流体力学实验思考题解答

合集下载

工程流体力学思考题

工程流体力学思考题

思考题第一章流体及其物理性质1.试述流体的定义,以及它与固体的区别。

2.与气体有哪些共同的特性?它们各有什么不同的特性?试分别举例说明,在空气和水中相同与不同的一些流体力学现象。

3.何谓连续介质?引入连续介质模型的目的意义何在?4.流体的密度、比容以及相对密度之间有何关系?这三者的单位如何?5.流体的压缩性与膨胀性可以用哪些参量来描述?6.完全气体的状态方程是什么?请说明方程中每一个参量的意义。

7.何谓不可压缩流体?在什么情况下可以忽略流体的压缩性?8.何谓流体的粘性?流体的粘度与流体的压强和温度的关系如何?9.流体的粘性力与固体的摩擦力有何本质区别?10.试述牛顿内摩擦定律,根据此定律说明,当实际流体处于静止或相对静止状态时,是否存在切向应力?11.何谓理想流体?引入理想流体模型的意义何在?12.试述表面张力的定义,及其产生表面张力的机理。

13.何谓附着力,何谓内聚力?试分析水和水银在毛细管中上升或下降的现象。

14.作用在流体上的力可以分为哪两种?第二章流体静力学1.试述流体静压强的两个重要特性。

2.静力学的全部内容适用于理想流体还是实际粘性流体?或者两者都可?为什么?3.何谓流体的平衡状态与相对平衡状态?它们对应的平衡微分方程有何相同之处与不同之处?4.试写出欧拉平衡微分方程式,叙述该方程的适用范围以及方程中每一项的物理意义。

5.何谓质量力有势?试写出重力的势函数。

6.不可压缩流体处于平衡状态时,对作用在它上面的质量力有什么要求?7.试写出静止流体的压强差公式,并叙述其物理意义,此公式对于相对静止流体是否适用?8.试写出静止流体的等压面的微分方程式,此方程式对于相对静止流体是否适用?9.试述等压面的重要性质。

10.流体静力学的基本方程式的物理意义和几何意义各是什么?11.何谓绝对压强、计示压强与真空?它们之间有何关系?12.静压强的计量单位有哪几种?它们的换算关系如何?13.在一U型管中,盛有两种不相溶的、不同密度的液体,试问,在同一水平面上的液体压强是否相同?为什么?14.叙述帕斯卡原理,试举例说明它在工程中的应用。

工程流体力学实验报告之实验分析与讨论

工程流体力学实验报告之实验分析与讨论

工程流体力学实验报告之分析与讨论实验一流体静力学实验实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。

测压管水头线指测压管液面的连线。

实验直接观察可知,同一静止液面的测压管水头线是一根水平线。

<0时,试根据记录数据,确定水箱内的真空区域。

2.当PB,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。

(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。

(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。

这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。

3.若再备一根直尺,试采用另外最简便的方法测定γ最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。

4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。

常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。

水与玻璃的浸润角很小,可认为cosθ=1.0。

于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。

另外,当水质不洁时,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普通玻璃管小。

如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。

因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。

5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面?不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。

(完整版)水力学实验报告思考题答案

(完整版)水力学实验报告思考题答案

水力学实验报告实验一流体静力学实验实验二不可压缩流体恒定流能量方程(伯诺利方程)实验实验三不可压缩流体恒定流动量定律实验实验四毕托管测速实验实验五雷诺实验实验六文丘里流量计实验实验七沿程水头损失实验实验八局部阻力实验实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。

另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。

实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。

测压管水头线指测压管液面的连线。

实验直接观察可知,同一静止液面的测压管水头线是一根水平线。

2.当P B<0时,试根据记录数据,确定水箱内的真空区域。

,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。

(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。

(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。

这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。

3.若再备一根直尺,试采用另外最简便的方法测定γ0。

最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。

4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。

流体力学(上)实验——11级食科2班105宿舍出版资料

流体力学(上)实验——11级食科2班105宿舍出版资料

一、流体流动形态的观察与测定(雷诺实验)实验任务:流型及其判断方法;层流、湍流、层流时流速分布曲线1、雷诺准数Re=duρ/μ2、流动类型及判断Re<2100为层流,Re>4000为湍流, 2100<Re<4000为过渡流。

3、转子流量计原理及安装原理:在不同的流量下,要保持转子上下端之间具有相同的静压差,转子与玻璃管环隙间的截面积必须发生改变。

在不同的流量下,转子会停留在玻璃管内不同的高度处,因此转子在不同高度处的刻度就可只是流体的流量。

安装:(1)垂直安装(2)进出口应有5倍管道直径以上的直管段(3)安装在没有振动、便于观察和维修的场所(4)小口径的仪表,应在仪表上游装一个过滤器(5)在转子流量计的进出口装有截止阀和配置旁通阀4、思考题(1)影响流体流动型态的因素有哪些?答:影响流体流动形态的因素有4点:管径d、流速u、流体密度ρ、流体黏度μ。

(2)如果管子不是透明的,不能直接观察来判断管中的流体流动型态,你认为可以用什么办法来判断?答:①若不借助外用工具,如果管子是软的可以摸摸就能感觉,也可以用听来判断;如果只硬的管子,就只能用听来判断。

②用雷诺数判断:Re<2100为层流,Re>4000为湍流, 2100<Re<4000为过渡流。

(3)有人说可以只用流速来判断管中流体流动型态,流速低于某一具体数值时是层流,否则是湍流,你认为这种看法对否?在什么条件下可以由流速的数值来判断流动型态?答:不对。

流体流动型态不仅包括层流、湍流,还有过渡流。

条件:水槽液位高度保持不变,液面绝对平静,墨水粗细合理,水中无杂质,温度、气压和管径保持不变。

(4)在实验中,连续注入水以爆出水槽液面高度不变的目的是什么?答:①由于是通过转子流量计来测量水管中水流的流速,如果水槽中液面高度不能恒定在画线处的话,转子流量计的指示值就不准确,雷诺数的计算值就有较大误差。

②有P=ρgh可知,保持水槽液面高度h不变,就是保持水槽出水口出的压强P不变。

高等教育-《流体力学》课后习题答案

高等教育-《流体力学》课后习题答案

高等教育 --流体力学课后习题答案习题【1】1-1 解:已知:120t =℃,1395p kPa '=,250t =℃ 120273293T K =+=,250273323T K =+= 据p RT ρ=,有:11p RT ρ'=,22p RT ρ'= 得:2211p T p T '=',则2211323395435293T p p kPa T ''=⋅=⨯=1-2 解:受到的质量力有两个,一个是重力,一个是惯性力。

重力方向竖直向下,大小为mg ;惯性力方向和重力加速度方向相反为竖直向上,大小为mg ,其合力为0,受到的单位质量力为01-3 解:已知:V=10m 3,50T ∆=℃,0.0005V α=℃-1根据1V V V Tα∆=⋅∆,得:30.000510500.25m V V V T α∆=⋅⋅∆=⨯⨯=1-4 解:已知:419.806710Pa p '=⨯,52 5.884010Pa p '=⨯,150t =℃,278t =℃ 得:1127350273323T t K =+=+=,2227378273351T t K =+=+= 根据mRT p V =,有:111mRT p V '=,222mRT p V '=G =mg自由落体: 加速度a =g得:421251219.8067103510.185.884010323V p T V p T '⨯=⋅=⨯='⨯,即210.18V V = 体积减小了()10.18100%82%-⨯=1-5 解:已知:40mm δ=,0.7Pa s μ=⋅,a =60mm ,u =15m/s ,h =10mm根据牛顿内摩擦力定律:uT Ayμ∆=∆ 设平板宽度为b ,则平板面积0.06A a b b =⋅= 上表面单位宽度受到的内摩擦力:1100.70.06150210.040.01T A u b N b b h b μτδ-⨯-==⋅=⨯=--/m ,方向水平向左 下表面单位宽度受到的内摩擦力:2200.70.061506300.010T A u b N b b h b μτ-⨯-==⋅=⨯=--/m ,方向水平向左 平板单位宽度上受到的阻力:12216384N τττ=+=+=,方向水平向左。

化工原理复习

化工原理复习

一流体力学综合实验思考题1以水为工作流体所测得的λ-Re关系曲线能否适用于其他种类的牛顿型流体?请说明原因。

可以。

λ值与液体的流量及两侧压截面上的压差计读数有关,与管中流体的种类无关。

2 如果要增加雷诺数的范围,可采取哪些措施?增加管径,增加管内水的流量。

3测出的直管摩擦阻力与直管的放置状态有关吗?请说明原因。

无关,直管摩擦阻力是流体流经直管的能量损失,可利用伯努利方程证明。

4影响流体流动形态的因素有哪些?流体的流速,黏度,温度,尺寸,形状等。

5离心泵启动时,为什么要关闭出口阀,关闭离心泵时,为什么要关闭出口阀。

离心泵启动时,关闭出口阀,管路流量为零,电机消耗功率最小,启动电流最小,以保护电机,离心泵关闭时,关闭出口阀,防止管内液体回流,冲击叶轮,以保护泵。

6测定离心泵的特性曲线并绘制曲线图时为什么要注明转速值?转速改变,泵的流量,压头,及轴功率都会改变。

7离心泵怎样启动,为什么?简单来说,先向泵壳内充满被输送的液体,然后关闭出口阀。

8离心泵启动后,如果不打开出口阀,会有什么结果?泵启动后,若长时间关闭出口阀门,尽管压力不会上升,因水在泵内不断循环,摩擦,撞击产生热量,特别对高压泵更是如此,泵中水有时会沸腾,因此不允许长时间关闭出口阀门。

9 为什么离心泵可以用出口阀来调节流量?泵出口阀门关小时,管路阻力增大,管路特性曲线的斜率增大,泵的工作点发生偏移,相对应的流量变小,阀开大时则相反,所以可利用出口阀调节流量,此法简单易行,缺点是消耗一定的流量。

10试分析气缚和气蚀现象的区别?当离心泵壳内存有空气,因空气的密度比液体的密度小得多而产生较小的离心力,从而贮槽液面上方与泵吸入口处之压力差不足以将贮槽内液体压入泵内,即离心泵无自吸能力,使离心泵再也不能输送液体,此种现象称为气缚现象。

叶轮进口处的压力等于或低于输送温度下液体的饱和蒸汽时,液体就会发生气化,体积骤然膨胀,就会扰乱叶轮进口处液体的流动。

气泡随液体进入叶轮被压缩,高压使气泡突然凝结消失,周围的液体会以极大的速度补充原来的气泡空间,从而产生很大的局部压力,这种压力不断地冲击叶轮表面,就会导致泵壳和叶轮被损坏,这种现象称为气蚀。

水力学实验报告思考题答案分析解析

水力学实验报告实验一流体静力学实验实验二不可压缩流体恒定流能量方程(伯诺利方程)实验实验三不可压缩流体恒定流动量定律实验实验四毕托管测速实验实验五雷诺实验实验六文丘里流量计实验实验七沿程水头损失实验实验八局部阻力实验实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或 (1.1) 式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。

另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。

实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。

测压管水头线指测压管液面的连线。

实验直接观察可知,同一静止液面的测压管水头线是一根水平线。

2.当P B<0时,试根据记录数据,确定水箱内的真空区域。

,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。

(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。

(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。

这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。

3.若再备一根直尺,试采用另外最简便的方法测定γ0。

最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。

4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。

水力学实验报告思考题答案(想你所要)

水力学实验报告实验一流体静力学实验实验二不可压缩流体恒定流能量方程(伯诺利方程)实验实验三不可压缩流体恒定流动量定律实验实验四毕托管测速实验实验五雷诺实验实验六文丘里流量计实验实验七沿程水头损失实验实验八局部阻力实验实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。

另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。

实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。

测压管水头线指测压管液面的连线。

实验直接观察可知,同一静止液面的测压管水头线是一根水平线。

<0时,试根据记录数据,确定水箱内的真空区域。

2.当PB,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。

(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。

(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。

这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。

3.若再备一根直尺,试采用另外最简便的方法测定γ。

最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。

4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。

水力学实验报告思考题答案(想你所要)

水力学实验报告实验一流体静力学实验实验二不可压缩流体恒定流能量方程(伯诺利方程)实验实验三不可压缩流体恒定流动量定律实验实验四毕托管测速实验实验五雷诺实验实验六文丘里流量计实验实验七沿程水头损失实验实验八局部阻力实验实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。

另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。

实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。

测压管水头线指测压管液面的连线。

实验直接观察可知,同一静止液面的测压管水头线是一根水平线。

2.当P<0时,试根据记录数据,确定水箱内的真空区域。

B,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。

(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。

(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。

这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。

3.若再备一根直尺,试采用另外最简便的方法测定γ。

最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。

4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。

工程流体力学第五章 思考题、练习题 - 副本

第五章 不可压缩流体一维层流流动思考题建立流体流动微分方程依据的是什么基本原理?有哪几个基本步骤导致流体流动的常见因素有哪些?流体流动有哪几种常见的边界条件?如何确定这些边界条件? 对缝隙流动、管内流动或降膜流动,关于切应力和速度的微分方程对牛顿流体和非牛顿流体均适用吗?为什么一、选择题1、圆管层流过流断面的流速分布为A 均匀分布;B 对数曲线分布;C 二次抛物线分布;D 三次抛物线分布。

2、两根相同直径的圆管,以同样的速度输送水和空气,不会出现____情况。

A 水管内为层流状态,气管内为湍流状态;B 水管、气管内都为层流状态;C 水管内为湍流状态,气管内为层流状态;D 水管、气管内都为湍流状态。

3、变直径管流,细断面直径为d 1,粗断面直径为d 2,122d d 粗断面雷诺数Re 2与细断面雷诺数Re 1的关系是:A Re 1=0.5Re 2B Re 1=Re 2C Re 1=1.5Re 2D Re 1=2Re 24、圆管层流,实测管轴线上的流速为4m/s,则断面平均流速为:A 4m/sB 3.2m/sC 2m/sD 2.5m/s5 圆管流动中过流断面上的切应力分布如图 中的哪一种?A 在过流断面上是常数B 管轴处是零,且与半径成正比C 管壁处为零 ,向管轴线性增大D 抛物线分布9.下列压强分布图中哪个是错误的?B10.粘性流体总水头线沿程的变化是( A ) 。

A. 沿程下降B. 沿程上升C. 保持水平D. 前三种情况都有可能。

1.液体粘度随温度的升高而___,气体粘度随温度的升高而___( A )。

A.减小,增大;B.增大,减小;C.减小,不变;D.减小,减小四、计算题(50分)30.(6分)飞机在10000m 高空(T=223.15K,p=0.264bar)以速度800km/h 飞行,燃烧室的进口扩压通道朝向前方,设空气在扩压通道中可逆压缩,试确定相对于扩压通道的来流马赫数和出口压力。

(空气的比热容为C p =1006J/(kg ·K),等熵指数为k=1.4,空气的气体常数R 为287J/(kg ·K))T 0=T ∞+v C p ∞=+⨯⨯23222231580010360021006/.()/() =247.69K M ∞=v a ∞∞=⨯⨯⨯=(/)...80010360014287223150743 P 0=p ∞11221+-⎡⎣⎢⎤⎦⎥∞-k M kk =0.26411412074038214141+-⨯⎡⎣⎢⎤⎦⎥=-.....bar31.(6分)一截面为圆形风道,风量为10000m 3/h ,最大允许平均流速为20m/s ,求:(1)此时风道内径为多少?(2)若设计内径应取50mm 的整倍数,这时设计内径为多少?(3)核算在设计内径时平均风速为多少?依连续方程(ρ=C )v 1A 1=v 2A 2=q v(1)v 1π412d q v = d 1=100004360020⨯⨯π=0.42m=420mm (2)设计内径应取450mm 为50mm 的9倍,且风速低于允许的20m/s(3) 在设计内径450mm 时,风速为 v q d m s v 2222441000036000451746==⨯⨯=ππ../ 32.(7分)离心式风机可采用如图所示的集流器来测量流量,已知风机入口侧管道直径d=400mm,U 形管读数h=100mmH 2O ,水与空气的密度分别为ρ水=1000kg/m 3,ρ空=1.2kg/m 3,忽略流动的能量损失,求空气的体积流量q v 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流体力学实验思考题解答(一)流体静力学实验1、 同一静止液体内的测压管水头线是根什么线? 答:测压管水头指γpZ +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。

测压管水头线指测压管液面的连线。

从表1.1的实测数据或实验直接观察可知,同一静止液面的测压管水头线是一根水平线。

2、 当0<B p 时,试根据记录数据确定水箱的真空区域。

答:以当00<p 时,第2次B 点量测数据(表1.1)为例,此时06.0<-=cm p Bγ,相应容器的真空区域包括以下3三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。

(2)同理,过箱顶小杯的液面作一水平面,测压管4中该平面以上的水体亦为真空区域。

(3)在测压管5中,自水面向下深度为0∇-∇=H AP γ的一段水注亦为真空区。

这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等,均为0∇-∇=H AP γ。

3、 若再备一根直尺,试采用另外最简便的方法测定0γ。

答:最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度w h 和o h ,由式o o w w h h γγ=,从而求得o γ。

4、 如测压管太细,对测压管液面的读数将有何影响?答:设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,σ为表面张力系数;γ为液体的容重;d 为测压管的内径;h 为毛细升高。

常温(C t ︒=20)的水,mm dyn /28.7=σ或m N /073.0=σ,3/98.0mm dyn =γ。

水与玻璃的浸润角θ很小,可认为0.1cos =θ。

于是有一般说来,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。

另外,当水质不洁时,σ减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角θ较大,其h 较普通玻璃管小。

如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。

因为测量高、低压强时均有毛细现象,但在计算压差时。

相互抵消了。

5、 过C 点作一水平面,相对管1、2、5及水箱中液体而言,这个水平是不是等压面?哪一部分液体是同一等压面?答:不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。

因为只有全部具备下列5个条件的平面才是等压面:(1) 重力液体;(2) 静止;(3) 连通;(4) 连通介质为同一均质液体;(5) 同一水平面而管5与水箱之间不符合条件(4),因此,相对管5和水箱中的液体而言,该水平面不是等压面。

※6、用图1.1装置能演示变液位下的恒定流实验吗?答:关闭各通气阀,开启底阀,放水片刻,可看到有空气由C 进入水箱。

这时阀门的出流就是变液位下的恒定流。

因为由观察可知,测压管1的液面始终与C 点同高,表明作用于底阀上的总水头不变,故为恒定流动。

这是由于液位的的降低与空气补充使箱体表面真空度的减小处于平衡状态。

医学上的点滴注射就是此原理应用的一例,医学上称之为马利奥特容器的变液位下恒定流。

※7、该仪器在加气增压后,水箱液面将下降δ而测压管液面将升高H ,实验时,若以00=p 时的水箱液面作为测量基准,试分析加气增压后,实际压强(δ+H )与视在压强H 的相对误差值。

本仪器测压管内径为0.8cm,箱体内径为20cm 。

答:加压后,水箱液面比基准面下降了δ,而同时测压管1、2的液面各比基准面升高了H ,由水量平衡原理有δππ44222D H d =⨯ 则 22⎪⎭⎫ ⎝⎛=D d H δ 本实验仪 cm d 8.0=, cm D 20= 故0032.0=H δ 于是相对误差ε有因而可略去不计。

对单根测压管的容器若有10≤d D 或对两根测压管的容器7≤d D 时,便可使01.0≤ε。

(二)伯诺里方程实验1、 测压管水头线和总水头线的变化趋势有何不同?为什么?测压管水头线(P-P)沿程可升可降,线坡J P 可正可负。

而总水头线(E-E)沿程只降不升,线坡J P 恒为正,即J>0。

这是因为水在流动过程中,依据一定边界条件,动能和势能可相互转换。

如图所示,测点5至测点7,管渐缩,部分势能转换成动能,测压管水头线降低,J P >0。

,测点7至测点9,管渐扩,部分动能又转换成势能,测压管水头线升高,J P <0。

而据能量方程E 1=E 2+h w1-2,h w1-2为损失能量,是不可逆的,即恒有h w1-2>0,故E 2恒小于E 1,(E-E )线不可能回升。

(E-E )线下降的坡度越大,即J 越大,表明单位流程上的水头损失越大,如图上的渐扩段和阀门等处,表明有较大的局部水头损失存在。

2、 流量增加,测压管水头线有何变化?为什么?1)流量增加,测压管水头线(P-P )总降落趋势更显著。

这是因为测压管水头222gA Q E pZ H p -=+=γ,任一断面起始的总水头E 及管道过流断面面积A 为定值时,Q增大,gv 22就增大,则γp Z +必减小。

而且随流量的增加,阻力损失亦增大,管道任一过水断面上的总水头E 相应减小,故γpZ +的减小更加显著。

2)测压管水头线(P-P )的起落变化更为显著。

因为对于两个不同直径的相应过水断面有g A Q g A Q A Q g v g v v p Z H P 2222222212222222122ζζγ+-=+-=⎪⎪⎭⎫ ⎝⎛+∆=∆ 式中ζ为两个断面之间的损失系数。

管中水流为紊流时,ζ接近于常数,又管道断面为定值,故Q 增大,H ∆亦增大,()P P -线的起落变化更为显著。

3、 测点2、3和测点10、11的测压管读数分别说明了什么问题?测点2、3位于均匀流断面,测点高差0.7cm ,γpZ H P +=均为37.1cm (偶有毛细影响相差0.1mm ),表明均匀流各断面上,其动水压强按静水压强规律分布。

测点10、11在弯管的急变流断面上,测压管水头差为7.3cm ,表明急变流断面上离心惯性力对测压管水头影响很大。

由于能量方程推导时的限制条件之一是“质量力只有重力”,而在急变流断面上其质量力,除重力外,尚有离心惯性力,故急变流断面不能选作能量方程的计算断面。

在绘制总水头线时,测点10、11应舍弃。

※4、试问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的影响情况。

下述几点措施有利于避免喉管(测点7)处真空的形成:(1)减小流量,(2)增大喉管管径,(3)降低相关管线的安装高程,(4)改变水箱中的液位高度。

显然(1)(2)(3)都有利于阻止喉管真空的出现,尤其(3)更具有工程实际意义。

因为若管系落差不变,单单降低管线位置往往就可以避免真空。

例如可在水箱出口接一下垂90度的弯管,后接水平段,将喉管高程将至基准高程0-0,比位能降至零,比压能γp 得以增大(Z ),从而可能避免点7处的真空。

至于措施(4)其增压效果是有条件的,现分析如下:当作用水头增大h ∆时,测点7断面上γpZ +值可用能量方程求得。

取基准面及计算断面1、2、3如图所示,计算点选在管轴线上(以下水拄单位均为cm )。

于是由断面1、2的能量方程(取132==αα)有21222212-+++=∆+w h g v p Z h Z γ (1) 因21-w h 可表示成 g v g v d l h c s e w 22232.12322.121ζζζλ=⎪⎪⎭⎫ ⎝⎛++=-此处2.1c ζ是管段1-2总水头损失系数,式中e ζ、s ζ分别为进口和渐缩局部损失系数。

又由连续方程有 g v d d g v 222342322⎪⎪⎭⎫ ⎝⎛= 故式(1)可变为 g v d d h Z p Z c 2232.1423122⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛-∆+=+ζγ (2) 式中g v 223可由断面1、3能量方程求得,即gv g v Z h Z c 22233.12331ζ++=∆+ (3) 3.1c ζ是管道阻力的总损失系数。

由此得 ()()3.131231/2c h Z Z g v ζ+∆+-=,代入式(2)有⎪⎪⎭⎫ ⎝⎛+∆--⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛-∆+=+3.1312.14231221c c h Z Z d d h Z p Z ζζγ (4) ()γ22p Z +随h ∆递增还是递减,可由()()h p Z ∆∂+∂/22加以判别。

因 ()()()3.12.14232211c c d d h p Z ζζγ++-=∆∂+∂ (5) 若()[]()01/13.12.1423>++-c c d d ζζ,则断面2上的()γp Z +随h ∆同步递增。

反之,则递减。

文丘里实验为递减情况,可供空化管设计参考。

因本实验仪137.123=d d ,501=Z ,103-=Z ,而当0=∆h 时,实验的()622=+γp Z ,19.3322=g v ,42.9223=g v ,将各值代入式(2)、(3),可得该管道阻力系数分别为5.12.1=c ζ,37.53.1=c ζ。

再将其代入式(5)得表明本实验管道喉管的测压管水头随水箱水位同步升高。

但因()()h p Z ∆∂+∂/22接近于零,故水箱水位的升高对提高喉管的压强(减小负压)效果不明显。

变水头实验可证明结论正确。

5、 毕托管测量显示的总水头线与实测绘制的总水头线一般都有差异,试分析其原因。

与毕托管相连通的测压管有1、6、8、12、14、16和18管,称总压管。

总压管液面的连线即为毕托管测量显示的总水头线,其中包含点流速水头。

而实际测绘的总水头是以实测的()p Z +值加断面平均流速水头g v 22绘制的。

据经验资料,对于园管紊流,只有在离管壁约d 12.0的位置,其点流速方能代表该断面的平均流速。

由于本实验毕托管的探头通常布设在管轴附近,其点流速水头大于断面平均流速水头,所以由毕托管测量显示的总水头线,一般比实际测绘的总水头线偏高。

因此,本实验由1、6、8、12、14、16和18管所显示的总水头线一般仅供定性分析与讨论,只有按实验原理与方法测绘的总水头线才更准确。

(五)雷诺实验※1、流态判据为何采用无量纲参数,而不采用临界流速?雷诺在1883年以前的实验中,发现园管流动存在着两种流态——层流和紊流,并且存在着层流转化为紊流的临界流速'v ,'v 与流体的粘性ν、园管的直径d 有关,既()d f v ,'ν= (1)因此从广义上看,'v 不能作为流态转变的判据。

为了判别流态,雷诺对不同管径、不同粘性液体作了大量的实验,得出了无量纲参数()ν/vd 作为管流流态的判据。

相关文档
最新文档