高一物理匀变速直线运动的知识点

合集下载

高中物理必修一第二章《匀变速直线运动》全章精品学案(新教材全章整理)

高中物理必修一第二章《匀变速直线运动》全章精品学案(新教材全章整理)

高中物理必修一第二章《匀变速直线运动》精品学案第1节速度变化规律一、匀变速直线运动的特点1.定义:物体加速度保持不变的直线运动.2.特点:物体的加速度大小和方向都不改变.3.分类(1)匀加速直线运动:加速度与速度方向相同;(2)匀减速直线运动:加速度与速度方向相反.[判断正误](1)物体的速度增大,则物体一定做匀加速直线运动.(×)(2)物体在一条直线上运动,若加速度恒定,则物体一定做匀变速直线运动.(√)(3)物体的加速度与速度同向,且a恒定不变,物体一定做匀加速直线运动.(√)二、匀变速直线运动的速度—时间关系1.公式速度公式:v t=v0+at.当初速度为零时,公式为:v t=at.2.图像描述v-t图像:匀变速直线运动的v-t图像是一条倾斜的直线,如图甲所示.a-t图像:如果以时间为横坐标,加速度为纵坐标可以得到加速度随时间变化的图像,通常称为a-t图像,如图乙所示.做匀变速直线运动的物体,其a-t图像为平行于时间轴的直线.[思考]有同学根据公式v t=v0+at提出“物体的加速度越大,速度一定增加得越快”的观点,你认为该说法正确吗?提示:不一定,当a与v同向时,a越大,速度会增加得越快;当a与v反向时,a越大,速度则会减小得越快.要点一匀变速直线运动的特点及v-t图像[探究导入] (1)某同学探究了小车在钩码牵引下的运动,并且用v -t 图像直观地描述了小车的速度随时间变化的规律.你能求出小车的加速度吗?(2)如图是一个物体运动的v -t 图像,物体的加速度怎样变化?该物体所做的运动是匀变速运动吗?提示:(1)如图所示,在v -t 图像上取一段时间Δt (尽可能大一些),找出对应的Δv ,根据a =Δv Δt可知,直线的斜率即为小车的加速度.(2)由图像可以看出相等时间内速度的变化量不相等,变化量逐渐减小(如图),加速逐渐减小.故该物体的运动不是匀变速运动,而是加速度逐渐减小的加速运动.1.几种直线运动的速度—时间图像(v -t 图像)2.图像关键信息说明(1)纵截距:表示物体的初速度.(2)横截距:表示物体在开始计时后过一段时间才开始运动,或物体经过一段时间速度变为零.(3)与横轴的交点:表示速度为零且方向改变的时刻.(4)图线折点:表示加速度改变的时刻.(5)两图线的交点:表示该时刻两物体具有相同的速度.[易错提醒](1)v -t 图像反映的是速度随时间变化的规律,并不是物体运动的轨迹.(2)由于v -t 图像中只能表示正、负两个方向,所以它只能描述直线运动,无法描述曲线运动.[典例1] (多选)甲、乙两物体从同一位置出发沿同一直线运动,两物体运动的v -t 图像如图所示,下列判断正确的是( )A .甲做匀速直线运动,乙做匀变速直线运动B .两物体两次速度相同的时刻分别在第1 s 末和第4 s 末C .乙在前2 s 内做匀加速直线运动,2 s 后做匀减速直线运动D .2 s 后,甲、乙两物体的速度方向相反[解析] 由v -t 图像知,甲以2 m/s 的速度做匀速直线运动,乙在0~2 s 内做匀加速直线运动,加速度a1=2 m/s2,2~6 s内做匀减速直线运动,加速度a2=-1 m/s2,A错误,C 正确;t=1 s和t=4 s时二者速度相同,B正确;0~6 s 内甲、乙的速度方向都沿正方向,D错误.[答案]BC1.(多选)(2019·山东青岛高一期末检测)一个沿直线运动的物体的v-t图像如图所示,则下列分析正确的是()A.图像OA段表示物体做非匀变速运动,AB段表示物体静止B.图像AB段表示物体做匀速直线运动C.在0~9 s内物体的运动方向相同D.在9~12 s内物体的运动方向与0~9 s内的运动方向相反解析:v-t图像是曲线,表示物体做非匀变速直线运动,图像与t轴平行表示物体做匀速直线运动,图像是倾斜直线表示物体做匀变速直线运动,A错误,B正确;0~9 s速度始终为正值,说明速度方向不变,C正确;9~12 s速度为负值,说明速度方向与正方向相反,D正确.答案:BCD要点二对匀变速直线运动速度公式的理解及应用[探究导入]如图是物体做匀加速直线运动的速度-时间图像(v-t图像).(1)匀变速直线运动的v-t图像与我们在数学里学的什么图像类似?(2)你能不能将图中所示的直线用一次函数的一般表达式写出来?提示:(1)一次函数图像y=kx+b.(2)加速度a表示斜率,v0表示与纵轴的截距,v=v0+at.1.公式v=v0+at中各量的物理意义v0是开始计时时的瞬时速度,称为初速度;v是经时间t后的瞬时速度,称为末速度;at 是在时间t 内速度的变化量,即Δv =at .2.公式的适用条件:做匀变速直线运动的物体.3.注意公式的矢量性公式中的v 0、v 、a 均为矢量,应用公式解题时,一般取v 0的方向为正方向,若物体做匀加速直线运动,a 取正值;若物体做匀减速直线运动,a 取负值.4.特殊情况(1)当v 0=0时,v =at ,即v ∝t (由静止开始的匀加速直线运动).(2)当a =0时,v =v 0(匀速直线运动).[易错提醒]应用匀变速直线运动速度与时间关系式时要注意实际情况,对于匀减速直线运动,应注意物体速度减为0之后能否加速返回,若不能返回,应注意题中所给时间与物体所能运动的最长时间t =v 0a的关系.[典例2] 一物体从静止开始以2 m/s 2的加速度做匀加速直线运动,经5 s 后做匀速直线运动,最后以大小为4 m/s 2的加速度做匀减速直线运动直至停止.求:(1)物体做匀速直线运动时的速度大小;(2)物体做匀减速直线运动到停止所用时间.[思路点拨] 解题关键是画出如下的示意图:[解析] 设思路点拨图中A →B 为匀加速直线运动,B →C 为匀速直线运动,C →D 为匀减速直线运动,BC 段的速度为AB 段的末速度,也为CD 段的初速度.(1)由速度与时间的关系式得v B =a 1t 1=2×5 m/s =10 m/s即做匀速直线运动时的速度大小为10 m/s.(2)由v =v 0+at 得t 2=v D -v C a 2=0-10-4s =2.5 s. [答案] (1)10 m/s (2)2.5 s[规律总结]速度公式v t =v 0+at 与加速度定义式a =v t -v 0t的比较 速度公式v t =v 0+at 虽然是加速度定义式a =v t -v 0t的变形,但两式的适用条件是不同的:(1)v t =v 0+at 仅适用于匀变速直线运动.(2)a =v t -v 0t还可适用于匀变速曲线运动.2.对于匀变速直线运动的速度与时间关系式v t =v 0+at ,以下理解正确的是( )A .v 0是时间间隔t 开始的速度,v t 是时间间隔t 内的平均速度B .v t 一定大于v 0C .at 在时间间隔t 内,可以是速度的增加量,也可以是速度的减少量,在匀加速直线运动中at 为正值,在匀减速直线运动中at 为负值D .a 与匀变速直线运动的v -t 图像的倾斜程度无关解析:v 0、v t 都是瞬时速度,at 是速度的变化量,A 错,C 对;在匀加速直线运动中v t >v 0,在匀减速直线运动中v t <v 0,B 错误;在v -t 图像中,v -t 图像的斜率表示加速度,D 错误.答案:C3.火车沿平直铁轨匀加速前进,通过某一路标时的速度为10.8 km/h,1 min 后变成了54 km/h ,又需经多少时间,火车的速度才能达到64.8 km/h?解析:三个不同时刻的速度分别为v 1=10.8 km/h =3 m/s 、v 2=54 km/h =15 m/s 、v 3=64.8 km/h =18 m/s时间t 1=1 min =60 s所以加速度a =v 2-v 1t 1=15-360m/s 2=0.2 m/s 2, 由v 3=v 2+at 2可得时间t 2=v 3-v 2a =18-150.2s =15 s. 答案:15 s匀变速直线运动速度与时间关系的实际应用——“刹车问题”实际交通工具刹车后,在摩擦力作用下的运动可认为是匀减速直线运动,且此运动过程不可逆,即当速度减小到零时,车辆就会停止运动, 不会反向加速.解答此类问题的常规思路是:(1)先确定刹车时间.若车辆从刹车到速度减到零所用的时间为T ,则刹车时间为T =v 0a. (2)将题中所给出的已知时间t 与T 比较.若T <t ,则在利用公式v t =v 0-at 进行计算时,公式中的时间应为T ;若T >t ,则在利用以上公式进行计算时,公式中的时间应为t .磁悬浮列车由静止开始加速出站,加速度为0.6 m/s 2,假设列车行驶在平直轨道上,则2 min 后列车速度为多大?列车匀速运动时速度为432 km/h ,如果以0.8 m/s 2的加速度减速进站,求减速160 s 时速度为多大?解析:取列车运动方向为正方向列车2 min 后的速度v =v 10+a 1t 1=0+0.6×2×60 m/s =72 m/s.列车匀速运动的速度v 20=432 km/h =120 m/s.列车进站过程减速至停止的时间t 0=v 20a 2=1200.8s =150 s 所以列车减速160 s 时已经停止运动,速度为零.答案:72 m/s 01.关于匀变速直线运动,下列说法正确的是( )A .是加速度不变、速度随时间均匀变化的直线运动B .是速度不变、加速度变化的直线运动C .是速度随时间均匀变化、加速度也随时间均匀变化的直线运动D .当速度不断减小时,其位移也一定不断减小解析:匀变速直线运动是速度均匀变化,而加速度不变的直线运动,故A 正确,B 、C 错误;当物体沿正方向做匀减速运动时,速度减小,但位移增大,故D 错误.答案:A2.(多选)在运用公式v t =v 0+at 时,关于各个物理量的符号下列说法中正确的是( )A .必须规定正方向,式中的v t 、v 0、a 才取正、负号B .在任何情况下a >0表示加速运动,a <0表示做减速运动C .习惯上总是规定物体开始运动的方向为正方向,a >0表示做加速运动,a <0表示做减速运动D .v 的方向总是与v 0的方向相同解析:习惯上我们规定v 0的方向为正方向,当a 与v 0方向相同时a 取正号,a 与v 0方向相反时a 取负号,像这种规定我们一般不做另外的声明,但不说不等于未规定,所以A 、C 正确,B 错误;由v t =v 0-at 可以看出v t 的方向与v 0方向有可能相反,D 错误.答案:AC3.(多选)质点做直线运动的v -t 图像如图所示,则下列说法正确的是( )A .在前4 s 内质点做匀变速直线运动B .在1~3 s 内质点做匀变速直线运动C .3 s 末质点的速度大小为5 m/s ,方向与规定的正方向相反D .1~2 s 内与2~3 s 内质点的加速度方向相反解析:由图像知,前4 s 内质点的加速度发生变化,不是匀变速直线运动,故A 项错;1~3 s 内质点加速度不变,故B 项对;3 s 末质点的速度为-5 m/s ,故C 项对;1~2 s 内加速度为负,2~3 s 内加速度也为负,故D 项错.答案:BC4.2018年4月12日上午10时,解放军海上阅兵式在南海举行, “辽宁舰”号航母等48艘战舰、76架战机,分列7个舰艇作战群、10个空中梯队接受检阅.若“辽宁舰”号航空母舰上装有帮助飞机起飞的弹射系统,已知“歼-15”型战斗机在跑道上加速时产生的最大加速度为6.0 m/s 2,起飞的最小速度是70 m/s ,弹射系统能够使飞机所具有的最大速度为40 m/s ,则飞机起飞至少需要加速的时间是 ( )A .3 sB .4 sC .5 sD .6 s解析:由v t =v 0+at 得t =v t -v 0a =70-406s =5 s. 答案:C5.(2019·陕西西安四校高一期末联考)在某汽车4S 店,一顾客正在测试汽车加速、减速性能.汽车以36 km/h 的速度匀速行驶,现以0.6 m/s 2的加速度加速,则 10 s 后速度能达到多少?若汽车以-0.6 m/s 2的加速度滑行,汽车到停下来需多长时间?解析:初速度v 0=36 km/h =10 m/s ,加速度a 1=0.6 m/s 2,a 2=-0.6 m/s 2,v 2=0. 由速度公式得v 1=v 0+a 1t 1=10 m/s +0.6 m/s 2×10 s =16 m/s ,汽车开始滑行到停下来所用时间由v 2=v 0+a 2t 2得:t 2=v 2-v 0a 2=0-10-0.6s ≈16.7 s. 答案:16 m/s 16.7 s[A 组 素养达标]1.下列关于匀变速直线运动的说法正确的是()A.匀加速直线运动的速度一定与时间成正比B.匀减速直线运动就是加速度为负值的运动C.匀变速直线运动的速度随时间均匀变化D.速度先减小再增大的运动一定不是匀变速直线运动解析:匀变速直线运动的速度是时间的一次函数,但不一定成正比,若初速度为零则成正比,所以A错;加速度的正、负仅表示加速度方向与规定的正方向相同还是相反,是否是减速运动还要看速度的方向,速度与加速度反向则为减速运动,所以B错;匀变速直线运动的速度随时间均匀变化,所以C对;加速度恒定,初速度与加速度方向相反的直线运动中,速度就是先减小再增大的,所以D错.答案:C2.一个质点做直线运动,其速度随时间变化的函数关系为v=kt,其中k=0.3 m/s2.下列说法正确的是()A.质点做匀速直线运动B.质点的速度变化量大小是0.3 m/sC.质点做匀加速直线运动D.质点的初速度为0.3 m/s解析:因为质点的速度随时间均匀变化,所以质点做匀加速直线运动,加速度a=0.3 m/s2.答案:C3.有两个做匀变速直线运动的质点,下列说法中正确的是()A.经过相同的时间,速度大的质点加速度必定大B.若初速度相同,速度变化大的质点加速度必定大C.若加速度相同,初速度大的质点末速度一定大D.相同时间内,加速度大的质点速度变化必定大解析:由v t=v0+at可知,v t的大小除与t有关之外,还与v0和a有关,所以v t大的其a未必一定大,故A错误;速度的变化Δv=v t-v0=at,由于不知道时间的关系,故B错误;若a相同,由于t未知,所以也无法判断v t的大小,故C错误;若t相同,则Δv=v t-v0=at,a大的Δv一定大,故D正确.答案:D4.一物体做匀加速直线运动,已知它的加速度为2 m/s2,那么在任何1 s内()A.物体的末速度一定等于初速度的2倍B.物体的末速度一定比初速度大2 m/sC.物体的初速度一定比前1 s的末速度大2 m/sD .物体的末速度一定比前1 s 的初速度大2 m/s解析:在任何1 s 内物体的末速度一定比初速度大2 m/s ,故A 错误,B 正确.某1 s 初与前1 s 末为同一时刻,速度相等,故C 错误.某1 s 末比前1 s 初多2 s ,所以速度的变化量Δv =4 m/s ,故D 错误.答案:B5.一小球在斜面上从静止开始匀加速滚下,进入水平面后又做匀减速直线运动,直至停止.在如图所示的v -t 图像中哪个可以反映小球的整个运动过程(v 为小球运动的速率)( )解析:A 、B 中的最后阶段表示的是匀速运动,所以A 、B 错;D 项中最后阶段表示匀加速直线运动,所以D 错;C 表示的恰为题干中小球的运动.答案:C6.如图所示是一物体做匀变速直线运动的v -t 图像,由图可知物体( )A .初速度为0B .2 s 末的速度大小为3 m/sC .5 s 内的位移为0D .加速度的大小为1.5 m/s 2解析:由题图可知,物体的初速度v 0=5 m/s ,末速度v t =0,由公式v t =v 0+at 可得a =0-5 m/s 5 s=-1 m/s 2,A 、D 错误.由题图知,2 s 末物体的速度大小为3 m/s ,B 正确.由于5 s 内v -t 图像面积不为零,所以C 错误.答案:B7.一辆沿直线匀加速行驶的汽车,经过路旁两根电线杆共用时5 s ,汽车的加速度为2 m/s 2,它经过第2根电线杆时的速度为15 m/s ,则汽车经过第1根电线杆时的速度为( )A .2 m/sB .10 m/sC .2.5 m/sD .5 m/s解析:根据v t =v 0+at ,得v 0=v t -at =15 m/s -2×5 m/s =5 m/s ,D 正确.答案:D8.歼-20飞机在第11届中国国际航空航天博览会上进行飞行展示,这是中国自主研制的新一代隐身战斗机首次公开亮相.在某次短距离起飞过程中,战机只用了10 s 就从静止加速到起飞速度288 km/h ,假设战机在起飞过程中做匀加速直线运动,则它的加速度大小为( )A .28.8 m/s 2B .10 m/s 2C .8 m/s 2D .2 m/s 2解析:飞机末速度v t =288 km/h =80 m/s ,飞机做初速度为零的匀加速直线运动,根据公式v t =v 0+at 可知v t =at ,即a =v t t =80 m/s10 s=8 m/s 2,选项C 正确.答案:C9.一颗子弹以600 m/s 的水平初速度击中一静止在光滑水平面上的木块,经过0.05 s 穿出木块时子弹的速度变为200 m/s.(1)若子弹穿过木块的过程中加速度恒定,求子弹穿过木块时加速度的大小和方向. (2)若木块在此过程中产生了恒为200 m/s 2的加速度,则子弹穿出木块时,木块获得的速度的大小为多少?解析:(1)设子弹的初速度方向为正方向,对子弹有 v 0=600 m/s ,v t =200 m/s ,t =0.05 s. 由v t =v 0+at 得a =v t -v 0t =200-6000.05 m/s 2=-8×103 m/s 2负号表示a 的方向与子弹初速度的方向相反. (2)设木块获得的速度为v ′,则 v ′=a ′t =200 m/s 2×0.05 s =10 m/s.答案:(1)8×103 m/s 2 方向与初速度方向相反 (2)10 m/s[B 组 素养提升]10.(多选)一物体做匀变速直线运动.当t =0时,物体的速度大小为12 m/s ,方向向东;当t =2 s 时,物体的速度大小为8 m/s ,方向仍向东.当物体的速度大小变为2 m/s 时,t 为( )A .3 sB .5 sC .7 sD .9 s解析:由题意可得物体运动的加速度a =8-122m/s 2=-2 m/s 2.若速度大小为2 m/s 时,方向向东,则由v t =v 0+at 解得t =v t -v 0a =2-12-2s =5 s ;若速度大小为2 m/s 时,方向向西,则t =v t -v 0a =-2-12-2s =7 s.答案:BC11.(多选)给滑块一初速度v 0,使它沿足够长的光滑斜面向上做匀减速运动,加速度大小为a ,当滑块速度大小变为v 02时,所用时间可能是( )A.v 04a B.v 02a C.3v 02aD.3v 0a解析:以初速度方向为正方向,当末速度与初速度方向相同时,v 02=v 0-at ,得t =v 02a ;当末速度与初速度方向相反时,-v 02=v 0-at ′,得t ′=3v 02a,B 、C 正确.答案:BC12.卡车原来以10 m/s 的速度在平直公路上匀速行驶,因为道口出现红灯,司机从较远的地方即开始刹车,使卡车匀减速前进,当车减速到2 m/s 时,交通灯转为绿灯,司机当即放开刹车,并且只用了减速过程的一半时间卡车就加速到原来的速度,从刹车开始到恢复原速过程用了12 s .求:(1)减速与加速过程中的加速度大小; (2)开始刹车后2 s 末及10 s 末的瞬时速度. 解析:(1)设加速过程的时间为t ,依题意有 2t +t =12 s 得t =4 s所以减速过程的加速度a 1=v 2-v 12t =2-108m/s 2=-1 m/s 2加速过程的加速度a 2=v 3-v 2t =10-24 m/s 2=2 m/s 2.(2)刹车后2 s 末的速度v =v 0+a 1t 1=10 m/s +(-1)×2 m/s =8 m/s 10 s 末的速度v ′=v 2+a 2t ′=2 m/s +2×(10-8) m/s =6 m/s. 答案:(1)1 m/s 2 2 m/s 2 (2)8 m/s 6 m/s[C 组 学霸冲刺]13.一辆汽车在平直的公路上从静止开始运动,先后经历匀加速、匀速、匀减速直线运动,最后停止.从汽车启动开始计时,下表记录了汽车某些时刻的瞬时速度,根据数据可判断出汽车运动的v -t 图像是( )解析:由题中表格里的数据可得汽车做匀加速直线运动的加速度a 1=6.0-3.02.0-1.0 m/s 2=3m/s 2,故汽车做匀加速直线运动的时间t 1=va 1=4 s ,选项B 、D 错误;当汽车做匀减速直线运动时a 2=3.0-9.011.5-10.5m/s 2=-6 m/s 2,故汽车做匀减速直线运动的时间t 2=-va 2=2 s ,故选项A 错误,选项C 正确.答案:C第2节 位移变化规律一、匀变速直线运动的位移—时间关系 1.位移在v -t 图像中的表示如图所示,做匀变速直线运动的物体的位移大小可以用v -t 图像中的图线和时间轴包围的梯形的面积来表示.2.位移与时间的关系 (1)推导:⎭⎪⎬⎪⎫面积大小等于位移大小:s =12(v 0+v t )×t 速度公式:v t =v 0+at ―→s =v 0t +12at 2.(2)特例:如果匀变速直线运动的初速度为零,公式可简化为s =12at 2.[判断正误](1)位移公式s =v 0t +12at 2仅适用于匀加速直线运动. (×)(2)初速度越大,时间越长,匀变速直线运动物体的位移一定越大. (×) (3)匀变速直线运动的位移与初速度、加速度、时间三个因素有关. (√) 二、匀变速直线运动的位移—速度关系1.速度与位移关系式:v 2t -v 20=2as .2.推导:3.速度与位移关系的应用条件:所研究的问题中,已知量和未知量都不涉及时间. [思考]如果你是机场跑道设计师,若已知飞机的加速度为a ,起飞速度为v t ,你应该如何来设计飞机跑道的长度?提示:根据公式v 2t -v 20=2as得v 2t =2aL ,所以L =v 2t 2a ,即应使飞机跑道的长度大于v 2t2a.要点一 匀变速直线运动位移公式的理解及应用[探究导入] (1)甲同学把物体的运动分成几个小段,如图甲所示,每段位移≈每段起始时刻速度×每段的时间=对应矩形面积.所以,整个过程的位移≈各个小矩形面积之和.乙同学把运动过程分为更多的小段,如图乙所示,各小矩形的面积之和可以表示物体在整个过程的位移.比较以上两种分法,哪种更能精确的表示物体运动的位移?(2)结合甲、乙两同学的做法,丙同学认为,当Δt →0时,各矩形面积之和趋近于v -t 图线下面的面积(如图丙).试根据梯形面积推导匀变速直线运动的位移公式.提示:(1)乙同学的做法更能精确的表示物体运动的位移. (2)由图可知:梯形OABC 的面积S =(OC +AB )×OA 2,代入各物理量得:s =12(v 0+v t )t ,又v t =v 0+at ,得s =v 0t +12at 2.1.公式的适用条件:位移公式s =v 0t +12at 2只适用于匀变速直线运动.2.公式的矢量性:s =v 0t +12at 2为矢量公式,其中s 、v 0、a 都是矢量,应用时必须选取统一的正方向.一般选v 0的方向为正方向.(1)匀加速直线运动中,a 与v 0同向,a 取正值;匀减速直线运动中,a 与v 0反向,a 取负值.(2)若位移的计算结果为正值,说明位移方向与规定的正方向相同;若位移的计算结果为负值,说明位移方向与规定的正方向相反.3.两种特殊形式(1)当v 0=0时,s =12at 2,即由静止开始的匀加速直线运动,位移s 与t 2成正比.(2)当a =0时,s =v 0t ,此即为匀速直线运动的位移公式.[典例1] 一物体做初速度为零的匀加速直线运动,加速度为a =2 m/s 2,求:(1)第5 s 末物体的速度多大? (2)前4 s 的位移多大? (3)第4 s 内的位移多大?[解析] (1)第5 s 末物体的速度由v 1=v 0+at 1 得v 1=0+2×5 m/s =10 m/s. (2)前4 s 的位移由s 1=v 0t 1+12at 21得s 1=0+12×2×42 m =16 m.(3)物体第3 s 末的速度v 2=v 0+at 2=0+2×3 m/s =6 m/s则第4 s 内的位移s 2=v 2t 3+12at 23=6×1 m +12×2×12m =7 m. [答案] (1)10 m/s (2)16 m (3)7 m1.(2019·陕西渭南尚德中学高一第一学期物理月考)某物体做匀变速直线运动的位移跟时间的关系式是s =0.5t +t 2,则该物体 ( )A .初速度为1 m/sB .加速度为1 m/s 2C .前2 s 内位移为5 mD .第2 s 内位移为5 m解析:根据位移时间公式s =v 0t +12at 2与s =0.5t +t 2比较系数可得v 0=0.5 m/s ,a =2 m/s 2,故A 、B 错误;前2 s 内位移为s 1=(0.5×2+22)m =5 m ,故C 正确;第2 s 内位移为s 2=(0.5×2+22-0.5×1-12)m =3.5 m ,故D 错误.答案:C2.(2019·辽宁葫芦岛第一中学高一上学期第一次月考)一列火车从静止开始做匀加速直线运动,一个人站在第一节车厢前端的站台上,观测到第一节车厢通过他历时2 s ,全部列车车厢通过他历时6 s ,则此列车的车厢数目为( )A .7节B .8节C .9节D .10节解析:设一节车厢的长度为L ,火车从静止开始做匀加速直线运动,第一节车厢经过他历时为:t 1=2 s ,由位移和时间的关系列出方程可得:L =12at 21=12a ·22=42a ①,然后再列t 2=6秒内位移s表达式:s=12at22=362a②,由①②两式解得:s=9L即火车共有9节车厢,故C正确.答案:C要点二位移—速度关系式的理解及应用[探究导入]在高速公路上,有时会发生“追尾”事故——后面的汽车撞上前面的汽车.造成追尾的主要因素是超速和精力不集中,如图所示是交警在处理一起事故.(1)交警同志在干什么呢?他们这样做的目的是什么?(2)为什么通过测量刹车距离就能知道是否超速?提示:(1)他们在测量刹车距离,目的是看看车是否超速.(2)因为速度和位移存在一定的关系,即v2t-v20=2as.1.适用条件速度与位移的关系v2t-v20=2as仅适用于匀变速直线运动.2.意义公式v2t-v20=2as反映了初速度v0、末速度v t、加速度a、位移s之间的关系,当其中三个物理量已知时,可求另一个未知量.3.公式的矢量性公式中v0、v t、a、s都是矢量,应用时必须选取统一的正方向,一般选v0方向为正方向.(1)物体做加速运动时,a取正值,做减速运动时,a取负值.(2)s>0,说明物体通过的位移方向与初速度方向相同;s<0,说明位移的方向与初速度的方向相反.4.两种特殊形式(1)当v0=0时,v2=2as.(初速度为零的匀加速直线运动)(2)当v=0时,-v20=2as.(末速度为零的匀减速直线运动)[典例2]某高速列车在某段距离中做匀加速直线运动,速度由5 m/s增加到10 m/s时位移为s.则当速度由10 m/s增加到15 m/s时,它的位移是()A.52s B.53s C .2sD .3s[解析] 由v 2t -v 20=2as 得102-52=2as ①,152-102=2as ′②,联立①②得s ′=53s ,故选项B 正确.[答案] B [易错警示]应用位移—速度关系的两点注意(1)若不涉及时间,优先选用v 2t -v 20=2as .(2)选用v 2t -v 20=2as .要注意符号关系,必要时应对计算结果进行分析,验证其合理性.3.(2019·南京市第十二中月考)一物体从A 点由静止开始做匀加速直线运动,到达B 点时速度为v ,再运动到C 点时的速度为2v ,则AB 与BC 的位移大小之比为( )A .1∶3B .1∶4C .1∶2D .1∶1解析:对AB 过程,由变速直线运动的速度与位移的关系式可得v 2=2as AB ,解得s AB =v 22a ,对BC 过程可得(2v )2-v 2=2as BC ,解得s BC =3v 22a,所以AB 与BC 的位移大小之比为1∶3,故A 正确.答案:A4.(2019·江西南昌八一中学、洪都中学高一联考)酒后驾车严重威胁交通安全.其主要原因是饮酒后会使人的反应时间(从发现情况到实施操作制动的时间)变长,造成反制距离(从发现情况到汽车停止的距离)变长,假定汽车以20 m/s 的速度匀速行驶,刹车时汽车的加速度大小为10 m/s 2,正常人的反应时间为0.5 s ,饮酒人的反应时间为1.5 s ,试问:(1)驾驶员正常的反制距离是多少米?(2)饮酒的驾驶员的反制距离比正常时多了多少米?解析:(1)在反应时间内汽车做匀速直线运动为: s 1=v 0t 1=20×0.5 m =10 m 汽车减速的距离为:2as 2=v 2t -v 20 代入数据解得: s 2=0-2022×(-10)m =20 m驾驶员正常的反制距离:s 1+s 2=30 m ;(2)饮酒的驾驶员的反制距离比正常时,主要是反应时间多1 s ,所以反制动距离比正常多:Δs =v 0Δt =20×1 m =20 m.答案:(1)30 m (2)20 m“数形结合法”的应用——利用v -t 图像求物体的位移根据“无限分割”“逐渐逼近”的思想可以利用v -t 图像与t 轴所围面积表示位移.这就提供了一种利用图像计算位移的方法,常称为数形结合法,应用时注意以下几点:(1)v -t 图像与t 轴所围的“面积”表示位移的大小.(2)面积在t 轴以上表示位移是正值,在t 轴以下表示位移是负值. (3)物体的总位移等于各部分位移(正、负面积)的代数和. (4)物体通过的路程为t 轴上、下“面积”绝对值的和.某一做直线运动的物体的v -t 图像如图所示,根据图像求:(1)0~4 s 内,物体距出发点的最远距离; (2)前4 s 内物体的位移; (3)前4 s 内物体通过的路程. 解析:(1)物体距出发点最远的距离 s m =12v 1t 1=12×4×3 m =6 m.(2)前4 s 内的位移s =s 1-s 2=12v 1t 1-12v 2t 2=12×4×3 m -12×2×1 m =5 m.(3)前4 s 内通过的路程x =s 1+s 2=12v 1t 1+12v 2t 2=12×4×3 m +12×2×1 m =7 m.答案:(1)6 m (2)5 m (3)7 m1.根据匀变速直线运动的位移公式s =v 0t +at 22,关于做匀加速直线运动的物体在t 秒。

高一物理匀变速运动特殊规律

高一物理匀变速运动特殊规律

高一物理知识点补充及练习题一.匀变速直线运动的特殊公式 1.二个推论(1)连续相等的相邻时间间隔T 内的位移差等于恒量,即s 2-s 1=s 3-s 2=…=s n -s (n -1)=aT 2. 推广 ()2m n x x m n aT -=-(2)做匀变速直线运动的物体在一段时间内的平均速度等于这段时间初末时刻速度矢量和的一半,还等于中间时刻的瞬时速度.平均速度公式:v =v 0+v t 2=v t2.=- 2.初速度为零的匀加速直线运动的特殊规律(1)在1T 末,2T 末,3T 末,…nT 末的瞬时速度之比为v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n .(2)在第1个T 内,第2个T 内,第3个T 内,…,第n 个T 内的位移之比为s Ⅰ∶s Ⅱ∶s Ⅲ∶…∶s n =1∶3∶5∶…∶(2n -1).(3)以上两个数列,对末速度为零的匀减速直线运动同样适用,当然数列的顺序要反过来。

3.对三个基本公式的理解(1)速度时间公式v t =v 0+at 、位移时间公式s =v 0t +122、位移速度公式v t 2-v 02=2as ,是匀变速直线运动的三个基本公式,是解决匀变速直线运动的基石.三个公式中的物理量s 、a 、v 0、t 、v t 均为矢量(三个公式称为矢量式),在应用时,一般以初速度方向为正方向,凡是与v 0方向相同的s 、a 、v t 均为正值,反之为负值,当v 0=0时,一般以a 的方向为正方向.这样就将矢量运算转化为代数运算,使问题简化.凡是已知三个量,其它量均可求。

(2)刹车陷阱:刹车问题,车停止后不会反倒,应首先判断所求时间内,车是否已经停止。

如果给出的时间t 大于减速运动的最大滑行时间t m ,用公式2020212m m at t v x a v x +==或,计算滑行的距离。

如果给出的时间t 小于减速运动的最大滑行时间t m ,用公式2021at t v x +=计算位移。

高一物理匀变速直线运动速度与位移的关系知识讲解

高一物理匀变速直线运动速度与位移的关系知识讲解

高一物理匀变速直线运动速度与位移的关系知识讲解【学习目标】1、会推导公式2202t v v ax -=2、掌握公式2202t v v ax -=,并能灵活应用【要点梳理】要点一、匀变速直线运动的位移与速度的关系根据匀变速运动的基本公式 0t v v a t =+,2012x v ta t =+, 消去时间t ,得2202t v v ax -=.即为匀变速直线运动的速度—位移关系.要点诠释:①式是由匀变速运动的两个基本关系式推导出来的,因为不含时间,所以若所研究的问题中不涉及时间这个物理量时利用该公式可以很方便, 应优先采用. ②公式中四个矢量t v 、0v 、a 、x 也要规定统一的正方向. 要点二、匀变速直线运动的四个基本公式(1)速度随时间变化规律:0t v v at =+. (2)位移随时间变化规律:2012x v t at =+. (3)速度与位移的关系:2202t v v ax -=.(4)平均速度公式:02t x v v +=,02tv v x t +=. 要点诠释:运用基本公式求解时注意四个公式均为矢量式,应用时,要选取正方向.公式(1)中不涉及x ,公式(2)中不涉及t v ,公式(3)中不涉及t ,公式(4)中不涉及a ,抓住各公式特点,灵活选取公式求解.共涉及五个量,若知道三个量,可选取两个公式求出另两个量. 要点三、匀变速直线运动的三个推论 要点诠释:(1)在连续相邻的相等的时间(T)内的位移之差为一恒定值,即△x =aT 2(又称匀变速直线运动的判别式). 推证:设物体以初速v 0、加速度a 做匀加速直线运动,自计时起时间T 内的位移 21012x v T aT =+. ① 在第2个时间T 内的位移220112(2)2x v T a T x =+-2032v T a T =+. ② 即△x =aT 2. 进一步推证可得①122222n n n n x x x x x a T T T ++--∆===323n nx x T +-==… ②x 2-x 1=x 3-x 2=…=x n -x n-1,据此可补上纸带上缺少的长度数据.(2)某段时间内中间时刻的瞬时速度等于这段时间内的平均速度 即022tt v v v v +==. 推证:由v t =v 0+at , ① 知经2t时间的瞬时速度 022t tv v a =+. ② 由①得0t at v v =-,代入②中,得00/20001()2222t t t t v v v v v v v v v +=+-=+-=,即022tt v v v +=. (3)某段位移内中间位置的瞬时速度2xv 与这段位移的初、末速度v 0与v t 的关系为2x v =推证:由速度-位移公式2202t v v ax -=, ①知220222x xv v a-=. ② 将①代入②可得22220022t xv v v v --=,即2x v =要点四、初速度为零的匀加速直线运动的几个比例式要点诠释:初速度为零的匀加速直线运动是一种特殊的匀变速直线运动,它自己有着特殊的规律,熟知这些规律对我们解决很多运动学问题很有帮助.设以t =0开始计时,以T 为时间单位,则(1)1T 末、2T 末、3T 末、…瞬时速度之比为v 1:v 2:v 3:…=1:2:3:…. 可由v t =at ,直接导出(2)第一个T 内,第二个T 内,第三个T 内,…,第n 个T 内的位移之比为:x 1:x 2:x 3:x n =1:3:5:…:(2n -1).推证:由位移公式212x at =得2112x aT =, 2222113(2)222x a T a T a T =-=, 22311(3)(2)22x a T a T =-252aT =. 可见,x 1 : x 2 : x 3 : … : x n =1 : 3 : 5 : … : (2n -1).即初速为零的匀加速直线运动,在连续相等的时间内位移的比等于连续奇数的比.(3)1T 内、2T 内、3T 内、…、位移之比为:222123123x x x =:::…:::…, 可由公式212x at =直接导出. (4)通过连续相同的位移所用时间之比 1231(21)(32)(1)n t t t t n n =----::::::::.推证:由212x at =知1t = 通过第二段相同位移所用时间21)t =-,同理:3t ==,则12311)n t t t t ⋅⋅⋅=⋅⋅⋅::::::::.要点五、纸带问题的分析方法(1)“位移差法”判断运动情况,设时间间隔相等的相邻点之间的位移分别为x 1、x 2、x 3…. ①若x 2-x 1=x 3-x 2=…=1n n x x --=0,则物体做匀速直线运动. ②若x 2-x 1=x 3-x 2=…=1n n x x --=△x≠0,则物体做匀变速直线运动.(2)“逐差法”求加速度,根据x 4-x 1=x 5-x 2=x 6-x 3=3aT 2(T 为相邻两计数点的时间间隔),有 41123x x a T -=,52223x x a T -=,63323x x a T -=, 然后取平均值,即1233a a a a ++=6543212()()9x x x x x x T ++-++=.这样使所给数据全部得到利用,以提高准确性.要点诠释:①如果不用“逐差法”求,而用相邻的x 值之差计算加速度,再求平均值可得:32546521222215x x x x x x x x a T T T T ----⎛⎫=+++ ⎪⎝⎭6125x x T -=.比较可知,逐差法将纸带上x 1到x 6各实验数据都利用了,而后一种方法只用上了x 1和x 6两个实验数据,实验结果只受x 1和x 6两个数据影响,算出a 的偶然误差较大. ②其实从上式可以看出,逐差法求平均加速度的实质是用(x 6+x 5+x 4)这一大段位移减去(x 3+x 2+x 1)这一大段位移,那么在处理纸带时,可以测量出这两大段位移代入上式计算加速度,但要注意分母(3T)2而不是3T 2. (3)瞬间速度的求法在匀变速直线运动中,物体在某段时间t 内的平均速度与物体在这段时间的中间时刻2t时的瞬时速度相同,即2t v v =.所以,第n 个计数点的瞬时速度为:12n n n x x v T++=. (4)“图象法”求加速度,即由12n n n x x v T-+=,求出多个点的速度,画出v-t 图象,直线的斜率即为加速度.【典型例题】类型一、公式2202tv v ax -=的应用 例1、一列从车站开出的火车,在平直轨道上做匀加速直线运动,已知这列火车的长度为l ,当火车头经过某路标时的速度为v 1,而车尾经过这个路标时的速度为v 2,求: (1)列车的加速度a ;(2)列车中点经过此路标时的速度v ; (3)整列火车通过此路标所用的时间t .【答案】(1)22212v v a l -= (2)v = (3)122lt v v =+【解析】火车的运动情况可以等效成一个质点做匀加速直线运动,某一时刻速度为v 1,前进位移l ,速度变为v 2,所求的v 是经过2l处的速度.其运动简图如图所示.(1)由匀变速直线运动的规律得22212v v al -=,则火车的加速度为22212v v a l-=.(2)火车的前一半通过此路标时,有22122l v v a -=, 火车的后一半通过此路标时,有22222l v v a-=, 所以有222212v v v v -=-,故v =.(3)火车的平均速度122v v v +=,故所用时间122l lt v v v ==+. 【总结升华】对于不涉及运动时间的匀变速直线运动问题的求解,使用2202t v v ax -=可大大简化解题过程.举一反三 【变式1】(2016 金台区期末考)一物体在水平面上做匀加速直线运动,经过了A 、B 、C 三点,已知A 点速度为v ,B 点速度为3v ,C 点速度为4v ,则AB 段和BC 端的时间比是 A B 段和BC 段的位移比是 【答案】2:1;8:7【解析】设匀加速直线运动的加速度为a :AB 段的时间:32AB v v vt a a -== BCB 段的时间:43BC v v vt a a -== 则AB 段和BC 端的时间比: :2:1AB BC t t = AB 段的位移:220(3)2ABv v ax -= BC 段的位移:22(4)(3)2BCv v ax -=AB 段和BC 段的位移比::8:7AB BC x x =【高清课程:匀变速直线运动中速度与位移的关系 第5页】【变式2】某飞机着陆时的速度是216km/h ,随后匀减速滑行,加速度的大小是2m/s 2。

高一物理匀变速直线运动规律推论

高一物理匀变速直线运动规律推论

匀变速直线运动推论公式:
1、任意两个连续相等时间间隔T内,位移之差 是常数,即△x=x2-x1=aT2。
拓展:△xMN=xM-xN=(M-N)aT2
的色泽和质感。蘑菇王子:“哇!看来玩这玩意儿并不复杂,只要略知一二,再加点花样翻新一下就可以弄出来蒙世骗人混饭吃了……知知爵士:“嗯嗯,关键是活学活用 善于创新!本人搞装潢的专业可是经过著名领袖亲传的.”蘑菇王子:“哈哈,学知识就需要你这种的革新态度!”知知爵士:“嗯嗯,谢谢学长鼓励,我真的感到无比自
例2、已知一物体做匀变速直线运动,加速度为 a,试证明在任意一段时间t内的平均速度等于该 段时间中点t/2时刻的瞬时速度。
证明:设物体在匀变速直线运动中,任意一段
时间t的初速度为v0,位t的为时t时移位间为移内vxxxv0t12a2t 中间时刻t/2的速度 联上得v间的均度2t立两内平速为以式v0vtv01212aatt
分别是x1和x2。
由运动学知识:
x1v0T12a2x2v1T12a2Tv10aTT
两个连续相等的时间T内的位移之差:
x x2 x1 (v1 v0 )T aT 2 因为T是个恒量,小车加速度也是恒量,因此 △x也是个恒量。
即:只要物体做匀变速直线运动,它在任意两 个连续相等的时间内的位移之差等于一个 .
匀变速直线运动 规律推论
1、速度公式: v=v0+at
2、位移 公式:
xv0t12a2t
3、位移 与速度关
v2v022ax
4、平均 速度:
v系12:(v0v)xt
例1、证明:物体做匀变速直线运动,在任意两 个连续相等的时间内的位移之差等于一个常数。
证明:设加速度为a,经过任意一点A的速度为
v0,从A点开始经两个连续相等的时间T的位移

高一物理学案:匀变速直线运动的规律及结论

高一物理学案:匀变速直线运动的规律及结论

高一物理新授课学案《匀变速直线运动的规律及结论》类型一匀变速直线运动的基本公式的应用1.匀变速直线运动基本公式的比较2公式列方程→解方程,必要时进行讨论(比如刹车问题)。

例1一个滑雪的人,从85 m长的山坡上匀加速滑下,初速度为1.8 m/s,末速度为5.0 m/s,他通过这段山坡需要多长时间?针对训练1.(多选)一个物体以v0=8 m/s的初速度沿光滑斜面向上滑,加速度的大小为2 m/s2,冲上最高点之后,又以相同的加速度往回运动,则()A.1 s末的速度大小为6 m/sB.3 s末的速度为零C.2 s内的位移大小是12 mD.5 s内的位移大小是15 m类型二匀变速直线运动的推论的应用1.平均速度公式:做匀变速直线运动的物体,在任意一段时间t内的平均速度等于这段时间内中间时刻的瞬时速度,还等于这段时间初、末速度矢量和的一半,即v=v0+v2=vt2。

推导:2.逐差相等公式(1)在任意两个连续相等的时间间隔T内,位移之差是一个常量,即Δx=xⅡ-xⅠ=aT2。

(2)对于不相邻的第m段、第n段位移x m和x n,则有x m-x n=(m-n)aT2。

推导:例2一物体做匀变速直线运动,在连续相等的两个时间间隔内,通过的位移分别是24 m 和64 m,每一个时间间隔为4 s,求物体的初速度、末速度及加速度大小。

针对训练2.一质点做匀变速直线运动,初速度v0=2 m/s ,4 s内位移为20 m,求:(1)质点4 s末的速度大小;(2)质点2 s末的速度大小。

类型三初速度为零的匀加速直线运动的比例式的应用1.按时间等分(设相等的时间间隔为T)的比例式(1)T末、2T末、3T末、…、nT末的瞬时速度之比为v1∶v2∶v3∶…∶v n=1∶2∶3∶…∶n。

(2)T内、2T内、3T内、…、nT内的位移之比为x1∶x2∶x3∶…∶x n=12∶22∶32∶…∶n2。

(3)第一个T内、第二个T内、第三个T内、…、第n个T内的位移之比为x1′∶x2′∶x3′∶…∶x n′=1∶3∶5∶…∶(2n-1)。

匀变速直线运动的六大推论

匀变速直线运动的六大推论

初速度为0
马鞍山中加双语学校 高一物理组
千万不要忘了 :
• 末速度为零的匀减速直线运动也可以认为是反向的 初速度为零的匀加速直线运动
2015/12/8
马鞍山中加双语学校 高一物理组
例1.汽车刹车后做匀减速直线运动,经3 s后停止运动,那么,在 这连续的3个1 s内汽车通过的位移之比为( A.1∶3∶5 B.5∶3∶1 C.1∶2∶3 ) D.3∶2∶1
1s
sI 5
1s
sII 3
马鞍山中加双语学校 高一物理组
1s sIII 1
例2:如图,在水平面上固定着三个完全相同的木块,一子 弹以水平初速度v0射入木块,若子弹在木块中做匀减速 直线运动,当穿透第三个木块时速度恰好为0,则子弹依 次射入每个木块时的速度比和穿过每个木块所用的时间 比分别为( CD )
马鞍山中加双语学校 高一物理组
• 4.一个从静止开始作匀加速直线运动的物体 ,从开始运动起,连续通过三段位移的时间 分别是1s、2s、3s,这三段位移之比利通过 这三段位移的平均速度之比分别是( B ) • A.1∶22∶32;1∶2∶3;
• B、1∶23∶33;1∶22∶32
• C、1∶2∶3;1∶1∶1;
D.1∶16∶81
1 2 1 2 解析 :由x at 得 : xⅠ x1 at , xⅡ x 2 x1 2 2 1 1 2 1 1 2 2 2 2 a 3t at 4at , x Ⅲ x 3 x 2 a 6t a 3t 2 2 2 2 27 2 at , 则xⅠ ∶xⅡ ∶x Ⅲ 1 ∶ 8 ∶ 27. 2
以时间等分 T v =0 T
0
T s4
T
T
s1 s 2 s3

高一物理 匀变速直线运动规律的应用

高一物理 匀变速直线运动规律的应用

1.v2-v02=2ax此式不涉及时间,若题目中已知量 和未知量都不涉及时间,利用此式往往比较简单;
2用.于x匀=变vt普速遍直适线用运于动各,种两运者动相,结而合可v=以v轻02+v松=地v2t求只出适 中间时刻的瞬时速度或者初、末速度.
3.x2-x1=aT2适用于匀变速直线运动, 进一步的推论有xm-xn=(m-n)aT2(其中T为连续 相等的时间间隔,xm为第m个时间间隔内的位移, xn为第n个时间间隔内的位移).
目标定位
预习导学
课堂讲义
对点练习
课堂讲义
匀变速直线运动的规律总结
三、初速度为零的匀变速直线运动的比例式
1.初速度为零的匀加速直线运动,按时间等分(设相
等的时间间隔为T)
(1)1T末、2T末、3T末…、nT末瞬时速度之比
v1∶v2∶v3∶…∶vn=1∶2∶3∶…∶n
(2)1T内、2T内、3T内、…、nT内的位移之比 x1∶x2∶x3∶…∶xn=12∶22∶32∶…∶n2
(3)第一个T内,第二个T内,第三个T内,…,
第n个T内位移之比 xⅠ∶xⅡ∶xⅢ∶…∶xn=1∶3∶5∶…∶(2n-1)
目标定位
预习导学
课堂讲义
对点练习
课堂讲义
匀变速直线运动的规律总结
2.初速度为零的匀加速直线运动,按位移等分(设相等的 位移为x) (1)通过前x、前2x、前3x…时的速度之比
v1∶v2∶v3∶…∶vn=1: 2: 3:......: n
第2s、第3s、第4s内,通过
的路程分别为1m、2m、3m、
4m,有关其运动的描述正
确A.的4是s内( 的A平B)均速度是
2.5m/s B.在第3、4两秒内平均速 度是3.5m/s

专题01 匀变速直线运动(讲义)-高三物理寒假讲义

专题01 匀变速直线运动(讲义)-高三物理寒假讲义

专题01 匀变速直线运动(讲义)一、核心知识+方法1.匀变速直线运动(1)定义:沿着一条直线,是加速度不变的运动.(2)分类:匀加速直线运动,a 与v 0方向相同;匀减速直线运动,a 与v 0方向相反. 2.基本规律和推论 (1)速度公式:v =v 0+at . (2)位移公式:x =v 0t +12at 2.(3)位移速度关系式:v 2-v 20=2ax .(4)相同时间内的位移差:Δx =aT 2,x m -x n =(m -n )aT 2. (5)中间时刻速度:v t 2 =v 0+v 2=v .3.初速度为零的匀加速直线运动的推论 (1)1T 末、2T 末、3T 末……瞬时速度的比为 v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n . (2)1T 内、2T 内、3T 内……位移的比为 x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2.(3)第一个T 内、第二个T 内、第三个T 内……位移的比为 x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x N =1∶3∶5∶…∶(2n -1). (4)从静止开始通过连续相等的位移所用时间的比为t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1). 4.自由落体运动与竖直上抛运动5.恰当选用公式的技巧(1)符号的确定在匀变速直线运动中,一般以v 0的方向为正方向(但不绝对,也可规定为负),凡与正方向相同的矢量为正值,相反的矢量为负值,这样就把公式中的矢量运算转换成了代数运算.(2)应用技巧①物体做匀减速直线运动直至速度减为零,通常看成反方向的初速度为零的匀加速直线运动来处理,还是利用了运动的对称性.②物体做匀减速直线运动,减速为零后再反向运动,如果整个过程中加速度恒定,则可对整个过程直接应用公式.(3)公式的选择技巧①若题目相关物理量中无位移,一般选公式v =v 0+at ; ②若题目相关物理量中无时间,一般选公式v 2-v 20=2ax ; ③若题目相关物理量中无末速度,一般选公式x =v 0t +12at 2;④若题目相关物理量中无初速度,一般选公式x =vt -12at 2;⑤若题目相关物理量中无加速度,一般选公式x =v 0+v2t .6.解决匀变速直线运动的常用方法7.追及、相遇常见题型的解题思路(1)解题的基本思路分析两物体的运动过程→画运动示意图→找出两物体的位移关系→列位移方程(2)分析技巧①两个等量关系:即时间关系和位移关系,这两个关系可以通过画草图得到.②一个临界条件:即二者速度相等,它往往是物体能否追上、追不上或两者相距最远、最近的临界条件.(3)追及判断常见情形:物体A追物体B,开始二者相距x0,则①A追上B时,必有x A-x B=x0,且v A≥v B.②要使两物体恰不相撞,必有x A-x B=x0,且v A≤v B.(4)常用方法①物理分析法:抓住“两物体能否同时到达空间某位置”这一关键,认真审题,挖掘题目中的隐含条件,建立一幅物体运动关系的图象.②数学极值法:设相遇时间为t,根据条件列方程,得到关于位移x与时间t的函数关系,由此判断两物体追及或相遇情况.③图象法:将两个物体运动的速度—时间关系在同一图象中画出,然后利用图象分析求解相关问题.二、重点题型分类例析题型1:匀变速直线运动的概念:【例题1】(2020·天津高一期中)一物体做匀变速直线运动,下列说法中正确的是A.物体的末速度必与时间成正比B.物体的位移必与时间的平方成正比C.物体速度在一段时间内的变化量必与这段时间成正比D.匀加速运动,位移和速度随时间增加;匀减速运动,位移和速度随时间减小题型2:匀变速直线运动的基本规律【例题2】(2020·全国高三专题练习)一物体从斜面顶端由静止开始匀加速滚下,到达斜面中点用时1 s,速度为2 m/s,则下列说法正确的是()A.斜面长度为1 mB.斜面长度为2 mC.物体在斜面上运动的总时间为2 sD.到达斜面底端时的速度为4 m/s题型3:匀变速直线运动的推论【例题3】(2016·吉林高三月考)一辆小汽车在一段平直的公路上做匀加速直线运动,A、B是运动过程中经过的两点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一物理匀变速直线运动的知识点
匀变速直线运动,速度均匀变化的直线运动,即加速度不变的直线运动。

高一物理匀变速直线运动的知识点你还记得多少下面由店铺给你带来关于高一物理匀变速直线运动的知识点,希望对你有帮助! 匀变速直线运动的知识点1
第一、二节探究自由落体运动/自由落体运动规律
记录自由落体运动轨迹
1.物体仅在中立的作用下,从静止开始下落的运动,叫做自由落体运动(理想化模型)。

在空气中影响物体下落快慢的因素是下落过程中空气阻力的影响,与物体重量无关。

2.伽利略的科学方法:观察→提出假设→运用逻辑得出结论→通过实验对推论进行检验→对假说进行修正和推广
自由落体运动规律
自由落体运动是一种初速度为0的匀变速直线运动,加速度为常量,称为重力加速度(g)。

g=9.8m/s2
重力加速度g的方向总是竖直向下的。

其大小随着纬度的增加而增加,随着高度的增加而减少。

vt2=2gs
竖直上抛运动
1.处理方法:分段法(上升过程a=-g,下降过程为自由落体),整体法(a=-g,注意矢量性)
1.速度公式:vt=v0 gt位移公式:h=v0t gt2/2
2.上升到最高点时间t=v0/g,上升到最高点所用时间与回落到抛出点所用时间相等
3.上升的最大高度:s=v02/2g
匀变速直线运动的知识点2
第三节匀变速直线运动
匀变速直线运动规律
1.基本公式:s=v0t+at2/2
2.平均速度:vt=v0+at
3.推论:1)v=vt/2
2)S2 S1=S3 S2=S4 S3=……=△S=aT2
3)初速度为0的n个连续相等的时间内S之比:
S1:S2:S3:……:Sn=1:3:5:……:(2n 1)
4)初速度为0的n个连续相等的位移内t之比:
t1:t2:t3:……:tn=1:(√2 1):(√3 √2):……:(√n √n 1)
5)a=(Sm Sn)/(m n)T2(利用上各段位移,减少误差→逐差法)
6)vt2 v02=2as
第四节汽车行驶安全
1.停车距离=反应距离(车速反应时间)+刹车距离(匀减速)
2.安全距离≥停车距离
3.刹车距离的大小取决于车的初速度和路面的粗糙程度
4.追及/相遇问题:抓住两物体速度相等时满足的临界条件,时间及位移关系,临界状态(匀减速至静止)。

可用图象法解题。

匀变速直线运动的知识点3例题解析
1.两物体都作匀变速直线运动,在相同的时间内,(D)
A.谁的加速度大,谁的位移一定越大
B.谁的初速度越大,谁的位移一定越大
C.谁的末速度越大,谁的位移一定越大
D.谁的平均速度越大,谁的位移一定越大
2.做匀减速直线运动的质点,它的位移随时间变化的规律是s=24t-1.5t2(m),当质点的速度为零,则t为多少(C)
A.1.5s
B.8s
C.16s
D.24s
3.飞机着地时的速度v0=60m/s,着地后即以a=6m/s2的加速度做匀减速运动,直至停止,则飞机着地后12s内的位移大小为
答案:300
9. VA=2VB
4.A、B两质点向同一方向运动,A做初速度为零的匀加速直线运动,B做匀速直线运动,t=时它们位于同一位置,则当它们再次位于同一位
置时的速度vA、vB的关系为.
答案: VA=2VB。

相关文档
最新文档