5.3圆周角学案图配套

合集下载

圆周角学案(无答案)(新版)新人教版

圆周角学案(无答案)(新版)新人教版

精品“正版”资料系列,由本公司独创。

旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。

本资源创作于2020年8月,是当前最新版本的教材资源。

包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。

圆周角O CB A D E O A BC O AB C E D C OB A 课题:24.1.4.圆周角 序号:学习目标:1、知识与技能(1) 了解圆周角与圆心角的关系(2) 掌握圆周角的性质和直径所对圆周角的性质(3) 能运用圆周角的性质解决问题2、过程与方法:在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想,转化的数学思想解决问题3、情感.态度与价值观:引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

学习重点:圆周角与圆心角的关系,圆周角的性质和直径所对的圆周角的特征学习难点:发现并证明圆周角定理导学过程课前预习:阅读课本P84---86的有关内容,完成《导学》教材导读中的问题及自主测评。

.二、课堂导学:1.情境导入.阅读《导学案》87页的问题导学2. 出示任务 , 自主学习阅读84-86页内容解决下列问题问题1、如图1,在⊙O 中,∠B,∠D,∠E 的大小有什么关系?为什么?问题2、如图2,AB 是⊙O 的直径,C 是⊙O 上任一点,你能确定∠ACB 的度数吗?问题3、如图3,圆周角∠B C A=90º,弦AB 经过圆心O 吗?为什么?圆周角定理的推论1:同圆或等圆中, 所对的圆周角相等;同圆或等圆中, 所对的弧也相等。

圆周角定理的推论2:半圆(或直径)所对的圆周角是 ;所对的弦是直径。

3.合作探究《导学》难点探究和展题设计 三、展示 与反馈检查预习情况,解决学生疑惑 四、课堂小结1. 圆周角定理:2.圆周角定理的推论1:同圆或等圆中, 所对的圆周角相等;同圆或等圆中, 所对的弧也相等。

2022人教版数学《圆周角》配套教案(精选)

2022人教版数学《圆周角》配套教案(精选)

24.1.4 圆周角1.掌握圆周角定理及其推论并能应用其进行简单的计算与证明.2.掌握圆内接多边形的有关概念及性质.3.在探索过程中,体会观察、猜想的思维方法,在定理的证明过程中,体会化归和分类讨论的数学思想和归纳的方法.一、情境导入你喜欢看足球比赛吗?你踢过足球吗?第十九届世界杯决赛于2014年在巴西举行,共有来自世界各地的32支球队参加赛事,共进行64场比赛决定冠军队伍.比赛中如图所示,甲队员在圆心O处,乙队员在圆上C处,丙队员带球突破防守到圆上C处,依然把球传给了甲,你知道为什么吗?你能用数学知识解释一下吗?二、合作探究探究点一:圆周角定理如图,AB是⊙O的直径,C,D为圆上两点,∠AOC=130°,则∠D等于( )A.25°B.30°C.35°D.50°解析:本题考查同弧所对圆周角与圆心角的关系.∵∠AOC=130°,∠AOB=180°,∴∠BOC=50°,∴∠D=25°.故选A.探究点二:圆周角定理的推论【类型一】利用圆周角定理的推论求角如图,在⊙O 中,AB ︵=AC ︵,∠A =30°,则∠B =( ) A .150° B .75° C .60° D .15°解析:因为AB ︵=AC ︵,根据“同弧或等弧所对的圆周角相等”得到∠B =∠C ,因为∠A +∠B +∠C =180°,所以∠A +2∠B =180°,又因为∠A =30°,所以30°+2∠B =180°,解得∠B =75°,故选B.方法总结:解题的关键是掌握在同圆或等圆中,相等的两条弧所对的圆周角也相等.注意方程思想的应用.如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为( ) A .30° B.45° C .60° D .75°解析:由BD 是直径得∠BCD =90°.∵∠CBD =30°,∴∠BDC =60°.∵∠A 与∠BDC 是同弧所对的圆周角,∴∠A =∠BDC =60°.故选C.【类型二】利用圆周角定理的推论求线段长如图所示,点C 在以AB 为直径的⊙O 上,AB =10cm ,∠A =30°,则BC 的长为________.解析:由AB 为⊙O 的直径得∠ACB =90°.在Rt △ABC 中,因为∠A =30°,所以BC =12AB=12×10=5cm.【类型三】利用圆周角定理的推论进行有关证明如图所示,已知△ABC 的顶点在⊙O 上,AD 是△ABC 的高,AE 是⊙O 的直径,求证:∠BAE =∠CAD .解析:连接BE 构造Rt △ABE ,由AD 是△ABC 的高得Rt △ACD ,要证∠BAE =∠CAD ,只要证出它们的余角∠E 与∠C 相等,而∠E 与∠C 是同弧AB 所对的圆周角.证明:连接BE ,∵AE 是⊙O 的直径,∴∠ABE =90°,∴∠BAE +∠E =90°.∵AD 是△ABC 的高,∴∠ADC =90°,∴∠CAD +∠C =90°.∵AB ︵=AB ︵,∴∠E =∠C ,∵∠BAE +∠E =90°,∠CAD +∠C =90°,∴∠BAE =∠CAD .方法总结:涉及直径时,通常是利用“直径所对的圆周角是直角”来构造直角三角形,并借助直角三角形的性质来解决问题.探究点三:圆的内接四边形及性质【类型一】利用圆的内接四边形的性质进行计算如图,点A ,B ,C ,D 在⊙O 上,点O 在∠D 的内部,四边形OABC 为平行四边形,则∠OAD +∠OCD =________度.解析:∵四边形ABCD 是圆内接四边形,∴∠B +∠ADC =180°.∵四边形OABC 为平行四边形,∴∠AOC =∠B .又由题意可知∠AOC =2∠ADC .∴∠ADC =180°÷3=60°.连接OD ,可得AO =OD ,CO =OD .∴∠OAD =∠ODA ,∠OCD =∠ODC .∴∠OAD +∠OCD =∠ODA +∠ODC =∠D =60°.【类型二】利用圆的内接四边形的性质进行证明如图,已知A ,B ,C ,D 是⊙O 上的四点,延长DC ,AB 相交于点E .若BC =BE .求证:△ADE 是等腰三角形.解析:由已知易得∠E=∠BCE,由同角的补角相等,得∠A=∠BCE,则∠E=∠A.证明:∵BC=BE,∴∠E=∠BCE.∵四边形ABCD是圆内接四边形,∴∠A+∠DCB=180°.∵∠BCE+∠DCB=180°,∴∠A=∠BCE.∴∠A=∠E.∴AD=DE.∴△ADE是等腰三角形.方法总结:圆内接四边形对角互补.三、板书设计教学过程中,强调圆周角定理得出的理论依据,使学生熟练掌握并会学以致用.在圆中,利用圆周定理及其推论求相关的角度时,注意辅助线的添加及多种可能情况的考虑.第1课时单项式与单项式、多项式相乘一、新课导入1.导入课题:有一块长方形的大型画布,它的长为5×103cm,宽为3×102cm,你能计算出它的面积吗?画布的面积是(5×103)×(3×102)cm2,你能计算出它的结果是多少吗?2.学习目标:(1)能叙述出单项式乘以单项式,单项式乘以多项式的运算法则.(2)灵活地运用法则进行计算和化简.3.学习重、难点:重点:单项式乘单项式及单项式乘以多项式的运算法则及应用.难点:单项式乘单项式及单项式乘以多项式的运算法则的应用.二、分层学习1.自学指导:(1)自学内容:探究单项式乘以单项式的运算法则.(2)自学时间:5分钟.(3)自学方法:采用“计算、观察、比较、归纳”的学习方法获取结论.(4)自学参考提纲:①怎样计算(5×103)×(3×102)?计算过程中用到哪些运算律及运算性质?(5×103)×(3×102)=5×3×103×102运用了乘法交换律.=(5×3)×(103×102)运用了乘法结合律.=15×105=1.5×106.运用了乘法的运算.②如果将上式中不是指数的数字改为字母,能得到怎样的算式,写出试试看.计算ac5·bc2=ab·c7; 3a2b·2ab3=6a3b4.③通过刚才的尝试,能归纳出单项式与单项式相乘的运算法则吗?④完成教材第99页“练习”第2题.2.自学:学生结合自学参考提纲进行自主探究.3.助学:(1)师助生:①明了学情:抽查不同层次的学生,了解学生完成探究的过程和结果是否正确.②差异指导:引导学困生复习回顾幂的乘方、同底数幂的乘法,积的乘方法则及运算律.(2)生助生:学生之间相互交流帮助解决疑难问题.4.强化:(1)单项式与单项式相乘的法则.(2)计算:(1)2c5·5c2;(2)(-5a2b3)·(-4b2c).解:(1)10c7;(2)20a2b5c1.自学指导:(1)自学内容:教材第98页例4.(2)自学时间:5分钟.(3)自学方法:认真观察例4解题的过程,注意符号变化和运算顺序.(4)自学参考提纲:①请你回忆同底数幂的乘法、幂的乘方、积的乘方的法则.②计算(2x)3·(-5xy2)时,先算(2x)3,再与(-5xy2)相乘.为什么?因为有理数的混合运算法则为:①先算乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号按小括号、中括号、大括号依次进行.③计算:3x2·5x3=15x5;2ab·5ab2·3a2b=30a4b4;4y·(-2xy2)=-8xy3;(a3b)2·(a2b)3=a12b5.2.自学:结合自学指导,研读课本例题.3.助学:(1)师助生:①明了学情:抽查不同层次学生的计算情况,了解存在的主要问题.②差异指导:对理解运算顺序的确定有困难的学生进行指导.(2)生助生:学生之间相互交流帮助.交流与总结:①运算顺序;②运算符号.1.自学指导:(1)自学内容教材第99页到教材第100页例5上面.(2)自学时间:5分钟.(3)自学方法:认真看书,重要的内容打上记号,有疑问的地方做上记号.(4)自学参考提纲:①等式p(a+b+c)=pa+pb+pc,是根据矩形的面积关系得出来的,你能根据分配律得到这个等式吗?②等式p(a+b+c)=pa+pb+pc提供了单项式与多项式相乘的方法,你是如何理解的?③单项式乘以多项式应用了乘法的什么运算律?乘法分配律.④试标出单项式乘以多项式的运算法则中的关键字词.⑤试一试:-2x(x+y)=-2x2-2xy;3ab(a+b)=3a2b+3ab2;-(m-n+2)=-m+n-2.2.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师采取交谈、抽查方式了解自学进度及存在的问题.②差异指导:强调法则要点:“乘多项式的每一项”,“把所得的积相加”,并注意符号法则.(2)生助生:生生互相交流帮助解决疑难.(1)运算法则:①文字表达:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.②式子表达:p(a+b+c)=pa+pb+pc.(2)单项式乘以多项式中的每一项,不要漏掉任何一项,并要注意符号的确定,合并同类项之前的项数与多项式的项数相同.(3)计算:(-2a2)·(3ab2-5ab3).=-6a3b2+10a3b31.自学指导:(1)自学内容:教材第100页例5.(2)自学时间:5分钟.(3)自学方法:认真观察例5的计算过程的依据,要注意去括号后的符号变化.(4)自学参考提纲:①标出例5题目中的单项式和多项式.②通过例5尝试归纳单项式乘多项式的计算步骤.③单项式乘以多项式的运算法则,就是把单项式乘以多项式的问题转化为单项式乘以单项式的问题.④思考:结合例5,你能说说当式子中含有负号时的简化方法吗?2.自学:结合自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:了解学生是否领会单项式乘多项式的方法和依据.②差异指导:重点对第(1)、(2)小题符号问题进行指导.(2)生助生:学生之间互助交流解决疑难.4.强化:(1)将单项式乘以多项式转化为单项式乘以单项式的乘法,将新知识转化为已学过的知识.(2)计算:①(-2a)·(2a+1) ②2x2(3x2-5y) ③3a(5a-2b)=-4a2-2a =6x4-10x2y =15a2-6ab(3)根据提示填空:计算:(12ab2-13a2b-6ab)·(-6ab)方法一:原式=12ab2·(-6ab)+(-13a2b)·(-6ab)+(-6ab)·(-6ab)=-3a2b3+2a3b2+36a2b2方法二:原式=12ab2·(-6ab)-13a2b·(-6ab)-6ab·(-6ab).=-3a2b3+2a3b2+36a2b2三、评价1.学生的自我评价:各小组组长汇报本组的学习情况,总结经验、收获和不足.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法、收效及不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学应由学生根据已有知识(如乘法分配律法则等)自主推导出单项式与单项式、单项式与多项式相乘的法则,充分体现学生课堂上的主体作用,再结合具体问题的解答,由学生间互相交流,体会法则计算的本质,以便灵活应用于解题之中.一、基础巩固(第1题25分,第2题20分,第3题15分,共60分)1.细心填一填.(1)(-2a2b3)(-3ab)=6a3b4;(2)(4×105)·(5×104)=2×1010;(3)(-2ab2)2·(-a2b)3=-4a8b7;(4)(x2-2y)·(-xy)=-x3y+2xy2;(5)(-a2)·(ab+abc)=-a3b-a3bc.2.认真选一选.(1)化简x(2x-1)-x2(2-x)的结果是(B)A.-x3-x 3-x C.-x2-1 3-1(2)化简a(b-c)-b(c-a)+c(a-b)的结果是(B)A.2ab+2bc+2acB.2ab-2bc D.-2bc(3)如图是L形钢条截面,它的面积为(B)A.ac+bcB.ac+(b-c)cC.(a-c)c+(b-c)cD.a+b+2c+(a-c)+(b-c)(4)下列各式中计算错误的是(C)A.2x·(2x3+3x-1)=4x4+6x2-2xB.b(b2-b+1)=b3-b2+bC.-12x(2x2-2)=-x3-xD.23x(32x3-3x+1)=x4-2x2+23x3.计算:(3x2+12y-23y2)·(-12xy)3解:原式=(3x2+12y-23y2)·(-18x3y3)=-38x5y3-116x3y4+112x3y5.二、综合应用(每题10分,共20分)4.某地有一块梯形实验田,它的上底为m (m),下底为n (m),高是h (m).(1)用m、n、h表示这块梯形的面积S;(2)当m=8m,n=14m,h=7m时,求S.解:(1)S=12(m+n)h(2)S=12×(8+14)×7=77(m2)5.某商家为了给新产品做宣传,向全社会征集广告用语及商标图案,结果下图商标中标,求此商标图案阴影部分的面积.解:S阴影=14πa2+2a·a-12·3a·a=1 4πa2+12a2三、拓展延伸(每题10分,共20分)6.已知:单项式M、N满足2x(M+3x)=6x2y2+N,求M、N. 解:2x(M+3x)=6x2y2+N,2x·M+6x2=6x2y2+N∴N=6x22x·M=6x2y2M=3xy27.若(a m+1b n+2)·(a2n-1b2m)=a5b3,求m+n的值.解:(a m+1b n+2)(a2n-1b2m)=a5b3a m+2n b2m+n+2=a5b3m+2n=52m+n=3-2∴3m+3n=6∴m+n=2.。

《圆周角》 导学案

《圆周角》 导学案

《圆周角》导学案一、学习目标1、理解圆周角的概念,掌握圆周角的两个特征。

2、经历探索圆周角定理的过程,理解并掌握圆周角定理及其推论。

3、能用圆周角定理及其推论解决简单的几何问题,培养逻辑推理能力和数学应用意识。

二、学习重点1、圆周角的概念和圆周角定理。

2、圆周角定理的推论及其应用。

三、学习难点1、圆周角定理的证明。

2、圆周角定理推论的灵活应用。

四、知识链接1、圆心角的定义:顶点在圆心的角叫做圆心角。

2、圆心角的度数等于它所对弧的度数。

五、学习过程(一)自主学习1、阅读教材,理解圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角。

2、观察下面的角,判断哪些是圆周角,哪些不是,并说明理由。

(二)合作探究1、画一画在同圆或等圆中,画出同弧所对的圆心角和圆周角,你能画出多少个?2、量一量用量角器测量所画的圆心角和圆周角的度数,你发现了什么?3、猜一猜同弧所对的圆周角和圆心角之间有什么数量关系?4、证一证(1)分情况讨论:当圆心在圆周角的一边上时,如何证明圆周角定理?当圆心在圆周角的内部时,如何证明圆周角定理?当圆心在圆周角的外部时,如何证明圆周角定理?(2)证明圆周角定理:同弧所对的圆周角等于它所对的圆心角的一半。

(三)圆周角定理的推论1、思考:在同圆或等圆中,如果两个圆周角相等,它们所对的弧相等吗?为什么?2、推论 1:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等。

3、思考:半圆(或直径)所对的圆周角是多少度?为什么?4、推论 2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

(四)例题讲解例 1:如图,AB 是⊙O 的直径,∠C = 30°,求∠ABD 的度数。

例 2:如图,⊙O 中,弦 AB 与 CD 相交于点 E,∠A = 40°,∠B = 30°,求∠APC 的度数。

(五)课堂练习1、如图,在⊙O 中,∠BOC = 50°,求∠A 的度数。

《圆周角》精品 课件

《圆周角》精品 课件

又∵AD⊥BC
∴∠ACD=900—∠ DAC.
∴∠ ABE=∠ BAE.
∴AE=BE
梦想的力量 当我充满自信地,朝着梦想的方向迈进
并且毫不畏惧地,过着我理想中的生活 成功,会在不期然间忽然降临!
小学生读书心得(一): 书,是人类进步的阶梯。书,能够温暖 千万心 灵,改 变千万 人生。 我喜欢 看书, 从书中 吸取养 分,来 丰富我 的知识 ,提升 我的智 慧,磨 练我的 意志。 这是一本让亿万人获得幸福的心灵密码 丛书, 也是让 我爱不 释手的 书。它 透过一 个一个 看似微 不足道 但又充 满哲理 的小故 事,给 予我们 启迪和 感悟。 有一篇名为做人生的强者的小故事,讲 述的是 威尔玛 。鲁道 夫年幼 时身患 重病, 双腿落 下残疾 。但她 自强不 息,坚 持锻炼 ,最终 创造了2 00米的 世界纪 录。这 个故事 深深地 感动了 我,让 我懂得 了不要 被不可 能所吓 倒,只 要用心 ,只要 努力, 就会成 功,人 生就会 更多彩 。 还有一篇题为脚踏实地是最好的选取的 文章, 说的是 任小萍 在不断 调动的 工作岗 位上, 干一行 爱一行 ,在平 凡的岗 位上干 出了不 平凡的 成就。 读着文 章,我 记下了 这样一 句话:一 个人在 无法选 取工作 时,至 少他永 远有一 样能够 选取:就 是好好 干还是 得过且 过。这 样的选 取就决 定了 将来的 被选取 。虽然 语言很 朴素, 但却饱 含哲理 ,让我 很受教 育。 像这样的小故事小文章在这本书里还有 许许多 多。我 一口气 地读着 ,体会 着,最 后明白 了这本 书被奉 为经典 ,畅销 全球20 年而不 衰的奥 秘所在 ,正像 它的名 字《心 灵鸡汤 》一样 ,让人 生在故 事里开 悟,心 灵于沉 思中升 华,在 字里行 间滋养 着我的 心田, 温暖着 世界!

《圆周角》精品 课件

《圆周角》精品 课件


五、秒回的人应该很温柔吧,因为一直 在等喜 欢的人 ,也舍 不得让 喜欢的 人等。

六、多想和你有一个长久的未来,陪你 走完这 一生。 让所有 人祝福 我们, 彼此温 暖,互 不辜负 。

七、最让人羡慕的,不是被很多人追, 而是遇 见一个 不管怎 样,都 不会放 弃你的 人;纵 然知道 活不会 这么轻 易,但 我希望 你在我 的未来 里,余 生都是 你。

八、总要允许有人错过你,才能赶上最 好的相 遇。总 有人真 诚地爱 着你, 相爱, 从来都 不是一 个人的 事,先 经营好 自己, 最好的 爱情是 你刚好 成熟我 刚好温 柔。

九、没有人不想和你同坐一辆豪华轿车 ,但你 需要的 ,却是 轿车坏 了还会 和你一 起搭巴 士的人 。

十、我喜欢你的意思就是:从现在起, 你已经 具备伤 害我的 能力, 以及不 好意思 我看谁 都像情 敌。

十二、世上最好的缘,便是有个聊得来 的伴, 永远不 嫌你的 话多, 不厌其 烦且久 处不厌 ,永远 会陪在 身边, 念你冷 暖,且 懂你悲 欢。

十三、你相信吗,未来要和你共度一生 的那个 人,其 实在与 你相同 的时间 里,也 忍受着 同样的 独。那 个人一 定也怀 着满心 的期待 ,拥着 一腔孤 勇,穿 过茫茫 人海, 也要来 与你相 见。
毕业八年的她被迫重返人才市场,但 彼时的 她与毕 业时相 比毫无 长进, 面试屡 屡碰壁 。
李尚龙曾说:环境影响下,公司面临 改革, 需要裁 员,高 学历出 身的她 赫然在 列。环 境影响 下,公 司面临 改革, 需要裁 员,高 学历出 身的她 赫然在 列。
彼时才发现,面临初出茅庐的年轻人 ,自己 的体力 和脑力 都已经 拼不过 ,几年 来累积 下来的 阅历和 经验没 有转化 成核心 竞争力 。

《圆周角》 导学案

《圆周角》 导学案

《圆周角》导学案一、学习目标1、理解圆周角的概念,掌握圆周角的两个特征。

2、经历探索圆周角与圆心角的关系的过程,掌握圆周角定理及其推论。

3、能用圆周角定理及其推论解决相关的几何问题。

二、学习重点圆周角定理及其推论的应用。

三、学习难点圆周角定理的证明及推论的理解。

四、知识回顾1、圆心角的定义:顶点在圆心的角叫圆心角。

2、圆心角的度数等于它所对弧的度数。

五、新课导入在圆中,除了圆心角,还有一种与圆有关的角——圆周角。

那什么是圆周角呢?我们来看下面的例子。

如图,点 A、B、C 在圆 O 上,连接 OA、OB,∠AOB 是圆心角。

连接 AB,∠ACB 就是圆周角。

六、圆周角的概念顶点在圆上,并且两边都与圆相交的角叫做圆周角。

判断下列各图中的角是否是圆周角,并说明理由。

(图略)强调圆周角的两个特征:1、顶点在圆上。

2、两边都与圆相交。

七、探索圆周角与圆心角的关系在同一个圆中,一条弧所对的圆周角和圆心角有怎样的数量关系呢?我们先来探究同弧所对的圆周角和圆心角的关系。

如图,在圆 O 中,弧 AB 所对的圆心角是∠AOB,圆周角是∠ACB。

测量∠AOB 和∠ACB 的度数,你有什么发现?我们可以发现:∠AOB = 2∠ACB接下来我们通过证明来验证这个结论。

证明:连接 OC。

因为 OA = OC,所以∠A =∠ACO。

同理,OB = OC,所以∠B =∠BCO。

所以∠AOB =∠A +∠B = 2∠ACB圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半。

思考:在同圆或等圆中,相等的弧所对的圆周角和圆心角有什么关系?因为相等的弧所对的圆心角相等,根据圆周角定理,它们所对的圆周角也相等。

八、圆周角定理的推论1、同弧或等弧所对的圆周角相等。

2、半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

证明推论 2:因为半圆所对的圆心角是 180°,根据圆周角定理,半圆所对的圆周角是 90°。

《圆周角》 导学案

《圆周角》导学案一、学习目标1、理解圆周角的概念,掌握圆周角的两个特征。

2、经历探索圆周角定理的过程,理解并掌握圆周角定理及其推论。

3、会运用圆周角定理及其推论解决相关的几何问题。

二、学习重难点1、重点(1)圆周角的概念和圆周角定理。

(2)圆周角定理的推论及其应用。

2、难点(1)圆周角定理的证明。

(2)圆周角定理推论的灵活应用。

三、知识回顾1、圆心角的定义:顶点在圆心的角叫做圆心角。

2、圆心角的度数与它所对弧的度数的关系:圆心角的度数等于它所对弧的度数。

四、新课导入观察下列图形,思考问题:在圆中,顶点在圆上,并且两边都与圆相交的角叫做圆周角。

请同学们观察下面几个角,判断哪些是圆周角,哪些不是,并说明理由。

(展示几个角的图形)五、探索圆周角定理1、画一画在同圆或等圆中,画出同弧所对的圆心角和圆周角。

2、量一量测量所画的圆心角和圆周角的度数,你能发现什么关系?3、猜一猜猜想同弧所对的圆周角和圆心角的关系。

4、证一证证明你的猜想。

(给出证明过程)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

六、圆周角定理的推论1、半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

证明:(给出证明过程)2、在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等。

证明:(给出证明过程)七、例题讲解例 1:如图,AB 是⊙O 的直径,C、D 是圆上两点,若∠ABD =40°,求∠BCD 的度数。

(给出详细的解题过程)例 2:如图,⊙O 中,弦 AB 与 CD 相交于点 E,且∠A = 40°,∠AED = 75°,求∠B 的度数。

(给出详细的解题过程)例 3:如图,⊙O 的直径 AB 为 10cm,弦 AC 为 6cm,∠ACB 的平分线交⊙O 于点 D,求 BC、AD、BD 的长。

(给出详细的解题过程)八、课堂练习1、如图,⊙O 中,∠AOB = 100°,则∠ACB =______。

《圆周角》课件精品 (公开课)2022年数学PPT


2.已知△ABC的三个顶点在⊙O上,∠BAC=50°, ∠ABC=47°, 则∠AOB= 166°.
C
O
A
B
3.如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD于 点E,若∠AOD=60°,则∠DBC的度数为(A ) A.30° B.40° C.50° D.60°
【规律方法】解决圆周角和圆心角的计算和证明问题,要准 确找出同弧所对的圆周角和圆心角,然后再灵活运用圆周角 定理.
解:当船位于安全区域时, 即船位于暗礁区域外(即 ⊙O外) ,与两个灯塔的夹 角∠α小于“危险角”.
拓展提升:如图,在△ABC中,AB=AC,
以AB为直径的圆交BC于D,交AC于E,
(1)BD与CD的大小有什么关系?为什么?
A
(2)求证:BD DE .
解:BD=CD.理由是:连接AD,
∵AB是圆的直径,点D在圆上,
解:设∠A,∠B,∠C的度数分别对于2x,3x,6x, ∵四边形ABCD内接于圆, ∴ ∠A+ ∠C=∠B+∠D=180°, ∵2x+6x=180°, ∴ x=22.5°. ∴ ∠A=45°, ∠B=67.5°, ∠C =135°, ∠D=180°-67.5°=112.5°.
当堂训练
1.判断 (1)同一个圆中等弧所对的圆周角相等 ( √ ) (2)相等的弦所对的圆周角也相等 ( × ) (3)同弦所对的圆周角相等 ( × )
练一练
如图,在⊙O的内接四边形ABCD中,∠BOD= 120°,那么∠BCD是( A )
A.120° B.100° C.80° D.60°
解析:∵∠BOD=120°,∴∠A=60°,∴∠C= 180°-60°=120°,故选A.
例6 在圆内接四边形ABCD中, ∠A,∠B,∠C的度 数之比是2︰3︰6.求这个四边形各角的度数.

《圆周角》 导学案

《圆周角》导学案一、学习目标1、理解圆周角的概念,掌握圆周角的两个特征。

2、经历探索圆周角定理的过程,理解并掌握圆周角定理及其推论。

3、能够运用圆周角定理及其推论解决相关的几何问题,培养逻辑推理能力和几何直观素养。

二、学习重点1、圆周角的概念和圆周角定理。

2、圆周角定理的推论及其应用。

三、学习难点1、圆周角定理的证明。

2、分情况讨论圆周角与圆心的位置关系。

四、知识回顾1、圆心角的定义:顶点在圆心的角叫做圆心角。

2、圆心角的度数等于它所对弧的度数。

五、新课导入观察下面的图形,思考:图中的∠A 与圆心角有什么不同?(展示一些含有圆周角的图形,引导学生观察和比较)六、概念讲解1、圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角。

强调圆周角的两个特征:(1)顶点在圆上;(2)两边都与圆相交。

2、练习:判断下列各图中的角是否是圆周角,并说明理由。

(给出一些角的图形,让学生判断是否为圆周角,加深对概念的理解)七、探索圆周角定理1、提出问题:在同圆或等圆中,同弧或等弧所对的圆周角与圆心角有什么关系?2、实验探究:(1)让学生在纸上画一个圆,在圆上任取一段弧,画出弧所对的圆心角和圆周角。

(2)测量圆心角和圆周角的度数,记录下来。

(3)改变弧的位置,重复上述操作。

3、引导学生观察测量的数据,提出猜想:同弧所对的圆周角等于圆心角的一半。

4、证明圆周角定理:(1)分三种情况进行证明:当圆心在圆周角的一边上时,证明较为简单。

当圆心在圆周角的内部时,通过作辅助线,将圆周角转化为两个角的和,利用前面的结论进行证明。

当圆心在圆周角的外部时,同样通过作辅助线,将圆周角转化为两个角的差,进行证明。

5、得出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半。

八、圆周角定理的推论1、推论 1:同弧或等弧所对的圆周角相等。

2、推论 2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档