(完整)静息电位和动作电位及其产生原理

合集下载

静息电位和动作电位的测定

静息电位和动作电位的测定

静息电位和动作电位的测定1.静息电位和动作电位:静息电位:在神经未受到刺激时,神经纤维处于静息状态,这时,由于细胞膜内外特异的离子分布特点,细胞膜两侧的电位表现为内负外正,称为静息电位。

动作电位:当神经纤维某一部位受到刺激时,这个部位的膜两侧出现暂时性的电位变化,由内负外正变为外负内正,这就是动作电位。

2.基本原理:神经细胞内K+明显高于膜外,而膜外Na+明显高于膜内。

静息时,由于膜主要对K+有通透性,造成K+外流,使膜外阳离子多于膜内,所以外正内负。

受到刺激时,细胞膜对Na+的通透性增加,钠离子内流,使膜内阳离子浓度高于外侧,所以表现为内正外负。

之后,在膜上由于存在钠钾泵,在其作用下,将外流的钾离子运输进膜内,将内流的钠离子运出膜外,从而成膜电位又慢慢恢复到静息状态。

3.神经电位差测定的常见类型:(1)静息电位测定方式:静息电位常见的测定方式是将电流表的两个电极一个放在神经纤维的外侧,另一个放在神经纤维的内侧(如右上图),由于内外两侧存在电势差,因此电流表指针会发生偏转。

(2)动作电位测定方式:①在一个神经纤维上的测定:是指将电流表的两个电极放在同一个神经纤维的外侧(A处和B处),来测定两个电极处是否有电位差。

其放置方式如右下图。

对于一个神经纤维上电位的测定,如电流表指针发生了偏转,则说明A B两点存在电势差。

一般的做法是在该神经纤维上C点给一个足够强度的刺激,从而观察电流表发生几次偏转,方向是否一致?当刺激点C到达A、B两点距离相等时,神经冲动同时到达A、B两点,两点虽然均产生了动作电位,但是仍然不存在电势差,因此电流表不会发生偏转。

只要刺激点C与A、B点在同一神经元上,且CA与CB不相等,电流表就会发生两次方向相反的偏转。

②在两个神经纤维上的测定:是指将电流表的两个电极放在两个相邻神经元的外侧,来测定两个电极处是否有电位差。

其放置方式如右图。

在A点给一个足够强度的刺激,观察电流表发生几次偏转,方向是否一致?若这个刺激发生在上游神经元上,则电流表会发生两次方向相反的偏转;若这个刺激发生在下游神经元上,则电流表只能发生一次偏转。

静息电位和动作电位的定义和形成机制

静息电位和动作电位的定义和形成机制

静息电位和动作电位的定义和形成机制在我们日常生活中,神经系统起着至关重要的作用。

而在神经系统中,有两种非常重要的电位:静息电位和动作电位。

这两种电位在神经元之间的传递过程中起着关键作用,使我们能够感知到外界的各种刺激,并做出相应的反应。

那么,这两种电位究竟是如何产生的呢?本文将从理论和实践的角度,对静息电位和动作电位的定义和形成机制进行详细的阐述。

我们来了解一下静息电位。

静息电位是指神经元在未受到任何刺激时,细胞内外的电势差。

简单来说,就是当神经元处于安静状态时,它的内部电压是稳定的。

这种稳定的电压是由细胞膜上的离子泵负责维持的。

离子泵通过主动运输的方式,将钾离子从细胞内向外运输,同时将钠离子从细胞外向内运输,从而使得细胞内外的电势差保持在一个相对稳定的状态。

这个稳定的电压差就是静息电位。

接下来,我们再来探讨一下动作电位。

动作电位是指神经元在受到某种刺激(如光、声、化学物质等)后,细胞内外的电势差发生快速变化的现象。

这种快速变化的电势差是由细胞膜上的离子通道负责调控的。

当刺激传达到神经元时,离子通道会迅速打开或关闭,使得离子在细胞内大量流动,从而产生一个快速上升或下降的电势差。

这个快速上升或下降的电势差就是动作电位。

那么,静息电位和动作电位是如何形成的呢?这要从神经元的结构说起。

神经元由胞体、树突、轴突和突触四部分组成。

其中,胞体是神经元的代谢中心,负责合成和分解蛋白质;树突是神经元接受信息的部位;轴突是神经元传递信息的部位;突触是连接两个神经元的结构。

在正常情况下,静息状态下的神经元,其细胞膜上的离子泵会维持一定的离子浓度梯度,使得细胞内外的电势差保持在一个稳定的状态。

当神经元受到刺激时,刺激信号会传递到胞体,引起一系列生化反应。

这些反应会导致胞体释放出一种叫做乙酰胆碱的神经递质。

乙酰胆碱会与轴突上的乙酰胆碱受体结合,从而引发一系列的生理过程。

在这个过程中,离子通道会发生开关性的变化。

具体来说,当刺激信号传达到胞体时,离子通道会迅速打开,使得钠离子大量流入轴突;钾离子大量流出胞体。

浅谈静息电位和动作电位的产生机制

浅谈静息电位和动作电位的产生机制

静息电位与动作电位一、静息电位(RP)的产生机制:在静息状态下,细胞膜对K+具有较高的通透性是形成静息电位的最主要因素。

细胞膜内K+浓度约相当于细胞外液的30倍,K+将顺浓度梯度跨膜扩散,但扩散的同时也在细胞膜的两侧形成逐渐增大的电位差,且该电位差造成的驱动力与浓度差的驱动力的方向相反,阻止K+进一步跨膜扩散。

当逐渐增大的电位差驱动力与逐渐减小的浓度差驱动力相等时,便达到了稳态。

此时的膜电位处于K+的平衡电位(EK+=-90~-100mv),电位差的差值即平衡电位,平衡电位决定着离子的流量。

当细胞外液中K+浓度增加(高钾)时,膜内外K+的浓度差减小,K+因浓度差外移的驱动力降低,K+外流减少。

故达到稳态时,K+平衡电位的绝对值减小;反之亦然。

而细胞膜对Na+亦有一定的通透性,扩散内流的Na+可以部分抵消由K+扩散外流所形成的膜内负电位。

所以,EK+=-90~-100mv,而RP=-70~-90mv。

可见,细胞外液Na+浓度对RP的影响不大。

除了以上两个方面,还有钠泵的生电作用。

钠泵使细胞内高钾、细胞外高钠。

若钠泵受抑制,膜内外K+的浓度差减小,K+外流减少,K+平衡电位的绝对值减小,静息电位的绝对值也减小。

综上所述,影响静息电位水平的因素:(1)细胞膜对K+和Na+的相对通透性;(2)细胞外液K+的浓度;(3)钠泵的活动。

二、动作电位(AP)的产生机制:在静息状态下,细胞膜外Na+浓度约为细胞内液的10倍余,Na+有向膜内扩散的趋势;并且静息时膜内存在着相当数量的负电位,吸引着Na+向膜内移动。

但由于静息时细胞膜对Na+相对不通透,因此,Na+不能大量内流。

当刺激引起去极化达到阈电位,细胞膜上的电压门控Na+通道大量被激活,细胞膜对Na+的通透性突然增大,Na+大量内流,造成细胞膜的进一步去极化;而膜的进一步去极化,又将导致更多的Na+通道开放,有更多的Na+内流,引起细胞膜迅速、自动地去极化。

静息电位和动作电位产生原理

静息电位和动作电位产生原理

静息电位和动作电位产生原理
静息电位和动作电位是神经细胞的两种电信号,分别代表着细胞的静止状态和兴奋状态。

这两种信号的产生是由细胞膜上的离子通道所控制的。

静息电位产生时,细胞膜内外的离子浓度存在差异,细胞内外的电位差为负值。

此时,细胞膜上的钠离子通道关闭,细胞膜上的钾离子通道处于打开状态。

这时,钾离子通过钾离子通道向细胞外扩散,使细胞内外电位差缩小,细胞膜内的电位逐渐变得更为负值,从而产生静息电位。

当神经细胞受到刺激时,钠离子通道会打开,钠离子会由高浓度向低浓度扩散进入细胞内,使细胞内部的电位变得更加正值。

在达到一定程度时,细胞膜上的钾离子通道也会打开,钾离子会由高浓度向低浓度扩散流出细胞,使细胞内部的电位逐渐恢复到静息电位水平。

这个过程形成了动作电位,代表着细胞的兴奋状态。

总的来说,静息电位和动作电位的产生都是由离子通道在细胞膜上的开闭状态所决定的。

静息电位的产生与细胞膜上的钾离子通道有关,而动作电位的产生则与细胞膜上的钠离子通道和钾离子通道有关。

- 1 -。

静息电位和动作电位的定义和形成机制

静息电位和动作电位的定义和形成机制

静息电位和动作电位的定义和形成机制下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!静息电位和动作电位的定义和形成机制。

有关静息电位和动作电位的问题

有关静息电位和动作电位的问题

这道题目来源是北京师范大学出版的《人体解剖学》里的一个图改编的。

第(3)题应该是比较同种的几个神经置于不同钠离子浓度的器皿中,比较不同器皿中的变化。

如是在低浓度的Na+中,变化如图1,如果是在高浓度的Na+中,变化如图2,但是题目是在比较图1与图2的不同。

只能比较1个变量,也就是刺激后的反极化状态,即图1为+35mV,图2为+45mV,依次类推,Na+浓度越高,反极化的电位越大。

而在Na+浓度为0时,不会引起反极化,电位变化为0。

静息电位及动作电位产生原理生物电现象是指生物细胞在生命活动过程中所伴随的电现象。

它与细胞兴奋的产生和传导有着密切关系。

细胞的生物电现象主要出现在细胞膜两侧,故把这种电位称为跨膜电位,主要表现为细胞在安静时所具有的静息电位和细胞在受到刺激时产生的动作电位。

心电图、脑电图等均是由生物电引导出来的。

1.静息电位及其产生原理静息电位是指细胞在安静时,存在于膜内外的电位差。

生物电产生的原理可用"离子学说"解释。

该学说认为:膜电位的产生是由于膜内外各种离子的分布不均衡,以及膜在不同情况下,对各种离子的通透性不同所造成的。

在静息状态下,细胞膜对K+有较高的通透性,而膜内K+又高于膜外,K+顺浓度差向膜外扩散;细胞膜对蛋白质负离子(A-)无通透性,膜内大分子A-被阻止在膜的内侧,从而形成膜内为负、膜外为正的电位差。

这种电位差产生后,可阻止K+的进一步向外扩散,使膜内外电位差达到一个稳定的数值,即静息电位。

因此,静息电位主要是K+外流所形成的电-化学平衡电位。

2.动作电位及其产生原理细胞膜受刺激而兴奋时,在静息电位的基础上,发生一次扩布性的电位变化,称为动作电位。

动作电位是一个连续的膜电位变化过程,波形分为上升相和下降相。

细胞膜受刺激而兴奋时,膜上Na+通道迅速开放,由于膜外Na+浓度高于膜内,电位比膜内正,所以,Na+顺浓度差和电位差内流,使膜内的负电位迅速消失,并进而转为正电位。

静息电位及动作电位的构成原理

静息电位及动作电位的构成原理

相关文章查看文章静息电位和动作及其形成原理2009-09-16 16:19静息电位及其形成原理细胞膜的生物电现象主要有两种表现形式,即安静时的静息电位和受刺激时产生的膜电位的改变(包括局部电位和动作电位)。

生物电现象是以细胞为单位产生的,以细胞膜两侧带电离子的不均衡分布和离子的选择性跨膜转运为基础。

1.静息电位(resting potential,RP):指细胞未受刺激时存在于细胞膜内外两侧的电位差。

将一对测量电极中的一个放在细胞的外表面,另一个与微电极相连,准备刺入细胞膜内。

当两个电极都位于膜外时,电极之间不存在电位差。

在微电极尖端刺入膜内的一瞬间,示波器上显示一突然的电位跃变,表明两个电极间出现电位差,膜内侧的电位低于膜外侧电位。

该电位差是细胞安静时记录到的,因此称为静息电位。

几乎所有的动植物细胞的静息电位都表现为膜内电位值较膜外为负,如规定膜外电位为0,膜内电位可以负值表示,即大多数细胞的静息电位在-10~-100mV之间。

神经细胞的静息电位约为-70mV,红细胞的约为-10mV。

细胞膜两侧存在电位差,以及此电位差在某种条件下会发生波动,使细胞膜处于不同的电学状态。

人们将细胞安静时膜两侧保持的内负外正的的状态称为膜的极化;当膜电位向膜内负值加大的方向变化时,称为膜的超极化;相反,膜电位向膜内负值减小的方向变化,称为膜的去极化;细胞受刺激后先发生去极化,再向膜内为负的静息电位水平恢复,称为膜的复极化。

2.静息电位形成的原理(1)细胞膜内、外的离子浓度差RP的形成与细胞膜两侧的离子有关。

下表显示枪乌贼巨轴突细胞膜两侧主要离子浓度。

由表可见,细胞膜内外的离子呈不均衡分布,膜内K+多于膜外,Na+和Cl-低于膜外,即细胞内为高钾低钠低氯的状态。

此外,A-表示带Hodgkin和Huxley推测:由于细胞内外存在K+的浓度差(细胞内高钾), K+具有从膜内侧向膜外侧扩散的趋势。

如果细胞膜在安静时只能允许K+自由通透(K+通道开放),K+即可顺浓度差外流到细胞外。

静息电位与动作电位

静息电位与动作电位

静息电位与动作电位一、静息电位1、概念表述静息电位是指组织细胞静止状态下存在于膜内外两侧的电位差,呈外正内负的极化状态。

其值常为数十毫伏,并稳定在某一固定水平。

2、产生条件(1)细胞膜内外离子分布不平衡。

就正离子来说,膜内K+浓度较高,约为膜外的30倍。

膜外Na+浓度较高约为膜内的10倍。

从负离子来看,膜外以Cl-为主,膜内则以大分子有机负离子(A-)为主。

(2)膜对离子通透性的选择。

在静息状态下,膜对K+的通透性大,对Na+的通透性则很小(Na+通道关闭),对膜内大分子A-则无通透性。

3、产生过程K+顺浓度差向膜外扩散,膜内A-因不能透过细胞膜被阻止在膜内。

致使膜外正电荷增多,电位变正,膜内负电荷相对增多,电位变负,这样膜内外便形成一个电位差。

当促使K+外流的浓度差和阻止K+外流的电位差这两种拮抗力量达到平衡时,使膜内外的电位差保持一个稳定状态,即静息电位。

这就是说,细胞内外K+的不均匀分布和安静状态下细胞膜主要对K+有通透性,是使细胞能保持内负外正的极化状态的基础,所以静息电位又称为K+的平衡电位。

二、动作电位1、概念表述动作电位是指可兴奋细胞受到阈或阈上刺激时,在静息电位的基础上发生的一次快速扩布性电位变化。

典型的神经动作电位的波形由峰电位、负后电位和正后电位组成。

2、产生条件(1)细胞膜内外离子分布不平衡。

细胞内外存在着Na+的浓度差,Na+在细胞外的浓度是细胞内的13倍之多。

(2)膜对离子通透性的选择。

细胞受到一定刺激时,膜对Na+的通透性先增加,对K+的通透性后增加。

( 因为Na+通道开放快,失活也快;K+通道开放的慢,失活的也慢,慢到几乎就不出现失活。

)3、产生过程(1)去极化:细胞受到阀上刺激→细胞外的Na+顺浓度梯度流人细胞内→当膜内负电位减小到阈电位时Na+通道全部开放→Na+顺浓度梯度瞬间大量内流(正反馈倍增)→细胞内正电荷增加→膜内负电位从减小到消失进而出现膜内正电位→膜内正电位增大到足以对抗由浓度差所致的Na+内流→膜两侧电位达到一个新的平衡点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

静息电位和动作电位及其产生原理
生物电现象是指生物细胞在生命活动过程中所伴随的电现象.它与细胞兴奋的产生和传导有着密切关系。

细胞的生物电现象主要出现在细胞膜两侧,故把这种电位称为跨膜电位,主要表现为细胞在安静时所具有的静息电位和细胞在受到刺激时产生的动作电位。

心电图、脑电图等均是由生物电引导出来的。

1.静息电位及其产生原理
静息电位是指细胞在安静时,存在于膜内外的电位差。

生物电产生的原理可用"离子学说”解释.该学说认为:膜电位的产生是由于膜内外各种离子的分布不均衡,以及膜在不同情况下,对各种离子的通透性不同所造成的。

在静息状态下,细胞膜对K+有较高的通透性,而膜内K+又高于膜外,K+顺浓度差向膜外扩散;细胞膜对蛋白质负离子(A—)无通透性,膜内大分子A—被阻止在膜的内侧,从而形成膜内为负、膜外为正的电位差。

这种电位差产生后,可阻止K+的进一步向外扩散,使膜内外电位差达到一个稳定的数值,即静息电位.因此,静息电位主要是K+外流所形成的电—化学平衡电位。

2.动作电位及其产生原理
细胞膜受刺激而兴奋时,在静息电位的基础上,发生一次扩布性的电位变化,称为动作电位。

动作电位是一个连续的膜电位变化过程,波形分为上升相和下降相。

细胞膜受刺激而兴奋时,膜上Na+通道迅速开放,由于膜外Na+浓度高于膜内,电位比膜内正,所以,Na+顺浓度差和电位差内流,使膜内的负电位迅速消失,并进而转为正电位。

这种膜内为正、膜外为负的电位梯度,阻止Na+继续内流。

当促使Na+内流的浓度梯度与阻止Na+内流的电位梯度相等时,Na+内流停止.因此,动作电位的上升相的顶点是Na+内流所形成的电-化学平衡电位.
在动作电位上升相达到最高值时,膜上Na+通道迅速关闭,膜对Na+的通透性迅速下降,Na+内流停止。

此时,膜对K+的通透性增大,K+外流使膜内电位迅速下降,直到恢复静息时的电位水平,形成动作电位的下降相。

可兴奋细胞每发生一次动作电位,膜内外的Na+、K+比例都会发生变化,于是钠—钾泵加速转运,将进入膜内的Na+泵出,同时将逸出膜外的K+泵入,从而恢复静息时膜内外的离子分布,维持细胞的兴奋性.
(二)动作电位及其产生原理
1.概念:细胞受刺激时在静息电位基础上产生的可传布的电位变化,细胞兴奋的标志
波形:锋电位:上升相:去极化(—70mV→0mV)反极化(超射)(0mV→+30mV)下降相:复极化(+30mV→-70mV附近 )
峰电位是动作电位的主要成份
2。

产生机制:离子流学说
上升相:细胞受刺激→少量Na+通道开放→少量Na+内流→局部去极化(局部电位)→达到阈电位→Na+ 通道大量开放→Na+ 顺电-化学梯度快速大量内流→去极化、反极化→当浓度差促进Na+内流的力量等于电位差阻止Na+内流的力量时,Na+净移动为零(Na+ 的电-化学平衡电位)下降相:细胞膜对K+ 的通透性增加→K+ 顺电—化学梯度外流→复极化
电位已基本恢复,但离子分布未恢复, Na+—K+ 泵运转, Na+ 泵出, K+ 泵入,恢复兴奋前离子的不均匀分布
阈电位:引起Na+通道大量开发放而引发动作电位的临界膜电位数值
通道阻断剂:河豚毒: Na+通道阻断剂
四乙基铵:K+通道阻断剂
三、极化、去极化、超极化、阈电位的概念
1.静息时,细胞膜内外两侧维持外正内负的稳定状态,称为极化。

2.当细胞受刺激时,膜内电位向负值减小方向变化,称为去极化。

3.膜内电位数值向负值增大方向变化,称为超极化。

4。

当神经纤维受到阈刺激时,膜上Na+通道开放,Na+内流,膜发生去极化,静息电位减小,当静息电位减小到某一临界数值时,膜对Na+的通透性突然增大,Na+迅速内流,出现动作电位的上升相。

这个临界点时的跨膜电位数值称为阈电位。

四、兴奋在同一细胞上传导的特点
传导:动作电位(兴奋)在一个细胞内传播
神经冲动:沿神经纤维传导的动作电位
1.不衰减性传导:动作电位的幅度不会因传导距离的增加而减小
2.“全或无” 现象:动作电位一旦产生,幅度不会因刺激的加强而增大
3.双向传导:动作电位从受刺激的兴奋部位向两侧未兴奋部位传导
4.动作电位不融合:动作电位之间总有一定间隔,不会重合、叠加在一起。

相关文档
最新文档