超疏水材料的应用方式

合集下载

超疏水材料的润湿性能

超疏水材料的润湿性能

超疏水材料的润湿性能超疏水材料是一种新型材料,具有出色的润湿性能。

润湿性能是衡量材料表面与液体之间相互作用的重要指标。

超疏水材料的润湿性能得到了广泛的关注和研究。

本文将从润湿的基本原理、超疏水材料的制备方法以及应用前景等方面,探讨超疏水材料的润湿性能。

润湿是指液体在固体表面上的展开程度。

根据展开的程度,可以将润湿分为完全润湿、不完全润湿和不润湿三种状态。

润湿性能主要取决于固液相互作用力、表面形貌以及表面能等因素。

而超疏水材料则是通过合理设计表面结构和改善表面性质,使材料具有极低的液体接触角,从而呈现出超疏水性质。

超疏水材料的制备方法有很多种,其中常见的方法包括化学改性、纳米改性和激光刻蚀等。

通过表面化学改性,可以改变材料的表面能,从而提高材料的润湿性能。

纳米改性则是在材料表面上引入纳米结构,增加表面积,从而增强液体与材料的相互作用力,提高润湿性能。

激光刻蚀是一种先进的制备方法,可以通过控制激光参数和刻蚀方式,在材料表面形成微纳米结构,从而实现超疏水性质。

超疏水材料在许多领域具有广阔的应用前景。

在生物医学领域,超疏水材料可以应用于人工器官的制备和医药领域的药物传输。

由于超疏水材料表面能低、液体接触角大,可以降低液体与材料的接触面积,减少液体在材料表面的摩擦,从而降低材料磨损和生物组织的损伤。

在环境保护领域,超疏水材料可以应用于油污水的处理和油水分离。

由于超疏水材料对水具有极低的润湿性,可以实现水与油的分离,为油污水的处理提供了新的途径。

在能源领域,超疏水材料可以应用于太阳能电池和节能建筑等方面。

由于超疏水材料表面能低,可以减少太阳能电池表面的反射损失,提高电池的光吸收效率。

在节能建筑方面,超疏水材料可以应用于建筑材料的涂层,实现材料表面的自洁能力,减少清洁维护成本。

总之,超疏水材料具有出色的润湿性能,通过合理设计表面结构和改善表面性质,可以实现极低的液体接触角。

超疏水材料的制备方法有很多种,包括化学改性、纳米改性和激光刻蚀等。

疏水涂料的产品及应用

疏水涂料的产品及应用

疏水涂料的产品及应用疏水涂料是一种具有疏水性能的涂料,其主要功能是提供涂层表面的疏水性能。

疏水涂料可以用于各种室内外建筑和工业涂料应用,如建筑、汽车、航空航天等领域。

它可以提供防水、防尘、防油、抗污染等功能,广泛应用于建筑物表面、石材、金属、玻璃、陶瓷等材料的防护和装饰。

疏水涂料的产品多种多样,下面将介绍几种常见的疏水涂料及其应用。

1. 硅氧烷基疏水涂料:硅氧烷基疏水涂料是目前市场上应用最广泛的一种疏水涂料。

它的主要成分是含有硅氧烷功能基团的聚合物。

硅氧烷基疏水涂料具有优异的耐候性和疏水性能,可以在室内外环境中长时间稳定地保持疏水效果。

它可以应用于建筑物外墙、屋顶、地板、门窗等部位的涂装,有效防止雨水、灰尘、污垢等落在涂层表面。

2. 纳米颗粒疏水涂料:纳米颗粒疏水涂料是一种新型的疏水涂料,其主要成分是纳米颗粒。

纳米颗粒疏水涂料具有超疏水性能,涂层表面能够形成微小的颗粒结构,形成蜡状涂层,使水滴无法渗透进入。

纳米颗粒疏水涂料可以应用于玻璃、陶瓷、金属等材料的涂装,使其具有自洁能力和防水功能。

此外,纳米颗粒疏水涂料还可以防止细菌、病毒等微生物的滋生。

3. 疏水型聚尿酸涂料:疏水型聚尿酸涂料是一种应用于建筑物外墙和屋顶的疏水涂料。

聚尿酸涂料具有良好的柔韧性和耐候性,能够有效保护建筑物不受水雨侵蚀和紫外线辐射的损害。

疏水性能可以防止水分在涂层表面滞留,避免出现渗漏现象。

此外,疏水型聚尿酸涂料还可以起到隔热保温的作用,减少能耗。

4. 疏水型氟碳涂料:疏水型氟碳涂料是一种高性能的疏水涂料。

它以含氟树脂为基料,具有非常低的表面能和优异的耐化学品性能。

疏水型氟碳涂料可以应用于建筑物外墙、屋顶、钢结构等部位,具有抗酸、抗碱、抗腐蚀的特性,同时还具有自洁能力,能够防止颜色变化和污染物的沉积。

总之,疏水涂料是一种功能性涂料,可以提供涂层表面的疏水功能,防水、防污、抗酸碱等特性,广泛应用于建筑、汽车、航空航天等领域。

随着科技的发展,疏水涂料的种类和性能会不断提高,为各行各业提供更好的涂装解决方案。

材料科学中的超疏水表面技术

材料科学中的超疏水表面技术

材料科学中的超疏水表面技术材料科学是一门重要的学科,它研究各种物质的性质、结构、制备和应用等方面。

在材料科学中,超疏水表面技术受到越来越多的关注和研究。

下面,我们将详细了解这一技术的原理、应用和未来发展方向。

一、超疏水表面技术的原理超疏水表面技术是指通过特殊方法处理表面,使得其具有极强的疏水性能,即液滴在表面上呈现出球形或半球形的情况。

这种技术的核心在于微纳级的表面结构和化学成分的优化。

其中,微纳级的表面结构是关键因素之一。

通过制备一定尺度的微纳级结构,可以增加表面的接触角,即水滴在表面上的接触角大于90度。

同时,微纳级结构还可以改变水滴在表面上的运动方式,使其更容易滚动或滑落。

这些特性使得表面具有更好的自清洁、防污和防腐蚀功能。

另一个重要的因素是化学成分。

通过在表面增加亲水基团或疏水基团,可以调节表面的亲疏水性。

通过控制不同基团的分布密度和类型,可以实现不同功能的超疏水表面。

二、超疏水表面技术的应用超疏水表面技术具有广泛的应用前景,尤其在以下几个方面。

1. 自清洁材料超疏水表面可以有效地减少物质在表面上的侵蚀和积垢,因此可以应用于自清洁材料的制备。

例如,建筑材料、汽车玻璃、纺织品等都可以通过超疏水表面技术实现自清洁效果。

2. 防水和防污涂层超疏水表面可以抵御水和油等液体的渗透和附着,因此可以用于制备防水和防污涂层。

例如,建筑物的屋顶和外墙、飞机的机身和车辆的表面等都可以通过超疏水涂层实现防水和防污效果。

3. 生物医学应用超疏水表面还可以应用于生物医学领域。

通过在医疗器械表面制备超疏水结构,可以防止细菌和其他微生物的附着,从而减少感染的发生。

同时,超疏水表面还可以在肝功能损伤等情况下,帮助肝脏细胞愈合和再生。

三、超疏水表面技术的未来发展在未来,超疏水表面技术将会得到进一步发展和应用。

其中,以下几个方面将是重点。

1. 细化表面结构随着技术的逐步提升,表面结构已经从微观范围向纳米级发展。

未来,细化表面结构将更加普遍,甚至可能到达亚微米级。

超疏水性材料

超疏水性材料

超疏水性材料超疏水性材料是一种具有极强疏水性能的材料,其表面能够使水珠快速滚动并迅速脱离表面,同时也能有效地抵御水珠的附着和渗透。

这种材料在各个领域都有着广泛的应用,包括纺织、建筑、医疗和环境保护等方面。

在本文中,我们将探讨超疏水性材料的特性、制备方法以及应用前景。

超疏水性材料的特性主要体现在其表面的微观结构和化学成分上。

通常来说,超疏水性材料的表面会具有微纳米级的结构,这些微观结构能够使水珠无法在其表面停留,从而实现疏水效果。

此外,材料的化学成分也会影响其疏水性能,一些特殊的化学成分能够使材料表面形成疏水膜,从而实现超疏水性。

制备超疏水性材料的方法多种多样,常见的方法包括化学表面修饰、纳米结构构筑和表面涂层等。

化学表面修饰是通过改变材料表面的化学成分来实现疏水性能的提升,这种方法通常会采用化学溶液浸渍或气相沉积等技术。

纳米结构构筑则是通过在材料表面构筑微纳米级的结构来实现超疏水性,常见的方法包括溶液浸渍、模板法和电化学沉积等。

表面涂层是在材料表面涂覆一层特殊的疏水性材料,使其表面具有超疏水性能。

超疏水性材料在各个领域都有着广泛的应用前景。

在纺织领域,超疏水性材料可以用于制备防水、防污的功能性纺织品,如雨衣、户外服装等。

在建筑领域,超疏水性材料可以应用于建筑涂料、玻璃表面处理等方面,起到防水、防污的作用。

在医疗领域,超疏水性材料可以用于制备医疗器械表面,减少细菌附着,起到抗菌的作用。

在环境保护领域,超疏水性材料可以用于油水分离、污水处理等方面,起到净化环境的作用。

总的来说,超疏水性材料具有广阔的应用前景,其制备方法也在不断地得到改进和完善。

随着科技的不断发展,相信超疏水性材料在未来会有更加广泛的应用,为各个领域带来更多的创新和发展。

超疏水材料介绍

超疏水材料介绍

表观接触角和本征接触角的关系
(3)光滑表面的局限性
① 对一个表面如果仅仅采用化学方法处理,通常仅能使接触角增加到120°
②对于超疏水的自清洁表面,水珠滚落的去污能力比滑落强,而倾斜的光滑表面水 珠多处于滑动状态,见下图。
(4)自然界中动植物超疏水表面结构图
莲花表面
Nature 2004,432, 36)发表
2.5 电纺技术
典型应用:Rutledge等用电纺技术制得PS和PS-b-
PDMS的共混物纤维,如右图。由于PDMS表面能低且
与PS的相容性很差,共混物在纺丝过程中发生相分离
且PDMS向表面富集。电纺得到的混合聚合物无纺布
表面自身所具有的粗糙度及PDMS的富集共同作用,
是接触角达到163°。
电纺法制备的超疏水无纺布的典型形貌
特殊浸润性界面材料 —— 超疏水材料介绍
超疏水材料的影响因素 材料表面结构和疏水性的关系 超疏水表面的制备方法及应用 研究展望
一.超疏水材料的影响因素
1 浸润性是材料表面的重要特征之一。根据水对材料表面润湿性的不同将 材料表面分为亲水性表面和疏水性表面。 1.1 浸润性的表征
接触角:通常以接触角θ表征液体对固体的浸润程度。接触角由表面张
若θ﹤90°,则θ’﹤θ,则亲水性随粗糙度的增加而增加; 若θ﹥90°,则θ’﹥θ,则疏水性随粗糙度的增加而增加。
两个基本前提: ①基底的表面粗糙度与液滴的大小相比可以忽略不计; ②基底表面的几何形状不影响其表面积的大小。 ③适用于中等亲水或者疏水表面。
(2)Cassie模型----气垫模型
核心:Cassie和Baxter指出,液滴在粗糙表面的接触是一种复合接触。 复合接触:微细结构的表面因为结构尺度小 于表面液滴的尺度,当表面疏水性较强时, Cassie认为在疏水表面上的液滴并不能填满 粗糙表面上的凹槽,在液珠下有截留的空气 存在,于是表观上的液固接触面其实由固体 和气体共同组成,见右图:

图解:纳米超疏水自清洁表面的应用

图解:纳米超疏水自清洁表面的应用

图解:纳米超疏水自清洁表面的应用自然界的超疏水现象“荷叶表面具有极强的疏水性,洒在叶面上的水会自动聚集成水珠,水珠的滚动把落在叶面上的尘土污泥粘吸滚出叶面,使叶面始终保持干净,这就是著名的“荷叶自洁效应”「见下图1」。

▲图1自然界的荷叶疏水表面现象科学家发现,荷叶表面具有微米级的乳突,乳突上乳突上有纳米级的蜡晶物质,这种微-纳米级的粗糙结构可以大幅度提高水滴在其上的接触角,导致水滴极易滚落「见下图2」。

▲图2荷叶表面微观结构水滴在超疏水表面上的运动是一个复杂的物理现象,在自清洁过程中起到了一个至关重要的作用:水滴在表面滚动时会带走表面的污染物或灰尘,从而达到自清洁的效果「见下图3」。

▲图3超疏水表面自清洁原理示意图当然这些现在也存在于很多其他生物身上「见下图4」;科学家们研究这些生物及模仿这些生物现象,制备出了许多超疏水产品并得到了许多的应用(详见后文介绍)。

▲图4自然界中具有超疏水性的动植物及其扫描电子显微镜(SEM)图(a,b)荷叶;(c,d)水稻叶;(e,f)水黾腿[3];(g,h)孔雀羽毛[5,6];(i,j)壁虎脚掌[7];(k,l)蝉翼[9];(m,n)蝴蝶翅膀[10];(o,p)蚊子复眼[13]下文将为大家简单介绍超疏水自清洁的原理及一些超疏水表面的应用例子。

1、超疏水表面自清洁原理自清洁表面指表面的污染物或灰尘能在重力或雨水、风力等外力作用下自动脱落或被降解的一种表面,基于超疏水原理的自清洁表面主要是指接触角CA150°、滚动角SA<10°的类荷叶表面「见下图5(d)」。

▲图5不同表面水滴接触界面状态2、常见超疏水表面制备现状人工制备超疏水表面虽然时间不长,但发展特别迅速,有效的制备方法也越来越多,主要有模板法、静电纺丝法、相分离与自组装法、溶胶-凝胶法、刻蚀法、水热法、化学沉积与电沉积法、纳米二氧化硅法、腐蚀法等。

目前人工超疏水表面主要包括超疏水薄膜表面、超疏水涂层表面、超疏水金属表面及超疏水织物等方面。

超疏水材料研究进展PPT


Sun 等课题组成员为了获取具有荷叶结 构的超疏水表面, 在聚二甲基硅氧烷表面 进行模板法得到了具有荷叶结构的凹模板, 再使用该凹模板得到具有与荷叶表面结构 类似的凸模板, 在扫描电镜下看到了具有 粗糙结构的表面,展现了良好的超疏水性 能。
Manhui Sun,et al.Artificial Lotus Leaf by NanocastingLangmuir, Vol. 21, No. 19, 2005 8979.
J. Mater. Chem. A, 2018, 6, 9049–9056
三、光催化超疏水材料研究进展
一、研究背景
Wenzel 模型
cosɵW =rcosɵe
式中,θW为表观接触角,(°);θY为理想表面 的本征接触角,(°);λ 表示粗糙度因子,是 真实固液界面接触面积与表观固液界面接触面 积的比值,λ≥1
ห้องสมุดไป่ตู้
Cassie模型
cosɵc =f1cosɵ1 + f2cosɵ2
将表面组成分量加入方程中式中,f1和 f2分别 为复合表面中固相与气相的表面积分数,%; θ1和θ2分别为它们的接触角
一、研究背景
Young方程——理想、平滑的固体表面
cosɵ =(γ -γ )/ γ
sg ls lg 式中,γsg、γsl、γlg分别表示固气、固液以及液气之间的界 面张力,N/m
Θ < 90°,表现出亲水的性质, Θ > 90°,表现出疏水的性质
Young Equation
Young方程解释了接触角 和表面能的关系
通过双层涂层制备长期耐用的超疏水和(同时)抗
反射表面,该双层涂层包含部分嵌入通过溶胶生产的有 机二氧化硅粘合剂基质中的三甲基硅氧烷(TMS)表面 功能化的二氧化硅纳米颗粒-凝胶过程。首先将致密且均 匀的有机硅胶层涂覆到玻璃基板上,然后在其上沉积三 甲基硅烷化的纳米球基超疏水层。在热固化之后,两层 变成整体膜,并且疏水性纳米颗粒被永久地固定到玻璃 基板上。经过这种处理的表面在户外暴露2000小时期间 显示出极好的防水性(接触角CA= 168°)和稳定的自 清洁效果。

疏水材料的原理及应用

疏水材料的原理及应用1.前言尽管人们很早就知道荷叶表面“自清洁”效应,但是一直无法了解荷叶表面的秘密。

直到20世纪90年代,德国的两个科学家首先用扫描电子显微镜观察了荷叶表面的微观结构,认为“自清洁”效应是由荷叶表面上的微米级乳突以及表面蜡状物共同引起的。

其后江雷等人对荷叶表面微米结构进行深入分析,发现荷叶表面乳突上还存在纳米结构,这种微米与纳米结构同时存在的二元结构才是引起荷叶表面“自清洁”的根本原因。

这样的“粗糙”表面产生的对水的不浸润性被称为疏水性。

2.疏水与超疏水在化学里,疏水性指的是一个分子(疏水物)与水互相排斥的物理性质。

疏水性分子偏向于非极性,并因此较会溶解在中性和非极性溶液(如有机溶剂)。

疏水性分子在水里通常会聚成一团,而水在疏水性溶液的表面时则会形成一个很大的接触角而成水滴状。

疏水性通常也可以称为亲脂性,例如疏水性分子包含有烷烃、油、脂肪和多数含有油脂的物质,但这两个词并不全然是同义的。

即使大多数的疏水物通常也是亲脂性的,但还是有例外,如硅橡胶和碳氟化合物。

对于一个疏水性的固体表面来说,当表面有微小突起的时候,有一些空气会被“关到”水与固体表面之间,导致水珠大部分与空气接触,与固体直接接触面积反而大大减小。

由于水的表面张力作用使水滴在这种粗糙表面的形状接近于球形,其接触角可达150度以上,并且水珠可以很自由地在表面滚动。

这种接触角大于150度的表面就被称为“超疏水表面”,而一般疏水表面的接触角仅大于90度。

3.疏水原理根据热力学的理论,物质会寻求存在于最低能量的状态。

水是极性物质,并因此可以在内部形成氢键,这使得它有许多独别的性质。

而疏水物不是电子可极化性的,它无法和水形成氢键,所以水会对疏水物产生排斥,以减少化学能。

而水分子间形成氢键。

因此两个不相溶的相态,将会变化成使其界面的面积最小时的状态。

此效应可以在相分离的现象中被观察到。

气体环绕的固体表面的液滴。

接触角θc,是由液体在三相(液体、固体、气体)交点处的夹角。

超疏水材料的应用前景


滚动角
上面所描述的接触角所表征的是水滴在水平面上的表现,而现实中 的平面往往不是水平的,更多的是斜面。水滴在倾斜表面上可能滚动或 停滞,这种状态可以用滚动角进行表征。所谓滚动角是指液滴在固体表 面开始滚动时的临界表面倾斜角度α( 如图所示) 。若液滴开始滚动的倾斜 角越小,表明此表面的超疏水性越好。
Baitai Qian等利用beck's位错刻蚀剂腐蚀Al, Zn, Cu多晶型金属, 再进行表面氟化从而制得最高接触角156°,滚动角和滞后角都很小 的超疏水表面。
化学刻蚀法制备超疏水表面有较好的选择性,并 且可以对复杂形状的物体表面进行刻蚀,效率高,成 本低,但也有不足,如过度刻蚀对表面造成损伤,破 坏基体材料的力学性能,刻蚀过程中会产生废液,需 要处理。
在国外许多铝、铁、碳钢等金属以及合金表面都会用超疏水膜 来修饰,以提高其防腐蚀性。该方法可有效地运用在如管道气体、液 体运输减阻等多方面对降低运输能耗提高输送效率有很大帮助未来 有较大的开发应用空间。
在织物及过滤材料方面的应用
采用静电纺丝法或者在材料表面进行处理可 制备具有超疏水性的各种微纳米结构纤维。这类 材料因具有超疏水性能,可用于制造防水薄膜、 疏水滤膜以及防水透气薄膜等,或者使织物因疏 水性能而具有防水、防污染、防灰尘等新功能。 如美国NANOTEX公司采用纳米技术开发的 Nano-care 功能型面料;德国巴斯夫( BASF) 公司 也将荷叶效应应用到纺织品上,开发出具有超疏 水自清洁功能的聚酯雨衣、雨篷及衣物面料等。
超疏水材料主要利用其自清洁、耐玷污等生物仿生方面 的特性进行开发和应用,在诸如军工、农业微流体毛细自灌 溉、管道无损运输、房屋建筑以及各种露天环境下工作的设 备的防水和防冰等方面有广阔的前景。具体有以下几方面。

超疏水材料原理

超疏水材料原理
超疏水材料是一种具有特殊表面性质的材料,其表面能够使水珠呈现极高的接
触角,从而表现出极强的疏水性能。

这种材料在许多领域都有着广泛的应用,比如防水材料、自清洁表面、油水分离等。

超疏水材料的原理主要包括表面微纳结构和表面能的调控两个方面。

首先,超疏水材料的表面微纳结构是实现其疏水性能的关键。

通过在材料表面
构建微纳米级的结构,可以使水珠无法在表面扩展,从而呈现出极高的接触角。

这种微纳结构可以通过化学方法、物理方法或者生物方法来实现,比如化学蚀刻、溅射沉积、模板法等。

这些方法可以使材料表面形成类似莲叶表面的微结构,从而实现超疏水性能。

其次,表面能的调控也是实现超疏水性能的重要手段。

表面能是指材料表面与
水之间的相互作用能力,通常通过表面能的测量可以得到材料的亲水性或疏水性。

超疏水材料的表面能通常非常低,这是因为其表面通常被有机物或者氟化物所修饰,从而降低了表面的极性。

通过这种表面能的调控,可以使材料表面呈现出极强的疏水性能,从而实现超疏水效果。

总的来说,超疏水材料的原理是通过表面微纳结构和表面能的调控来实现的。

这种原理不仅可以应用于材料表面的设计和制备,还可以为我们提供更多的启示,比如在生物材料、环境材料等方面的应用。

超疏水材料的研究和应用前景广阔,相信随着科学技术的不断进步,超疏水材料将会在更多的领域得到应用和推广。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超疏水材料的应用方式
我们都知道,雨后,水滴不会粘在荷叶表面,而是像一粒粒珍珠似的在叶面上来回滚动,这种现象早已被广泛应用在我们的生产生活中了。

为什么会有这种现象呢?由于荷叶表面具有粗糙的微观形貌以及疏水的表皮蜡,这种特殊的结构有助于锁住空气,进而防止水将表面润湿。

像这样的表面,就是超疏水表面。

这种超疏水表面可以有效地防止被污水污染,并且表面的灰尘,杂质也会被雨水带走。

荷叶这种自清洁性能被人们称为“荷叶效应”。

超疏水材料由于其优异的超拒水性能,在国防、工农业生产和日常生活中有着广泛的应用前景。

例如超疏水技术用在室外天线上,可防止积雪从而保证通信质量;用在船、潜艇的外壳上,不但能减少水的阻力,提高航行速度,还能达到防污、防腐的功效;用在石油输送管道内壁、微量注射器针尖上能防止粘附、堵塞、减少损耗;用在纺织品、皮革上,还能制成防水材料防水、防污的服装、皮鞋。

正是由于有如此的需求,超疏水材料的应用研究才越来越受关注。

将拒水拒油剂涂覆在纺织品、皮革表面或将需处理的材料浸没在含硅、氟元素高聚物的溶液、乳液中,可以制备拒水、防污的材料。

那么这种超疏水材料有哪些应用呢?
1、在防污、防腐、自清洁方面的应用
众所周知,冰箱内胆表面凝聚冷凝水,结霜、结冰现象严重,使导热率降低,不利于制冷并影响食物保存且耗费电能。

将纳米超疏水技术应用于制冷领域中,采用超疏水内胆或者在内胆上采用特殊工艺附上一层纳米超疏水材料,内胆表面上的小水滴就会自动滑落不在内胆上沉积,从而避免内胆表面出现结霜、结冰现象。

超疏水界面材料还可用在室外天线等户外设备上,可有效防止积雪,从而保证高质量的接收信号。

2、在防附着、减少阻力方面的应用
超疏水自清洁这种双疏水界面材料会给人们的日常生活及工农业生产带来极大的便利和高附加产值,将超双疏界面材料涂在轮船的外壳、燃料储备箱上,不仅可以达到防污、防腐的效果,用于输送石油的管道中,还可以防止石油粘附管道壁,从而减少运输过程中的损耗并防止石油管道堵塞;用于水中运输工具或水下核潜艇表面上,可以减少水的阻力,从而提高行驶速度;用于半导体传输线上,可防止雨天因水滴放电而产生的噪音;用于微量注射器针尖上,可以完全消除昂贵的药品在针尖上的黏附及由此带来的对针尖的污染;涂有超双疏水剂的纺织品和皮革,是一种很好的防水防污材料。

3、在微流体控制方面的应用
超疏水材料表面所具有的不浸润性及低表面粘滞力,使其在微流体控制应用方面也有十分出色的表现。

比如控制微液滴的运动和流动,并以此制造微液滴控制针头,使得在实验或者生产过程中对液体滴加计量能够精确控制,实验试剂的添加将更得心应手。

如果将这类技术运用到诸如静电喷涂领域,比如用超疏水材料制造喷漆喷胶等的喷头,将会使喷涂的液滴更加均匀,雾化效果更好,可以运用在对喷涂效果有特殊要求的场合。

另外如果以这类材料制作毛细管类的材料,将会使液滴的虹吸量更少,可以制造体积更小精密度更高的液体传输设备。

超疏水材料的应用面相当广泛,可涵盖航天军工,交通工具、农业、建筑、医疗、日用纺织品等各个方面,可以说前景非常广阔。

相关文档
最新文档