研究报告甜菜碱醛脱氢酶的基因表达量与甜菜碱含量平行增加。

闫杰的研究证明,在干旱胁迫下,水杨酸2.0 mmol/L 浸种处理能提高黄瓜幼苗的耐旱性;水杨酸在黄瓜幼苗4叶1心期进行叶面喷施处理,水杨酸0.1 mmol/L能显著缓解干旱胁迫对幼苗造成的伤害。

这些都与次生代谢产物在平衡无机阳离子、维持膜的稳定性和清除自由基等作用有重要关系。

对某些耐旱植物的研究,发现其脱落酸和脯氨酸含量较高。

小麦在发生萎蔫的4 h内,脱落酸含量即增加达40倍;在大麦的不同抗旱性品系中,抗性的强弱与其体内脯氨酸含量高低间具很高的相关性。

脱落酸能促使气孔关闭,而气孔开放时间的缩短或使其只在晚间开放是植物提高保水力从而增强抗旱能力的途径之一。

实验证明,在叶片施用脱落酸(浓度为0.02 μg/cm2)能有效地使气孔关闭,几天内就足以减少50%以上的水分消耗。

脯氨酸含量提高的意义尚不清楚,但其含量高低与抗旱性强弱之间的这种相关性,至少说明它与抗旱性有关。

3.3 光照光强、光质和日照长短都对植物次生代谢有影响。

林中植物上部阳生叶中酚类物质含量要比下部阴生叶中多,非洲热带雨林植物中的酚含量与光照强度正相关。

温室中的烟草补加紫外光照射时绿原酸含量增加到对照的5倍,受红光照射时则产生较多的生物碱、较少的酚。

大棚中生长的欧洲赤松(Pinus sylvestris)由于光照强度低于棚外,树脂油和单萜类物质含量也较低。

遮荫导致高山红景天根中的红景天苷含量降低,但却增加了喜树叶片中的喜树碱含量。

红光成分增加提高高山红景天根中的红景天苷含量,而蓝光成分增加则提高喜树叶片中的喜树碱含量。

Saleem研究认为,不同光照条件下植物次生代谢产物含量的变化是一种生物学适应性响应。

3.4 营养条件许多盐生植物体内有甜菜碱和脯氨酸的大量积累。

实验表明,淡土植物和盐生植物由非盐条件逐步转移至高盐分环境中都能诱导脯氨酸生成量的逐步增加。

测定一系列对盐分具不同敏感性的植物中甜菜碱浓度的结果表明,增加盐分能引起甜菜碱的增加并伴随脯氨酸水平的提高。

也有一些植物中,累积的则是山梨醇、右旋肌醇甲醚等。

盐生植物累积的这些化合物都易溶于水。

因而研究人员认为,盐水植物通过在细胞内积累这些无毒溶质可以平衡由于液泡内无机离子(如Na+等)积累所造成的细胞质渗透压的变化,从而对细胞起保护作用。

Hattenschwiler等发现植物体内的多酚浓度随土壤肥力下降而增加;Yu等等通过测定生长在酸性贫瘠土壤上的植物体内多酚,揭示了多酚具有减少养分流失、除去铝毒害、提高磷的有效性和调节氮循环等作用。

3.5 二氧化碳的浓度大气中C02的浓度一直在增加,这种变化不仅作用于植物的初生代谢,也影响次生代谢。

一些研究工作观察到,伴随着大气中C02浓度的升高,落叶树叶片中单宁的浓度升高,盐生车前(Plantago maritima)叶片中咖啡酸含量和根部的香豆素(verbascoside)含量也增加。

C02浓度倍增条件下,垂枝桦(Betula pendula)幼苗的类黄酮、原花青素(proanthocyanidins)的浓度和欧洲赤松体内α-蒎烯的浓度均提高。

人参(Panax ginseng)根部在高浓度的C02下增加了总酚酸和类黄酮的含量,而这个过程与葡萄糖、6-磷酸脱氢酶、莽草酸脱氢酶、苯丙氨酸解氨酶、肉桂醇脱氢酶、咖啡酸过氧化物酶和绿原酸过氧化物酶的活性增强密切相关。

3.6 UV-B辐射中波紫外辐射(LW-B,280~320 nm)对植物的影响是近年来的研究热点,大量研究表明,UV-B辐射增强对植物最一致的影响是诱导植物叶片中的紫外吸收物质(主要是酚类化合物如类黄酮、黄酮醇、花色素苷以及烯萜类化合物如类胡萝卜素、树脂等,其中类黄酮最主要),并且也观察到在UV-B辐射下类黄酮合成途径的苯丙氨酸解氨酶和查尔酮合成酶以及其它分支点酶的酶量增加或活性加强。

UV-B辐射诱导紫外吸收物质含量增加的现象出现在不同类型的植物中,如欧洲云杉(Piceaabies)、垂枝桦、水稻(oryza sariva)、拟南芥(Arabidopsis thaliana)等。

类黄酮等次生代谢产物在植物体内可起紫外“吸收屏障(UV-filter)”的作用,从而增强植物抗紫外辐射的能力。

3.7 环境污染一些研究表明,环境污染可导致植物次生代谢产物的组成和含量发生变化,如酚类等化合物对各种形式的污染物均有反应。

在重金属及SO2污染下,受污染程度最重的垂枝桦(B.pubescens)中低分子量酚的含量最高,总酚含量(单个酚化合物总和)比对照区的高20%。

相关文档
最新文档