数据仓库、联机分析处理与数据挖掘
数据挖掘1

联机分析处理需具备的功能特征:
• • • • • 给出数据的多维视图 可交互查询对数据分析 提供分析建模功能 生成概括数据、聚集和层次 检查并显示二维或三维表格、图形,并能容易的 变换基准轴 • 具有多维数据存储引擎,按阵列存储数据
2.数据挖掘技术和工具 数据挖掘(Data Mining,DM)是从超大型数据库 (VLDB)或数据仓库中发现并提取隐藏在内部的信息 的一种新技术。目的是帮助决策者寻找数据间潜在 的关系,发现经营者被忽略的要素,而这些要素对 预测趋势、决策行为也许是十分有用的信息。 数据挖掘技术是可以满足和解决当前“数据太 多,信息不足”的技术。
3.数据库系统(DataBase System,DBS)
数据库系统是指在计算机系统中 引入数据库后的系统。 数据库系统由数据库管理系统进 行管理。
4.数据库管理系统
随着计算机软、硬件和相应技术的发展,数 据管理经历了三个阶段。 人工管理 文件系统 数据库系统
1.1.2数据库系统的特点 1. 2. 3. 4. 数据的结构化 数据的共享性 数据的独立性 数据统一由DBMS管理和控制 (1)数据的安全性 (2)数据的完整性 (3)并发控制 (4)数据库恢复
开放式数据库连接(ODBC) 是一种应用程序接口规范,它定义了 一个标准例程集,应用程序使用它们可以 访问数据库中的数据。
图1-4 数据库系统
应用程序 ODBC API
ODBC 驱动程序管理器
ODBC 驱动程序
ODBC 驱动程序
ODBC 驱动程序
数据库
数据库
数据库
(3)面向对象数据库 面向对象数据库系统是数据库技术与面向 对象程序设计方法相结合的产物。 面向对象数据库的三个发展方向:
数据仓库、OLAP与数据挖掘关系概述

数据仓库、OLAP与数据挖掘关系概述 摘要:数据仓库、OLAP与数据挖掘是当今的技术热点,数据仓库是一种解决数据使用的高效技术,OLAP则将数据通过多维视角和多种层次向用户进行多方式的呈现,数据挖掘为之提供了更好的决策支持和服务,同时促进了数据仓库技术的发展,本文简单介绍了这三者的概念和应用。 关键词:数据仓库 OLAP 数据挖掘
一、数据仓库 数据仓库是一种资讯系统的资料储存理论,此理论强调利用某些特殊资料储存方式,让所包含的资料,特别有利于分析处理,以产生有价值的资讯并依此作决策。利用数据仓库方式所存放的资料,具有一但存入,便不随时间而更动的特性,同时存入的资料必定包含时间属性,通常一个数据仓库皆会含有大量的历史性资料,并利用特定分析方式,自其中发掘出特定资讯。 1.1 数据仓库的特征 (1)数据仓库的数据是面向主题的。主题是一个抽象的概念,是较高层次上企业信息系统中的数据综合、归类并进行分析利用的抽象。在逻辑意义上,它是对应企业中某一宏观分析领域所涉及的分析对象。面向主题的数据组织方式,就是在较高层次上对分析对象的数据的一个完整、一致的描述,能完整、统一地刻划各个分析对象所涉及的企业的各项数据,以及数据之间的联系。所谓较高层次是相对面向应用的数据组织方式而言的,是指按照主题进行数据组织的方式具有 更高的数据抽象级别。 (2)数据仓库的数据是集成的 。数据仓库的数据是从原有的分散的数据库数据抽取来的。数据仓库的每一个主题所对应的源数据在原有的各分散数据库中有许多重复和不一致的地方,且来源于不同的联机系统的数据都和不同的应用逻辑捆绑在一起;数据仓库中的综合数据不能从原有的数据库系统直接得到。因此在数据进入数据仓库之前,必然要经过统一与综合,这一步是数据仓库建设中最关键、最复杂的一步。 (3)数据仓库的数据是不可更新的。数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询,一般情况下并不进行修改操作。数据仓库的数据反映的是一段相当长的时间内历史数据的内容,是不同时点的数据库快照的集合,以及基于这些快照进行统计、综合和重组的导出数据,而不是联机处理的数据。 (4)数据仓库的数据是随时间不断变化的。数据仓库的用户进行分析处理时是不进行数据更新操作的。但并不是说,在从数据集成输入数据仓库开始到最终被删除的整个数据生存周期中,所有的数据仓库数据都是永远不变的。 1.2 数据仓库的类型 数据仓库的类型根据数据仓库的数据类型和它们所解决的企业问题范围,一般可将数据仓库分为下列3种类型:企业数据仓库(EDW)、操作型数据库(ODS)和数据集市(Data Marts)。 (1)企业数据仓库为通用数据仓库,它既含有大量详细的数据,也含有大量累赘的或聚集的数据,这些数据具有不易改变性和面向历史性。此种数据仓库被采用进行涵盖多种企业领域上的战略或战术上的决策。 (2)操作型数据库既可以被用来针对工作数据做决策支持,又可用做将数据加载到数据仓库时的过度区域。与EDW相比,ODS是面向主题和面向综合的,易变的,仅含有目前的、详细的数据,不含有累计的、历史性的数据。 (3)数据集市是为了特定的应用目的或应用范围,从而数据仓库中独立出来的一部分数据,也可称为部门数据或主题数据。几组数据集市可以组成一个EDW。 二、OLAP技术 联机分析处理(On-Line Analytical Processing,简称OLAP),是一套以多维度方式分析数据,而能弹性地提供积存上钻(Roll-up)、下钻(Drill-down)、和透视分析(pivot)等操作,呈现集成性决策信息的方法,多用于决策支持系统、商务智能或数据仓库。其主要的功能,在于方便大规模数据分析及统计计算,对决策提供参考和支持。与之相区别的是联机交易处理(OLTP)。 OLAP需以大量历史数据为基础配合上时间点的差异并对多维度及汇整型的信息进行复杂的分析。OLAP需要用户有主观的信息需求定义,因此系统效率较佳。 在实际应用中用广义和狭义两种不同的理解。广义上的理解与字面意思相同,即针对于OLTP而言,泛指一切不对数据进行输入等事务性处理,而基于已有数据进行分析的方法。但更多的情况下OLAP是被理解为其狭义上的含义,即与多维分析相关,基于立方体(CUBE)计算而进行的分析。 2.1 OLAP的多维分析特性 OLAP具有两个重要的特点:一是在线性,体现为对用户请求的快速响应和交互式操作;二是多维分析,也就是说,OLAP展现在用户面前的是一个多维视图,使用者可以对其进行各种多维分析操作。下面我们具体介绍OLAP的多维分析特性。 在实际的决策制定过程中,决策者需要的不是某一指标单一的值,而是希望从多个角度或者从不同的考察范围来观察某一指标或多个指标,通过分析对比,从而找出这些指标间隐藏的内在关系,并预测这些指标的发展趋势,即决策所需的数据总是和一些分析角度和分析指标有关。OLAP的主要工作就是将数据仓库中的数据转换到多维数据结构中,并且对上述多维数据结构执行有效且非常复杂的多维查询。 2.2 OLAP的多维分析操作 多维分析操作是指对以多维形式组织起来的数据采取切片、切块、旋转等各种分析操作,以求剖析数据、使最终用户能从多个角度、多个侧面去观察数据库中的数据、从而深入地了解包含在数据中的信息、内涵。多维分析的基本操作有: (1)切片操作:是在给定的多维数据集的某一个维上选定一维成员,从而得到一个多维数据子集的动作。如果有(维1,维2,„„,维i,„„,维n,度量)多维数据集,对维i选定了某个维成员,那么(维1,维2,„„,维i成员,„„,维n,度量)就是多维数据集(维1,维2,„„,维i,„„,维n,度量)在维i上的一个切片。 (2)切块操作:在多维数据集的某一维上选定某一区间的维成员的操作称为切块,即限制多维数据集的某一维的取值区间。 (3)旋转是一种目视操作,它转动多维数据集的视角,提供数据的替代表示。旋转操作可以将多维数据集的不同维进行交换显示,从而使用户更加直观地观察数据集中不同维之间的关系。 (4)钻取分为向下钻取和向上钻取。下钻操作是由不太详细的高层次汇总数据分解为更详细的低层次数据。上钻是下钻的逆操作,它是通过一个维的概念分层向上攀升,或者通过维归约,在多维数据集上进行聚集。 (5)在OLAP分析操作中,还有“钻过”(drill-across)和“钻透”(drill-through)等。“钻过”涉及多个事实表的查询;“钻透”操作使用关系SQL机制,钻到多维数据集的底层,到后端关系表。 (6)其它的OLAP操作还包括计算统计表中的最高或最低N项、平均值、移动平均值、增长率、各类百分比等。 三、数据挖掘 数据挖掘(Data mining),又译为资料探勘、数据挖掘、数据采矿。它是数据库知识发现(Knowledge-Discovery in Databases,缩写:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性(属于Association rule learning)的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。 3.1 数据挖掘与传统数据分析的区别 数据挖掘与传统的数据分析(如查询、报表、联机应用分析)的本质区别是数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识。数据挖掘所得到的信息应具有先未知,有效和可实用三个特征。先前未知的信息是指该信息是预先未曾预料到的,既数据挖掘是要发现那些不能靠直觉发现的信息或知识,甚至是违背直觉的信息或知识,挖掘出的信息越是出乎意料,就可能越有价值。在商业应用中最典型的例子就是一家连锁店通过数据挖掘发现了小孩尿布和啤酒之间有着惊人的联系。 尽管通常数据挖掘应用于数据分析,但是像人工智能一样,它也是一个具有丰富含义的词汇,可用于不同的领域。 它与KDD的关系是:KDD是从数据中辨别有效的、新颖的、潜在有用的、最终可理解的模式的过程;而数据挖掘是KDD通过特定的算法在可接受的计算效率限制内生成特定模式的一个步骤。 3.2 数据挖掘的分析方法 数据挖掘利用的技术越多,得出的结果精确性就越高。原因很简单,对于某一种技术不适用的问题,其它方法即可能奏效,这主要取决于问题的类型以及数据的类型和规模。数据挖掘方法有多种,其中比较典型的有关联分析、序列模式分析、分类分析、聚类分析等。 (1)关联分析,即利用关联规则进行数据挖掘。在数据挖掘研究领域,对于关联分析的研究开展得比较深入,人们提出了多种关联规则的挖掘算法,如APRIORI、STEM、AIS、DHP等算法。关联分析的目的是挖掘隐藏在数据间的相互关系,它能发现数据库中形如“90%的顾客在一次购买活动中购买商品A的同时购买商品B”之类的知识。 (2)序列模式分析和关联分析相似,其目的也是为了挖掘数据之间的联系,但序列模式分析的侧重点在于分析数据间的前后序列关系。它能发现数据库中形如“在某一段时间内,顾客购买商品A,接着购买商品B,而后购买商品C,即序列A→B→C出现的频度较高”之类的知识,序列模式分析描述的问题是:在给定交易序列数据库中,每个序列是按照交易时间排列的一组交易集,挖掘序列函数作用在这个交易序列数据库上,返回该数据库中出现的高频序列。 (3)分类分析,设有一个数据库和一组具有不同特征的标记,该数据库中的每一个记录都赋予一个类别的标记,这样的数据库称为示例数据库或训练集。分类分析就是通过分析示例数据库中的数据,为每个类别做出准确的描述或建立分析模型或挖掘出分类规则,然后用这个分类规则对其它数据库中的记录进行分类。目前已有多种分类分析模型得到应用,其中几种典型模型是线性回归模型、决策树模型、基本规则模型和神经网络模型。 (4) 聚类分析与分类分析不同,聚类分析输入的是一组未分类记录,并且这些记录应分成几类事先也不知道。聚类分析就是通过分析数据库中的记录数据,根据一定的分类规则,合理地划分记录集合,确定每个记录所在类别。它所采用的分类规则是由聚类分析工具决定的。聚类分析的方法很多,其中包括系统聚类法、分解法、加入法、动态聚类法、模糊聚类法、运筹方法等。采用不同的聚类方法,对于相同的记录集合可能有不同的划分结果。 四、 数据仓库、OLAP与数据挖掘的关系 数据仓库将来自于各种数据源的数据,根据不同的主题进行存储,并对原始数据进行抽取、转换和加载等一系列筛选和清理工作。OLAP则将数据通过多维视角和多种层次向用户进行多方式的呈现。数据挖掘则应用不同的算法,向用户揭示数据间的规律性,从而辅助商业决策。
数据挖掘与数据仓库的关联

维普资讯
库 的关 联
探 讨 了数 据 挖 掘 和 数 据 仓 库 之 间 的 紧 密
1 .引言
发现那些不能靠 直觉发现 的信息或 知识 ,甚至 是违背直觉的信 息或知识 ,挖 掘出的信息越是
数据挖掘 出现于 2 0世纪 8 O年代 后期 ,9 出乎意料 ,就可能越有价值。在 商业应用 中最 O 年代有了突飞猛进 的发展 ,数据数据挖掘的核 典型的例子就是一家连锁店通过数据挖掘发现
掘库。 当然为了数据挖 掘你 也不必非得建 立一个
数据仓库 ,数据仓库不是必需 的。建 立一个巨
的集成特性是指在数据进入数据仓库之前 ,必 大 的数据仓库 ,把各个不 同源 的数据统 一在一 须经过数据加工 和集成 ,这是建立数据 仓库 的 起 ,解决所有 的数据 冲突问题 ,然后 把所有 的 关键步骤 ,使用数据清理技术和数据集成技术 , 数据导到一个数据仓库 内,是一项巨大 的工程 ,
作者简介 :李江萍, 女,江西高安人,硕士,助教,研究方向:计算机应用技术。
一
5 — 2
维普资讯
什么是BI(上)

什么是BI?Business Intelligence(BI) = Data Warehouse(DW) + OLAP + Data Mining(DM)商业智能=数据仓库+联机分析+数据挖掘做BI的目的是帮助用户进行决策分析,从多维的角度来分析现状,给决策者做出正确的决策提供可靠的数据基础与背景,为企业的发展做出正确的导向。
然而在国内做BI确走入了一个误区,通常客户拿BI当报表系统来用,这有点大才小用的感觉,还有就是各个公司水平不同,常常有个别公司拿着拿着非BI系统来欺骗客户给BI蒙上了一层不好的印象,总的来说近两年BI在国内的发展还是比较顺利的,有越来越多的企业和机关来开始做自己的BI系统,比如银行、税务、保险等行业。
BI通常的架构或基本架构是:源数据->ODS->DW->OLAP->前端。
常用源数据类型:关系数据库、文本数据等。
ODS :操作数据存储(Operation Data Storage)主要用途是将多个数据源的数据集成到一个临时缓冲区中供数据仓库使用。
一般情况下ODS的数据不会保留很长时间根据需要1个月或3个月,如果客户有查询要求的话那么ODS可能需要一直保留,通常情况下不用备份。
ODS一个好处是在数据仓库与源数据之间做了一个缓冲减轻了源系统压力,我们在用需要操作用户源系统。
比如:我们从源数据向数据仓库中加载事实表数据时,这时候我们需要进行聚合操作,如果没有ODS层,那么所有聚合操作的压力是在源系统完成的,这就会给客户源系统带来很大的压力,这是在项目实施过程中经常遇到的一个问题。
DW:数据仓库(Data Warehouse)简单说就是存储事实表和维表数据的数据库而已。
定义:数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策。
《数据挖掘》PPT课件

2020/12/9
数据库研究所
9
高级数据挖掘
课程的教学目的
➢ 让学生掌握数据挖掘的基本概念、算法和高级技术; ➢ 将这些概念、算法和技术应用于实际问题。
复旦大学计算机科学技术学 院基本情况
➢ 主要研究方向
▪ 媒体计算 ▪ 数据库与数据科学 ▪ 网络与信息安全 ▪ 智能信息处理 ▪ 人机接口和服务计算 ▪ 理论计算机科学 ▪ 软件工程与系统软件
2020/12/9
数据库研究所
6
复旦大学数据挖掘课程的设置
总体目标
➢ 掌握大规模数据挖掘与分析的基本流程 ➢ 掌握数据挖掘的基本算法 ➢ 掌握对实际数据集进行挖掘的系统能力
数据仓库与数据挖掘
数据库系统
2020/12/9
数据库研究所
8
数据仓库与数据挖掘
课程的教学目的
➢ 掌握数据仓库数据挖掘原理、技术和方法,掌握建立数据挖掘应用 系统的方法,了解相关前沿的研究。
教学内容
➢ 数据挖掘、数据仓库的基本概念
▪ 数据仓库设计和应用 ▪ 数据挖掘的基本技术
• 关联分析、分类分析、聚类分析、异常分析和演化分析等;联机分析处理OLAP技术;
➢ involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems.
➢ The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use.
数据分析与数据挖掘心得体会

数据分析与数据挖掘心得体会1、数据挖掘数据挖掘应当更正确的命名为:"从数据中挖掘知识”,不过后者显得过长了些。
而“挖掘”一词确是生动形象的!人们把数据挖掘视为“数据中的知识发现(KDD)”的同义词,而另一些人只是把数据挖掘视为知识发现过程的一个基本步骤。
由此而产生数据挖掘的定义:从大量数据中挖掘有趣模式和知识的过程!数据源包括数据库、数据仓库、Web、其他信息存储库或动态地流入系统的数据。
作为知识发现过程,它通常包括数据清理、数据集成、数据变换、模式发现、模式评估和知识表示六个步骤。
数据挖掘处理数据之多,挖掘模式之有趣,使用技术之大量,应用范围之广泛都将会是前所未有的;而数据挖掘任务之重也一直并存。
这些问题将继续激励数据挖掘的进一步研究与改进!2、数据分析数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥数据的作用。
是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
数据分析有极广泛的应用范围。
典型的数据分析可能包含以下三个步:1、探索性数据分析:当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。
2、模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。
3、推断分析:通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。
数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。
在实用中,数据分析可帮助人们作出判断,以便采取适当行动。
数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。
这一过程是质量管理体系的支持过程。
在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。
基于数据仓库的数据挖掘及联机分析技术
策 。在 欧 美 发 达 国家 , 以数 据 仓 库 为 基 础 的在 线 分 析 处 理 和 数 据 挖 掘 应 用 ,首 先 在 金 融 、保 险 、证 券 、 电信 等 传 统 数 据 密 集 型 行 业 取 得 成 功 。BM 、 rce I oal、 T rdt、Mirsf、N tza和 S eaaa coot eez AS等 有 实 力 的 公 司 相 继 推 出 了数 据 仓 库 解 决 方 案 。 近 几 年 开 始 流 行 “ 布 式 数 据 仓 库 ” 是 在 多 个 分 ,
维普资讯
兵 工 自动 化
网络 与 售息 技 i I i
Ne wo k a d I f r ai nTe h o o y t r n n o m t c n l g o
0. . t ma i n I Au o to 2 08 V 1 2 , 0 , o . 7 No. 9
20 年第 2 08 7卷第 9期
文 章 编 号 : 10 — 5 6 ( Байду номын сангаас 8 90 5 — 2 0 6 1 7 2 0 )0 0 8 0
基 于 数 据 仓 库 的 数 据 挖 掘 及 联 机 分 析 技 术
张 晓 明 , 刘 萍 , 王 鹏
( 防科 技大 学 信 息 系统 与 管理 学 院 ,湖 南 长沙 4 0 7 ) 国 1 0 3
摘 要 :随 着数据 分 析 越 来越被 关注 , 为分析 数 据 , 多种 分析 技 术得 以应 用 ,主要 是 在数 据 仓库 领 域 的数据 挖掘 技 术和联 机 分析 技 术 。 然而数 据 仓库 包含 了大量 的基 于数 据 的基 础 观 点 ,该观 点 均 来 源 于分布 式 异构 数据 库 , 其 目 的是 通 过联机 分 析 查询 和数 据挖 掘 提供 有 效的 决策 支持 。
数据仓库与挖掘第五章_数据挖掘概述
好的、结构化的数据,数据挖掘则需要从不完全的、有噪声 的、模糊的数据中发现知识。
数据挖掘与传统数据分析方法区别
数据可能是非结构化的。数据挖掘不仅可以处 理结构化的数据,而且可以处理半结构化或者 非结构化的数据。事实上,基于文本的数据挖 掘甚至互联网上的数据挖掘正是数据挖掘的研 究方向之一 。
数据挖掘和数据仓库
大部分情况下,数据挖掘都要先把数据从数据仓库中拿到数据挖 掘库或数据集市中。 优点:数据仓库的数据清理和数据挖掘的数 据清理差不多,如果数据在导入数据仓库时已经清理过,那很可 能在做数据挖掘时就没必要再清理一次了,而且所有的数据不一 致的问题都已经被解决了。
为了数据挖掘你也不必非得建立一个数据仓库,建立一个巨大的 数据仓库,把各个不同源的数据统一在一起,解决所有的数据冲 突问题,然后把所有的数据导到一个数据仓库内,是一项巨大的 工程,可能要用几年的时间花上百万的钱才能完成。
传统的数据分析方法基于假设驱动的:一般都是先给 出一个假设然后通过数据验证。
数据挖掘在一定意义上是基于发现驱动的:模式都 是通过大量的搜索工作从数据中自动提取出来 。即 数据挖掘是要发现那些不能靠直觉发现的信息或知 识,甚至是违背直觉的信息或知识,挖掘出的信息 越是出乎意料,就可能越有价值。
数据挖掘和数据仓库
分类与估值
分类与估值(Classification and Estimation)
分类指通过分析一个类别已知的数据集的 特征来建立一组模型,该模型可用以预测类别 未知的数据项的类别。该分类模型可以表现为 多种形式:分类规则(IF-THEN),决策树或 者数学公式,乃至神经网络。
估值与分类类似,只不过它要预测的不是 类别,而是一个连续的数值。
数据仓库与数据挖掘教程(第2版)课后习题答案 第三章
第三章作业1.联机分析处理(OLAP)的简单定义是什么?它体现的特征是什么。
P40联机分析处理是共享多维信息的快速分析。
它体现在四个特征:(1)快速性(2)可分析性(3)多维性(4)信息性2.OLAP准则中的主要准则有哪些?P41(1)多维概念视图(2)透明性(3)可访问性(4)一直稳定的报表性能(5)客户/服务器体系结构(6)维的等同性(7)动态的系数矩阵处理(8)多用户支持能力(9)非限定的跨维操作(10)直观的数据操作(11)灵活的报表生成(12)不受限制的维和聚集层次3. 什么是维?关系数据库是二维数据吗?如何理解多维数据?P43维是人们观察数据的特定角度。
关系数据库不是二维数据,只是通过二维关系表示了数据的多维概念。
多维数据就是从多个特定角度来观察特定的变量。
4.MDDB(Multi Dimensional Database, 多维数据库)是以多维的方式组织数据,即以维作为坐标系,采用类似于数组的形式存储数据。
RDBMS(relational database management system,关系型数据库管理系统)通过数据、关系和对数据的约束三者组成的数据模型来存放和管理数据MDDB特点:1.数据库中的元素具有相同的数值2.多维数据库表达清晰,3.占用存储少RDBMS的特点:1.数据以表格的形式出现2.每行为各种记录名称3.每列为记录名称所对应的数据域4.许多的行和列组成一张表单5.若干的表单组成database5.1.数据存取速度ROLAP服务器需要将SQL语句转化为多维存储语句,临时“拼合”出多维数据立方体。
因此,ROLAP的响应时间较长。
MOLAP在数据存储速度上性能好,响应速度快。
2.数据存储的容量ROLAP使用的传统关系数据库的存储方法,在存储容量上基本没有限制。
MOLAP通常采用多平面叠加成立体的方式存放数据。
当数据量超过操作系统最大文件长度时,需要进行数据分割。
多维数据库的数据量级难以达到太大的字节级。
数据挖掘名词解释
1。
数据挖掘数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
〔技术角度的定义〕数据挖掘可以描述为:按企业既定业务目标,对大量的企业数据进行探索和分析,揭示隐藏的、未知的或验证己知的规律性,并进一步将其模型化的有效方法。
〔商业角度的定义〕数据挖掘相近的同义词包括:数据融合、数据分析和决策支持等。
2.空间数据库空间数据库是指在关系型数据库(DBMS)内部对地理信息进行物理存储。
空间数据库中存储的海量数据包括对象的空间拓扑特征、非空间属性特征以及对象在时间上的状态变化。
3.分类分类指通过分析一个类别已知的数据集的特征来建立一组模型,该模型可用以预测类别未知的数据项的类别.该分类模型可以表现为多种形式:分类规则(IF—THEN),决策树或者数学公式,乃至神经网络.4。
聚类分析聚类分析又称为“同质分组”或者“无监督的分类",指把一组数据分成不同的“簇”,每簇中的数据相似而不同簇间的数据则距离较远。
相似性可以由用户或者专家定义的距离函数加以度量。
5.数据集成:指将多个数据源中的数据整合到一个一致的存储中6.数据仓库数据仓库是一个面向主题的、集成的、非易失的且随时间变化的数据集合,用于支持管理人员的决策.7。
数据粒度粒度是指数据仓库的数据单位中保存数据的细化或综合程度的级别。
8。
数据分割数据分割是指把数据分散到各自的物理单元中去,它们能独立地处理.9.OLAP基本思想联机分析处理(OnLine Analysis Processing,OLAP)在数据仓库系统中,联机分析处理是重要的数据分析工具.OLAP的基本思想是从多方面和多角度以多维的形式来观察企业的状态和了解企业的变化。
OLAP是独立于数据仓库的一种技术概念当OLAP与数据仓库结合时,OLAP的数据源为数据仓库,数据仓库的大量数据是根据多维方式组织的.10.OLAP联机分析处理(OLAP)是一种软件技术,它使分析人员能够迅速、一致、交互地从各个方面观察信息,以达到深入理解数据的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据仓库、联机分析处理与数据挖掘08广义概念上的数据仓库是一种帮助企业做决策的体系化解决方案,它包括了三个方面的内容:⏹数据仓库技术(Data Warehouse,DW)⏹联机分析处理技术(On-line Analytical Processing,OLAP)⏹数据挖掘技术(Data Mining,DM)数据仓库、联机分析处理和数据挖掘作为信息处理技术是独立出现的。
数据仓库用于数据的存储和组织;联机分析处理则侧重于数据的分析;数据挖掘则致力于知识的自动发现。
因此这三种技术之间并没有内在的依赖关系,可以独立地应用到企业信息系统的建设之中,以提高信息系统相应的能力。
但是,这三种技术之间确实存在着一定的联系性和互补性,把它们结合起来,就可以使它们的能力更充分地发挥出来。
这样就形成了一种决策支持系统的架构,即DW+OLAP+DM。
1、数据仓库技术⑴概述数据仓库是一种只读的、用于分析的数据库,常常作为决策支持系统的底层。
它从大量的事务性数据库中抽取数据、并将其清理、转换为新的存储格式,即为了决策目标而把数据聚合在一种特殊的格式中。
数据仓库是支持管理决策过程的、面向主题的、集成的、随时间变化的、但信息本身相对稳定的数据集合。
其中,“主题”是指用户使用数据仓库辅助决策时所关心的重点问题,每一个主题对应一个客观分析领域,如销售、成本、利润的情况等。
“面向主题”就是指数据仓库中的信息是按主题组织的,按主题来提供信息。
“集成的”是指数据仓库中的数据不是业务处理系统数据的简单拼凑与汇总,而是经过系统的加工整理,是相互一致的、具有代表性的数据。
“随时间变化”是指数据仓库中存储的是一个时间段的数据,而不仅仅是某一个时间的数据,所以主要用于进行时间趋势分析。
一般数据仓库内的数据时限为5到10年,数据量也比较大。
“信息本身相对稳定”是指数据一旦进入数据仓库,一般情况下将被长期保留,变更很少。
⑵数据仓库组织和管理数据的方法与普通数据库的不同点主要表现在三个方面:①它依据决策要求,只从数据库中抽取那些需要的数据,并进行一定的处理。
②数据仓库是多维的,即数据仓库中数据的组织方式有多层的行和列。
③它支持决策处理,不同于普通的事务处理。
⑶数据仓库需要的数据库技术的支持:①并行数据库技术:数据仓库中的数据量很大,一般要达到GB级,有的甚至要到TB 级。
对于处理如此大规模的数据,使用并行技术对提高运行效率是很有帮助的。
②高性能的数据库服务器:传统数据库的应用是操作型的,而数据仓库的应用是分析性的,它需要有高性能的数据库服务器配合工作,对DBMS核心的性能也有更高的要求。
③数据库互操作技术:数据仓库的数据来源多种多样,可能来自数据库,也可能来自文件系统。
即使都来自数据库,这些数据库也往往是异构的。
为了从这些异构数据源中定期抽取、转换和集成所需要的数据存入库中,异构数据源之间的互操作技术是必需的。
2、联机分析处理技术联机分析处理是针对特定问题的联机数据访问和分析,通过对信息进行快速、稳定、一致和交互式的存取,对数据进行多层次、多阶段的分析处理,以获得高度归纳的分析结果。
联机分析处理是一种自上而下、不断深入的分析工具,在用户提出问题或假设之后,它负责提取出关于此问题的详细信息,并以一种比较直观的方式呈现给用户。
联机分析处理技术的发展速度很快,在数据仓库的概念提出不久,联机分析处理的理论及相应工具就被相继推出了。
联机分析处理要求按多维方式组织企业的数据。
多维数据库的发展使决策分析中的数据结构和分析方法相分离,才有可能研制出通用而灵活的分析工具,并使分析工具产品化。
决策分析需要从不同的角度观察分析数据,以多维数据为核心的多维数据分析是决策的主要内容。
多维数据库是以多维方式组织数据的。
目前,联机分析处理的工具可分为两类:一类是基于多维数据库的,另一类是基于关系数据库的。
两者的相同点是基本数据源仍是数据库和数据仓库,都是基于关系数据模型的,都向用户显示多维数据视图;不同点在于,前者把分析所需的数据从数据仓库中抽取出来,物理地组织成多维数据库,而后者则是利用关系表来模拟多维数据,并不是物理地生成多维数据库。
3、数据挖掘技术数据挖掘的基本思想是从数据中抽取有价值的信息,其目的是帮助决策者寻找数据间潜在的关联,发现被忽略的要素,而这些对预测趋势和决策行为也许是十分有用的。
从数据库的角度看,数据挖掘就是这样一个过程,它从数据库的数据中识别出有效的、新颖的、具有潜在效用的并最终可理解的信息(如规则、约束等)的非平凡过程。
非平凡是一个数学概念,即数据挖掘既不是把数据全部抽取,也不是一点儿也不抽取,而是抽取出隐含的、未知的和可能有用的信息。
从决策支持的角度看,数据挖掘是一种决策支持的过程,主要基于人工智能、机器学习、统计学和数据库技术等多种技术,能高度自动地分析企业原有的数据,进行归纳推理,从中挖掘出潜在的模式,预测客户的行为,帮助企业决策者调整市场策略,从而减少风险、辅助做出正确的决策。
它是提高商业和科学决策过程中的质量和效率的一种新方法。
数据挖掘和联机分析处理都可以在数据仓库的基础上对数据进行分析,以辅助决策。
其中,联机分析处理还是一种传统的决策支持方法,即,在某个假设的前提下通过数据查询和分析来验证和否定这个假设,所以联机分析处理是一种验证性的分析。
与联机分析处理不同,数据挖掘是数据驱动的,是一种真正的知识发现方法。
使用数据挖掘工具,用户不必提出确切的要求,系统能够根据数据本身的规律性,自动地挖掘数据潜在的模式,或通过联想,建立新的业务模型,帮助决策者调整市场策略,并找到正确的决策,这显然有利于发现未知的事实。
从数据分析深度的角度看,联机分析处理位于较低的层次,而数据挖掘则处于较深的层次。
所以,联机分析处理和数据挖掘的主要差别就在于是否能自动地进行数据分析。
4、决策支持系统在传统的决策支持系统中,数据库、模型库和知识库往往被独立地设计和实现,因而缺乏内在的统一性。
而以数据仓库为中心、事务处理和数据挖掘为手段的新方案很好地解决了这个问题。
如图4.18所示⑴数据仓库解决了数据不统一的问题。
数据仓库自底层数据库收集大量事务级数据的同时,对数据进行集成、转换和综合,形成面向全局的数据视图,形成整个系统的数据基础。
⑵联机分析处理从数据仓库中的集成数据出发,构建面向分析的多维数据模型,利用这个带有普遍性的数据分析模型,用户可以使用不同的方法,从不同的角度对数据进行分析,实现了分析方法和数据结构的分离。
⑶数据挖掘以数据仓库和多维数据库中的大量数据为基础,自动地发现数据中的潜在模式,并以这种模式为基础自动做出预测。
数据挖掘反过来又可以为联机分析处理提供分析的模式。
正是由于数据仓库、联机分析处理和数据挖掘这三种技术的联系性和互补性,使他们从不同的角度为决策支持服务。
随着企业竞争的日益加剧,这种新型的决策支持系统解决方案将受到越来越多的企业的青睐。
4.5.3 数据库技术与电子商务数据库技术对电子商务的支持是全方位的,从底层的数据基础到上层的应用都涉及到数据库技术。
其结构如图4.19所示。
从图中可以看出,数据库技术对于电子商务的支持可以概括为以下几部分:1、数据的收集、存储和组织这是传统数据库系统的主要功能,对于参与电子商务的企业而言,数据的来源不仅仅是企业内部管理信息系统,还包括大量的外部数据。
数据是企业的重要资源,是决策的依据,是进行各种生产经营活动的基础和结果。
2、决策支持这就要用到前面所提到的数据仓库解决方案。
这时数据库中存储的数据依然是决策的依据。
决策关系到企业未来成败的关键。
电子商务系统如果缺少好的决策支持功能,一方面是对电子商务海量数据资源的一种浪费,另一方面也是对从事电子商务的企业的一种损失。
3、对EDI的支持EDI是电子商务重要的组成部分,要想成功地实现EDI,企业的基础设施建设是关键,而数据库系统的建设是其中重要的一环。
如果有良好的数据库系统的支持,就可以实现应用到应用的EDI过程。
这一过程是企业内部的管理信息系统依据业务情况自动产生EDI订单,并传输给贸易伙伴;而对方传来的EDI单证也可以由系统自动解释,并存入相应的数据库,整个过程无需人工干预。
因此,业务数据库和EDI系统之间的接口就变得非常重要。
这个接口的功能可以概括为:⑴提供标准的信息格式定义。
⑵与数据库管理系统的无关性。
⑶自动抽取数据库中的相关数据转换为Edi单证格式。
⑷自动抽取EDI单证的关键数据存储到数据库中。
在这一过程中,可以设立一个EDI数据库专门用于有关EDI数据的处理。
这样的管理方式简单明了,但如果数据库之间的沟通不顺畅,就可能产生数据不一致的现象。
4、Web数据库随着WWW的不断发展,越来越多的企业加入到Web中来。
当前许多企业纷纷在Web上开发自己的主页来介绍自己的产品和服务。
有的网页不仅有琳琅满目的产品信息和优惠的价格,还配有详细的专家评论,牢牢抓住了网上用户的心理。
企业不仅可以通过Web发布自己的信息,同时也可以收集顾客的需求信息。
这样给双方都带来了好处。
对于企业而言,它不仅可以用相对低的成本介绍和展示其产品和服务,也可以获得准确的客户需求信息。
对于顾客而言,浏览网页省时省力,而且可以及时把要求反映给厂家,定制出自己喜欢的产品。
而且,访问Web都是通过浏览器,这样就统一了界面,有利于行业标准化。
Web数据库是一个新兴事物,Web与数据库的结合,主要是源于两者各自的优势和缺陷。
⑴ Web的特点Web上数据量大、类型多、缺乏组织和管理。
目前Web中字节量的增长速度达到每月15%以上。
因为Web的链接资源是非官方的,所以Web的数据缺少规范。
目前Web上的数据主要由静态HTML表达,其优点是表现能力强,链点跳转灵活,与平台无关。
但由于Web页面结构自由性大,致使Web上的信息又多又混乱。
就管理角度而言,Web的数据管理只相当于20世纪70年代的文件管理水平。
而且HTML文件动态更新特性差,用户很难得到最新的消息反馈。
⑵数据库技术的特点当前的数据库管理系统已发展到相当成熟的阶段,能高效、高质、安全地管理数据。
与Web相比,数据库管理系统显得严谨而灵活不足。
Web与数据库结合,可以集Web和数据库的诸优点于一身。
前端有界面友好的Web浏览器,后台则由成熟的数据库技术作支撑。
这样无疑会给企业一个良好的应用环境。
数据库是企业管理信息系统中用来管理信息的工具,所以数据库技术是渗透在其中,无处不在的。
电子商务作为新型的企业经营管理模式,当然也离不开数据库技术的支持。
如今,数据库技术正在为推进电子商务应用发挥巨大的作用,将来随着数据库技术飞速地发展,它一定会为优化企业管理模式做出巨大的贡献。