(完整word版)材料物理习题集

合集下载

《大学物理》习题册题目及答案第17单元波的干涉-副本(可编辑修改word版)

《大学物理》习题册题目及答案第17单元波的干涉-副本(可编辑修改word版)

5 波的干涉、衍射学号姓名 专业、班级 课程班序号一 选择题[ D ]1.如图所示, S 1 和 S 2 为两相干波源,它们的振动方向均垂直于图面, 发出波长为 的简谐波。

P 点是两列波相遇区域中的一点,已知 S 1P = 2, S 2 P = 2.2,两列波在P 点发生相消干涉。

若 S 的振动方程为 y = A cos(2t + 1) ,则 S 的振动方程为(A) 1 122y = A c os( 2 t - 1) S 122(B) y 2 = A c os( 2 t - (C) y 2 = A c os( 2 t +) 1)2(D) y 2 = A c os( 2 t - 0.1 )S 2[ C ]2. 在一根很长的弦线上形成的驻波是(A)由两列振幅相等的相干波,沿着相同方向传播叠加而形成的。

(B)由两列振幅不相等的相干波,沿着相同方向传播叠加而形成的。

(C)由两列振幅相等的相干波,沿着反方向传播叠加而形成的。

(D)由两列波,沿着反方向传播叠加而形成的。

[ B ]3. 在波长为 λ 的驻波中,两个相邻波腹之间的距离为 (A) λ/4 (B) λ/2 (C)3λ/4 (D)λ[ A ]4. 某时刻驻波波形曲线如图所示,则 a 、b 两点的位相差是 (A)(C)4(B)1 2(D) 0[ B ]5. 如图所示,为一向右传播的简谐波在 t 时刻的波形图,BC 为波密介质的反射面,波由 P 点反射,则反射波在 t 时刻的波形图为y A O- Aac2xbP[ B ]6. 电磁波的电场强度 E 、磁场强度 H 和传播速度 u 的关系是: (A) 三者互相垂直,而 E 和 H 相位相差12(B) 三者互相垂直,而且 E 、H 、u 构成右旋直角坐标系 (C) 三者中 E 和 H 是同方向的,但都与 u 垂直(D) 三者中 E 和 H 可以是任意方向的,但都必须与 u 垂直二 填空题1. 两相干波源 S 1 和 S 2 的振动方程分别是y 1 = A cost 和 y 2= A cos(t + 1) 。

(完整版)半导体物理知识点及重点习题总结(可编辑修改word版)

(完整版)半导体物理知识点及重点习题总结(可编辑修改word版)

基本概念题:第一章半导体电子状态1.1半导体通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。

1.2能带晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。

这些区间在能级图中表现为带状,称之为能带。

1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。

答:能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。

通过该方程和周期性边界条件最终给出 E-k 关系,从而系统地建立起该理论。

单电子近似:将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。

绝热近似:近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。

1.2克龙尼克—潘纳模型解释能带现象的理论方法答案:克龙尼克—潘纳模型是为分析晶体中电子运动状态和 E-k 关系而提出的一维晶体的势场分布模型,如下图所示X克龙尼克—潘纳模型的势场分布利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出 E-k 关系。

由此得到的能量分布在 k 空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。

从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。

1.2导带与价带1.3有效质量有效质量是在描述晶体中载流子运动时引进的物理量。

它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。

其大小由晶体自身的 E-k 关B c n 系决定。

1.4 本征半导体既无杂质有无缺陷的理想半导体材料。

1.4 空穴空穴是为处理价带电子导电问题而引进的概念。

设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。

(完整word版)大学物理下册课后习题答案

(完整word版)大学物理下册课后习题答案

大学物理下册课后习题答案习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q =8-3 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.8-5 一电偶极子的电矩为l q p=,场点到偶极子中心O 点的距离为r ,矢量r与l的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin r p πεθ证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r的分量θsin p . ∵ l r >> ∴ 场点P 在r 方向场强分量30π2cos rp E r εθ= 垂直于r 方向,即θ方向场强分量300π4sin rp E εθ=题8-5图 题8-6图8-6 长l =15.0cm AB 上均匀地分布着线密度λ=5.0x10-9C ·m-1(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε2220)(d π4d x a xE E llP P -==⎰⎰-ελ ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2) 2220d d π41d +=x xE Q λε 方向如题8-6图所示 由于对称性⎰=lQx E 0d ,即Q E只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d RR E εϕλ=方向沿半径向外 则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分R R E x 000π2d sin π4ελϕϕελπ==⎰ 0d cos π400=-=⎰ϕϕελπR E y∴ RE E x 0π2ελ==,方向沿x 轴正向.8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E解: 如8-8图示,正方形一条边上电荷4q在P 点产生物强P E d 方向如图,大小为()4π4cos cos d 22021lr E P +-=εθθλ ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220lr ll r E P ++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220lr rl r l r l E +++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵ lq 4=λ ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿OP8-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(xRarctan=α) 解: (1)由高斯定理0d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图(3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+=∴ )(π42200x R Sq +=Φε02εq =[221xR x +-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r Sααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅q S E s,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r < 0,0==∑E q(2) 21R r R <<λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-= 1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+= n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场'dπ4π3430320OO r E ερ=∴ O 点电场'd33030OO r E ερ= ;(2) ρ+在O '产生电场'd π4d 3430301OO E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场 03ερ='E 'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=' ,∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6Cd=0.2cm ,把这电偶极子放在1.0×105N ·C-1解: ∵ 电偶极子p在外场E 中受力矩E p M⨯= ∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε)11(21r r -61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的解: 如题8-16图示0π41ε=O U 0)(=-R qR q 0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-= (2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===A B 200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O 8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C) 解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d=0.5cm解: 平行板电容器内部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E 与电势U 的关系U E -∇=,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图)解: (1)点电荷 rqU 0π4ε=题 8-20 图 ∴ 0200π4r rq r r U E ε=∂∂-= 0r为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4xR qU +=ε ∴ ()i xR qxi x U E 2/3220π4+=∂∂-=ε(3)偶极子l q p=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4r ql l l r q U εθθθε=+--= ∴ 30π2cos r p r U E r εθ=∂∂-= 30π4sin 1rp U r E εθθθ=∂∂-= 8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有 0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少? 解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图 (1)∵ AB ACU U =,即∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A= 得 ,32S q A =σ Sq A321=σ而 7110232-⨯-=-=-=A C q S q σCC10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计(1) (2) *(3) 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R Rqr r q r E U εε(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+RqR q εε得 -='q 3q8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2解: 由题意知 2020π4rq F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =',小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q. ∴ 小球1、2间的作用力00294π432322F r q q F ==ε *8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A 解得 S q261==σσS qd U 2032-=-=εσσSqd U 2054+=-=εσσ所以CB 间电场 Sqd U E 00422εεσ+== )2d(212d 02Sq U E U U CB C ε+===注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2UU C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求:(1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强303π4,π4rr Q E r Qr D ε ==外 (2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞ 外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Q r r -+=εεε(3)金属球的电势r d r d 221 ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r -+=εεε8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ 由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21UE E ==∴ r D Dεσσ==1212rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容.解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴ rlQD π2= (1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222=== (2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ C Q W 22=∴ )/ln(π22122R R lW Q C ε== *8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U ABV8-32 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V ? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求: (1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112*********U U U C U C q qU C U C q q q q 解得 (1) =1q U C C C C C q U C C C C C 21212221211)(,)(+-=+- (2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C += 8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε =3R r >时 302π4r rQ E ε =∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r rQ E ε=,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε 121049.4-⨯=F习题九9-1 在同一磁感应线上,各点B的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B的方向?解: 在同一磁感应线上,各点B的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B的方向.题9-2图9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B=∑⎰==-=⋅0d 021I bc B da B l B abcd μ∴ 21B B = (2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B方向相反,即21B B≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管 外面环绕一周(见题9-4图)的环路积分⎰外B L·d l =0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L·d l =I 0μ 这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μ外,与⎰⎰=⋅=⋅Ll l B 0d 0d外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B 的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m-2x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是 24.04.03.00.211=⨯⨯=⋅=S BΦWb(2)通过befc 面积2S 的磁通量 022=⋅=S BΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S BΦWb (或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB 产生 01=BCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B题9-8图解:如题9-8图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处则02)1.0(220=-+rIr I πμπμ 解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度. 解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

(完整word版)高一物理力的分解练习题及答案

(完整word版)高一物理力的分解练习题及答案

高一物理力的分解练习题及答案一、选择题(每小题4分,共24分)1.下列说法中错误的是A.一个力只能分解成惟一确定的一对分力B.同一个力可以分解为无数对分力C.已知一个力和它的一个分力,则另一个分力有确定值D.已知一个力和它的两个分力方向,则两分力有确定值2.已知某力的大小为10 N,则不可能将此力分解为下列哪组力A.3 N、3 NB.6 N、6 NC.100 N、100 ND.400 N、400 N3.物体在斜面上保持静止状态,下列说法中正确的是①重力可分解为沿斜面向下的力和对斜面的压力②重力沿斜面向下的分力与斜面对物体的静摩擦力是一对平衡力③物体对斜面的压力与斜面对物体的支持力是一对平衡力④重力垂直于斜面方向的分力与斜面对物体的支持力是一对平衡力A.①②B.①③C.②③D.②④4.物体静止于光滑水平面上,力F作用于物体上的O点,现要使合力沿着OO′方向,如图1—16所示,则必须同时再加一个力F′,如F和F′均在同一水平面上,则这个力的最小值为图1—16A.F cosθB.F sinθC.F tanθD.F cotθ5.三段不可伸长的细绳OA、OB、OC能承受的最大拉力相同,它们共同悬挂一重物,如图1—17所示,其中OB是水平的,A端、B端固定,若逐渐增加C端所挂物体的质量,则最先断的绳是图1—17A.必定是OAB.必定是OBC.必定是OCD.可能是OB,也可能是OC6.一质量为m的物体放在水平面上,在与水平面成θ角的力F的作用下由静止开始运动,物体与水平面间的动摩擦因数为μ,如图1—18所示,则物体所受摩擦力F f图1—18 A. F f <μmgB. F f =μmg C .F f >μmgD.不能确定二、非选择题(共26分)1.(6分)把一个力F 分解成相等的两个分力,则两个分力的大小可在______到______的范围内变化,______越大时,两个分力越大.2.(5分)重力为G 的物体放在倾角为α的固定斜面上,现对物块施加一个与斜面垂直的压力F ,如图1—19所示,则物体对斜面的压力的大小为______.图1—19 图1—203.(6分)如图1—20所示,一半径为r 的球重为G ,它被长为r 的细绳挂在光滑的竖直墙壁上.求:(1)细绳拉力的大小;(2)墙壁受的压力的大小.4.(9分)在一实际问题中进行力的分解时,应先弄清该力产生了怎样的效果,然后再分解这个力,如图1—21所示的三种情况中,均匀球都处于静止状态,各接触面光滑.为了讨论各接触面所受的压力,应该怎样对重力进行分解?若球的质量为m ,将重力分解后,它的两个分力分别为多大?(已知斜面倾角为α)图 1—21参考答案一、.1.A 2.A 3.D 4.B 5.A 6.A二、1.2F ∞ 两分力间的夹角 2.F +mg cos α 3.(1)332G (2) 33G 4.甲:F 1=mg sin α F 2=mg cos α乙:F 1=mg tan α F 2=mg /cos α丙:F 1=mg F 2=0。

(完整word版)折射和全反射练习题

(完整word版)折射和全反射练习题

光的折射、全反射练习题(一)1.现在高速公路上的标志牌都用“回归反光膜”制成,夜间行车时,它能把车灯射出的光逆向返回,标志牌上的字特别醒目。

这种“回归反光膜”是用球体反射元件制成的,如图所示,反光膜内均匀分布着直径为10μm的细玻璃珠,所用玻璃的折射率为3,为使入射的车灯光线经玻璃珠折射→反射→再折射后恰好和入射光线平行,那么第一次入射的入射角应是( )A.15° B.30°C.45° D.60°2.三种介质I、II、III的折射率分别为n1、n2和n3,且n1>n2>n3,则()A.光线由介质I入射II有可能发生全反射B.光线由介质I入射III有可能发生全反射C.光线由介质III入射I有可能发生全反射D.光线由介质II入射I有可能发生全反射3.一条光线在三种介质的平行界面上反射或折射的情况如图所示,若光在 I、II、III三种介质中的速度分别为v1、v2和v3,则( )A.v1>v2>v3 B.v1<v2<v3C.v1>v3>v2 D.v1<v3<v24.一束光穿过介质1、2、3时,光路如图所示,则 ( )A.介质1的折射率最大B.介质2是光密介质C.光在介质2中的速度最大D.当入射角由45°逐渐增大时,在1、2分界面上可能发生全反射5.如图,MN是一条通过透明球体球心的直线.一单色细光束AB平行于MN射向球体,B为入射点,若出射光线CD与MN的交点P到球心O的距离是球半径的3倍,且与MN所成的角α=30°.求:透明球体的折射率.6. 一半径为R的1/4球体放置在水平桌面上,球体由折射率为3的透明材料制成.现有一束位于过球心O的竖直平面内的光线,平行于桌面射到球体表面上,折射入球体后再从竖直表面射出,如图所示.已知入射光线与桌面的距离为3R/2,求出射角θⅡⅢ7.折射率为3的玻璃球,被一束光照射.若入射角i为60°,则在入射点O处反射光和折射光的夹角为________.(如图甲所示)图甲图乙8.如图乙所示,一束波长为0.40 μm的紫光,从空气中垂直三棱镜的AB面入射,从AC面射出方向如图所示,则玻璃对紫光的折射率n=_______,紫光在玻璃中的传播速度v=_______m/s,紫光在玻璃中的波长λ=________ m.9. 半径为R的玻璃半圆柱体,横截面积如图所示,圆心为O,两条平行单色红光,沿截面积射向圆柱面,方向与底面垂直,光线1的入射点A为圆柱面的顶点,光线2的入射点为B,∠AOB=60°,已知该玻璃对红光折射率n。

(完整word版)半导体器件物理复习题完整版

(完整word版)半导体器件物理复习题完整版

半导体器件物理复习题一.平衡半导体:概念题:1. 平衡半导体的特征(或称谓平衡半导体的定义)所谓平衡半导体或处于热平衡状态的半导体,是指无外界(如电压、电场、磁场或温度梯度等)作用影响的半导体。

在这种情况下,材料的所有特性均与时间和温度无关。

2. 本征半导体:本征半导体是不含杂质和无晶格缺陷的纯净半导体。

3. 受主(杂质)原子:形成P 型半导体材料而掺入本征半导体中的杂质原子(般为兀素周期表中的川族兀素)。

4.施主(杂质)原子:形成N 型半导体材料而掺入本征半导体中的杂质原子( 般为兀素周期表中的V 族兀素)。

5. 杂质补偿半导体:半导体中同一区域既含受主杂质又含施主杂质的半导体。

6. 兼并半导体:对N 型掺杂的半导体而言,电子浓度大于导带的有效状态密度, 状态密度。

费米能级低于价带顶(E F E v 0 )。

7. 有效状态密度:8. 以导带底能量E c 为参考,导带中的平衡电子浓度:14. 本征费米能级E Fi :是本征半导体的费米能级;本征半导体费米能级的位置位于禁带中央附近,* *13 m 3 mE Fi — E c E vkTln -4 E midgap kTl nJ ; 其中禁 带宽度 24 m n4 m n15. 本征载流子浓度n i :本征半导体内导带中电子浓度等于价带中空穴浓度的浓度n 0 p o n j o 硅半导体,在103T 300K 时,n i 1.5 10 cm 。

16. 杂质完全电离状态:当温度高于某个温度时, 掺杂的所有施主杂质失去一个电子成为带正电的电离施主杂质;掺杂的所有受主杂质获得一个电子成为带负电的电离受主杂质,称谓杂质完全电离状态。

17. 束缚态:在绝对零度时,半导体内的施主杂质与受主杂质成电中性状态称谓束缚态。

束缚态时,半导体内的电子、空穴浓度非常小。

18. 本征半导体的能带特征:n 0 N c exp吕」其含义是:导带中的平衡电子浓度等于导带中的有效状态密度乘kT9.以价带顶能量E v 为参考,价带中的平衡空穴浓度:E F E v P o N v exp ----------------kT其含义是:价带中的平衡空穴浓度等于价带中的有效状态密度乘* 3/24 2m p11•价带量子态密度函数 g v E ------------------ 3hE v E12.导带中电子的有效状态密度h 2E gE c本征半导体费米能级的位置位于禁带中央附近, 且跟温度有关。

(完整word版)物理化学试题

一、单项选择题1)封闭体系中,有一个状态函数保持恒定的变化途径是什么途径? ( c )(A) 一定是可逆途径 (B) 一定是不可逆途径(C) 不一定是可逆途径 (D) 体系没有产生变化2)当体系将热量传递给环境之后,体系的焓: ( d )(A) 必定减少 (B ) 必定增加(C) 必定不变 (D ) 不一定改变3)对于孤立体系中发生的实际过程,下列关系中不正确的是( d )。

A .W =0B .Q =0C .ΔU =0D .ΔH =04)如图,在绝热盛水容器中,浸入电阻丝,通电一段时间,通电后水及电阻丝的温度均略有升高,今以电阻丝为体系有( c )。

A .W =0,Q <0,ΔU <0B .W >0,Q <0,ΔU >0C .W <0,Q <0,ΔU >0D .W <0,Q =0,ΔU >05)某物质B 的标准摩尔燃烧焓为1(298.15K)200kJ mol c m H -∆=-⋅$,则该物质B 在298.15K 时燃烧反应的标准摩尔焓变r m H ∆$为( a )。

A .1200kJ mol --⋅B .10kJ mol -⋅C .1200kJ mol -⋅D .140kJ mol -⋅6. 如图,将水溶液置于绝热箱中,插入两个铜电极,以蓄电池为电源进行电解,可以看作封闭体系的是: ( a )(A) 绝热箱中所有物质 ; (B) 两个铜电极 ;(C) 蓄电池和铜电极 ; (D)水溶液 。

7.体系的下列各组物理量中都是状态函数的是:( c)(A) T,p,V,Q ;(B) m,V m,C p,ΔV;(C) T,p,V,n;(D) T,p,U,W。

8.对于内能是体系状态的单值函数概念,错误理解是:( c )(A) 体系处于一定的状态,具有一定的内能;(B) 对应于某一状态,内能只能有一数值不能有两个以上的数值;(C) 状态发生变化,内能也一定跟着变化;(D) 对应于一个内能值,可以有多个状态。

(完整word版)高中物理读数练习题

高中物理读数练习题高考物理实验读数练习专题(1)——游标卡尺1、构造卡尺分类主尺最小刻度( mm )游标刻度总长 (mm) 精准度 (mm)10 分度 1 9 0. 120 分度 1 19 0. 0550 分度 1 49 0. 022、读数方法第一步:看游标尺总刻度确立精准定度(10 分度、 20 分度、 50 分度的精准度见上表)第二步:读出游标尺和主尺对齐的刻度数(n );............第三步:读出对齐处主尺读数(Xmm)和游标尺读数 (n ×或或 0.98mm)。

第四步:按读数公式读出丈量值。

读数公式:丈量值( L) =主尺读数( X)-游标尺读数( n ×或或)【练习 1】读出以下游标卡尺丈量的读数;3 4 cm 6 7 8cm⑴⑵0 5 10 0 10 200 1 2 3 4 5 cm⑶ 60 1 2 3 4 5 6 7 8 9【练习 2】有一游标卡尺,主尺的最小分度是1mm,游标上有20 个小的平分刻度。

用它丈量一小球的直径,如下图的读数是mm。

1 2 3 cm0 5 10 游标卡尺读数练习10 分度( 0.1mm )3 4 cm 10 11cm0 10 0 101 读数:________2 读数:________0 1 cm 9 10cm0 10 0 103 读数:_______4 读数:________3 4 cm 9 10cm0 10 0 105 读数:_________6 读数:________9 10cm 6 cm0 10 0 107 读数:_________8 读数:__________9 10cm 9 10cm0 10 0 109 读数:__________10 读数:_________20 分度( 0.05mm )123cm0123456789011读数:_____________456cm0123456789012读数:_____________234cm0123456789013读数:_____________012cm0123456789014读数:_____________50 分度( 0.02mm )01234 5 cm010********15读数:_____________——螺旋测微器高中物理读数练习题例 1、读出以下螺旋测微器丈量的读数。

(完整word版)八年级上册物理练习题及答案

八年级上册物理练习题及答案初二物理一、选择题1、人们在远近不同处听到同一声音的大小不同,是因为声音从声源发出后在空气中传播时A、振幅不断减小B、速度不断减小C、频率不断减小D、音调不断减小2、以下各种声音中属于噪声的是A、观众在剧院里听到的音乐声B、升旗仪式上的国歌声C、某同学听到的音乐声影响了他的学习D、大型乐队中利用锣的声音烘托演出的效果3、甲同学把耳朵贴在一根注满水的自来水管的一端,当乙同学用力敲击一次水管的另一端时,甲同学会听到几次敲击声A、一次B、两次C、三次D、以上都有可能4、蝴蝶飞行时翅膀振动的频率为5~6Hz,苍蝇飞行时翅膀振动的频率约为300~400Hz,当他们从你身边飞过时,你将A、只能听到苍蝇的声音B、只能听到蝴蝶的声音C、苍蝇和蝴蝶的声音都能听到D、都听不到5、科学家发现,人体上的“身份证”不仅限于指纹,在眼睛、嘴唇、大脑、血液等各部位都有“身份证”,其中有一种“身份证”叫做声纹。

由于人的发音器官有微小的差异,科学家就可以利用这种差异分辨出不同的人。

这种声纹即声音的A、响度B、音调C、音色D、频率6、在月球表面有岩石和尘埃,流星打在月球表面的岩石上,就像演无声电影一样,在其附近听不到一点声音,这是因为A、月球表面的岩石受到流星的撞击不发出声音B、流星撞击岩石的声音太小,人耳无法听到C、月球表面附近的空间没有空气,缺少声音传播的介质D、原因不明7、人耳听到声音的响度A、只与声源的振幅有关B、只与声源振动的频率有关C、与声源的振幅和声源到人耳的距离等因素都有关D、与声源的振幅和振动的频率都有关8、敞口烧杯中装有水,加热到沸腾后再用大火继续对烧杯加热,这时水的温度A、迅速升高B、慢慢升高C、不变D、无法判断9、文艺演出时,舞台上往往要用弥漫的白烟雾,给人以若隐若现的舞台效果,这种烟雾实际上是A、向舞台喷射真实的烟雾B、利用干冰升华形成的二氧化碳气体C、利用干冰升华吸热,使空气放热液化成的“雾”D、利用干冰升华吸热,使空气中的水蒸气放热液化成的“雾”10、在高寒地带,从人口中呼出的“白气”会在眉毛上结成小冰晶,这个过程是A、液化B、凝华C、凝固D、升华11、柜子里的樟脑丸过一段时间后会变小,在此过程中A、需要吸热B、需要放热C、先吸热后放热 D12、如图所示,把装有碎冰块的试管插入碎冰块中,然后对烧杯底部缓缓加热,当烧杯内的冰熔化一半时,试管里的冰块将A、不会熔化B、熔化一半C、全部熔化D、都有可能13、在油锅倒入一份醋和两份油,进行加热,不一会,锅里的油和醋就会上下翻滚,此时一位表演者将手放入锅内却没有受到损伤,这是因为A、表演者长期练功,能够忍受沸油的高温B、醋能在手的表演形成保护层,避免表演者被烫伤C、由于对流,醋能很快将沸油的温度降低D、虽然锅里的油上下翻滚,但沸腾的只是醋而不是油14、如图所示,三支温度计示数都是20℃,甲温度计在空气中,乙温度计在盛有乙醚的敞口瓶中,丙温度计在盛有乙醚的密闭瓶中,则下列判断正确的是A、甲和乙温度计示数正确,丙温度计示数不正确。

(完整word版)单摆习题及答案

单摆习题及答案1 •如图所示是、乙两个单摆做简谐运动的图象,贝U下列说法中正确的是()A•甲、乙两单摆的振幅之比为2: 1B. t=2s时,甲单摆的重力势能最大,乙单摆的动能为零C•甲、乙两单摆的摆长之比为4: 1D.甲、乙两单摆摆球在最低点时向心加速度大小一定相等2. 在同一地点,两个单摆的摆长之比为4: 1,摆球的质量之比为1: 4,则它们的频率之比为A. 1 : 1B. 1: 2C. 1: 4D. 4: 13. 在同一地点,关于单摆的周期,下列说法正确的是()A. 摆长不变,离地越高,周期越小B.摆长不变,摆球质量越大,周期越小C•摆长不变,振幅越大,周期越大D.单摆周期的平方与摆长成正比4. 在用单摆测定重力加速度”的实验中,有同学发现他测得重力加速度的值偏大,其原因可能是()A. 悬点未固定紧,振动中出现松动,使摆线增长了B•单摆所用摆球质量太大C•把(n+1)次全振动时间误当成n次全振动时间D.开始计时时,秒表过迟按下5. 如图所示,一单摆在做简谐运动.下列说法正确的是()A. 单摆的振幅越大,振动周期越大B.摆球质量越大,振动周期越大C. 若将摆线变短,振动周期将变大D. 若将单摆拿到月球上去,振动周期将变大6. —单摆的摆长为90cm,摆球在t=0时刻正从平衡位置向右运动,(g取10m/s2),则在t=1s时摆球的运动情况是()A. 正向左做减速运动,加速度正在增大B.正向左做加速运动,加速度正在减小C.正向右做减速运动,加速度正在增大D.正向右做加速运动,加速度正在减小7.在用单摆测定重力加速度”的实验中,用力传感器测得摆线的拉力大小F随时间t变化的图象如图所示,已知单摆的摆长为1, V v则重力加速度g为()f It M10. 一位同学做 用单摆测定重力加速度”的实验。

(1) 下列是供学生自主选择的器材。

除了铁架台和相关配件,你认为还应选用的器材 是 _______ 0 (填写器材的字母代号) A.约1m 长的细线B .约0.3m 长的铜丝C .约0.8m 长的橡皮筋D .直径约1cm 的实心木球 E.直径约1cm 的实心钢球 F .秒表 G.天平H .米尺(2) 该同学在安装好实验装置后,测得单摆的摆长为 L ,然后让小球在竖直平面内小角度摆 动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(完整word版)材料物理习题集 1 材料物理习题集

第一章 固体中电子能量结构和状态(量子力学基础) 1. 一电子通过5400V电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3)计算它对Ni晶体(111)面(面间距d=2.04×10—10m)的布拉格衍射角。(P5)

12

341311921111o'(2)6.610 =(29.11054001.610) =1.67102K3.7610sinsin2182hhpmEmdd



解:(1)=

(2)波数=(3)2

2. 有两种原子,基态电子壳层是这样填充的 ;;sssssss2262322626102610(1)1、22p、33p(2)1、22p、33p3d、44p4d,请分别写出n=3的所有电子的四个量子数的可能组态。(非

书上内容,本题不要求) (完整word版)材料物理习题集

2 3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级的能量比费米能级高出多少kT?(P15)

1()exp[]11ln[1]()()1/4ln3()3/4ln3FFFFfEEEkTEEkTfEfEEEkTfEEEkT解:由

将代入得将代入得

4. 已知Cu的密度为8.5×103kg/m3,计算其E0F。(P16)

22

03

234262333118(3/8)2(6.6310)8.510 =(36.0210/8)291063.5 =1.09106.83FhEnmJeV



解:由

5. 计算Na在0K时自由电子的平均动能。(Na的摩尔质量M=22.99,.033=11310kg/m)(P16) (完整word版)材料物理习题集

3 22

03

23426233311900(3/8)2(6.6310)1.01310 =(36.0210/8)291022.99 =5.21103.2531.085FFhEnmJeVEEeV



解:由

由 6. 若自由电子矢量K满足以为晶格周期性边界条件xxL()=()和定态薛定谔方程。试证明下式成立:eiKL=1

()()()()1iKxiKxLiKxiKLiKxiKLxAexLAeAeexAee

解:由于满足薛定谔定态方程又满足周期性边界条件

7. dhrKKcosr/2*hkl*hkl已知晶面间距为,晶面指数为( k l)的平行晶面

的倒易矢量为,一电子波与该晶面系成角入射,试证明产生布拉格反射的临界波矢量的轨迹满足方程。 (本题不要求) 8. 试用布拉格反射定律说明晶体电子能谱中禁带产生的原因. (P20)(本题不要求) 9. 试用晶体能带理论说明元素的导体、半导体、绝缘体的导电性质. 答: (画出典型的能带结构图,然后分别说明)

10. 过渡族金属物理性质的特殊性与电子能带结构有何联系?(P28)(本题不要求) 答:过渡族金属的d带不满,且能级低而密,可容纳较多的电子,夺取较高的s带中的电子,降低费米能级。

补充习题 1. 为什么镜子颠倒了左右而没有颠倒上下? 2. 只考虑牛顿力学,试计算在不损害人体安全的情况下,加速到光速需要多少时间? 3. 已知下列条件,试计算空间两个电子的电斥力和万有引力的比值 11223119922 G6.6710 9.1110 1.6010 8.9910eeNmkgmkgqCNmC

万有引力常数电子质量电子电量介电常数 (完整word版)材料物理习题集 4 122

122

71122812435.510/2.3102.4110mmFGrqqFkrGmmFFkqq

引斥引斥解:=

4. 画出原子间引力、斥力、能量随原子间距变化的关系图。 5. 面心立方晶体,晶格常数a=0。5nm,求其原子体密度。

223-73

443.210/0.510cmcm解:由于每个面心立方晶胞含个原子,所以原子体密度为:原子原子

()

6. 简单立方的原子体密度是223310cm。假定原子是钢球并与最近的相邻原子相切。确定晶格常数和原子半径。

22-33

1310cma0.3221r0.1612nmaanm



解:每个简单立方晶胞含有一个原子: (完整word版)材料物理习题集

5 第二章 材料的电性能

1. 铂线300K时电阻率为1×10-7Ω·m,假设铂线成分为理想纯。试求1000K时的电阻率.(P38) T07722221111(1)1+T1+T51102.27101+1+2.2TmTT





解:

2. 镍铬丝电阻率(300K)为1×10-6Ω·m,加热到4000K时电阻率增加5%,假定在此温度区间内马西森定则成立.试计算由于晶格缺陷和杂质引起的电阻率。(P38)

3. 为什么金属的电阻温度系数为正的? (P37-38) 答:当电子波通过一个理想晶体点阵时(0K),它将不受散射;只有在晶体点阵完整性遭到破坏的地方,电子波才受到散射(不相干散射),这就是金属产生电阻的根本原因,因此随着温度升高,电阻增大,所以金属的电阻温度系数为正。 4. 试说明接触电阻产生的原因和减小这个电阻的措施.(P86) 接触电阻产生的原因有两个:一是因为接触面不平,真正接触面比看到的要小,电流通过小的截面必然产生电阻,称为会聚电阻.二是无论金属表面怎样干净,总是有异物形成的膜,可能是周围气体、水分的吸附层。因此,一般情况下,接触金属时首先接触到的是异物薄膜,这种由于膜的存在而引起的电阻称为过渡电阻。 5. 镍铬薄膜电阻沉积在玻璃基片上其形状为矩形1mm×5mm,镍铬薄膜电阻率为1×10-6Ω·m,两电极间的电阻为1KΩ,计算表面电阻和估计膜厚。

6. 表2。1中哪些化合物具有混合导电方式?为什么? (P35) 2223223OZrOCeOFeOFeCaOSiOAlO、

7. 说明一下温度对过渡族金属氧化物混合导电的影响。 8. 表征超导体的三个主要指标是什么?目前氧化物超导体的主要弱点是什么? (P76)临界转变温度、临界磁场强度、临界电流密度。 主要弱点是临界电流密度低。

9. 已知镍合金中加入一定含量钼,可以使合金由统计均匀状态转变为不均匀固溶体(K状态)。试问,从合金相对电阻变化同形变量关系曲线图(见图2.70)中能否确定镍铁钼合金由均匀状态转变为K状态的钼含量极限,为什么?

10. 试评述下列建议,因为银具有良好的导电性能而且能够在铝中固溶一定的数量,为何不用银使其固溶强化,以供高压输电线使用? (完整word版)材料物理习题集 6 (a)这个意见是否基本正确(b)能否提供另一种达到上述目的的方法;(c)阐述你所提供方案的优越性。 答:不对。在铝中固溶银,会进一步提高材料的电阻率,降低导电性能。

11. 试说明用电阻法研究金属的晶体缺陷(冷加工或高温淬火)时为什么电阻测量要在低温下进行? 答:根据马西森定则,晶体缺陷所带来的电阻和温度升高带来的电阻是相互独立的,在低温下测量电阻,则温度带来的电阻变化很小,所测量的电阻能够反映晶体缺陷的情况.

12.

21lg(1)TK T1000KABT-9-111-6-12实验测出离子型电导体的电导率与温度的相关数据,经数学回归分析得出关系为

试求在测量温度范围内的电导激活能表达式;(2)若给出=500时,=10(m),时,=10(m)计算电导激活能的值。 (P52)

(/)(/)ln10ln10(ln10./)(/)410ln(/)ln10 1Wln10..k0.8410(/) /5003000 /1000 0.594ABTABTABTWkTABTeeeAeBkeVKABBABWeV

-9-6解:(1)

式中=lg10(2)

lg10

13. (完整word版)材料物理习题集

7 12nexp(/2)NkTKNSi1.13.0CgggnNEkTeVkEeVTiOEeVcm•23-3-5-3-本征半导体中,从价带激发至导带的电子和价带产生的空穴共同电导,激发的电子数可以近似表示为:式中:为状态密度,为波尔兹曼常数,为热力学温度(),试回答(1)设=10cm,k=8.610时,(),()在20和500℃所激发的电子数(cm)各是多少?(2)半导体的电导率()-1-1-1-1-1-1-1-1-1ne.cmVsSi1450cmVs500cmVsSieehhehnenene1

-3-19可表示为

式中:为载流子浓度(cm),为载流子电荷(电子电荷1610C)为迁移率(),当电子(e)和空穴(h)同时为载流子时,

假设的迁移率(),(),且不随温度变化。试求在20℃和500℃时的电导率。

2352321.831332352381932235(1)Si2010exp(1.1/(28.610298) =10e3.321050010exp(1.1/(28.610773) =10e2.2510:2010exp(3.0/(28.610298) ncmncmTiOn

解::℃:℃:

℃:133235133 =1.41050010exp(1.1/(28.610773) =1.610cmncm

℃:

13-192-119-19-1203.32101.61014505001.03105002.55101.61014505007956eehheehhnenecmnenecm

(2)℃:()()℃:()()

14. 根据费米—狄拉克分布函数,半导体中电子占据某一能级E的允许状态几率为f(E)为 f(E)=[1+exp(E-EF)/kT]—1

相关文档
最新文档