四年级奥数数列求和
四年级奥数《巧妙求和》

四年级数学 数列求和 奥数:巧妙求和 通项公式:第n项=首项+(项数-1)×公差 项数公式:项数=(末项-首项)÷公差+1 求和公式:总和=(首项+末项) ×项数÷2
四年级奥数高斯求和问题

四年级奥数高斯求和问题(总5页) -本页仅作为预览文档封面,使用时请删除本页-小学奥数专题——高斯求和德国着名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。
通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1和=(首项+末项)×项数÷2。
例1、1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
四年级上册奥数第8讲 巧妙求和(一)

第8周巧妙求和(一)专题简析:若干个数排成一列,称为数列。
数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
数列中数的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
例如:3,6,9,…,96,这是一个首项为3,末项为96,项数为32,公差为3的等差数列。
这一周,我们将学习“等差数列求和”。
为了更好地掌握此类问题,我们需要记住三个公式:通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)X 项数÷2在等差数列中,只要知道首项、末项、公差、及总和这五个量中的三个,就可以利用通项公式、项数公式及求和公式求其余两个量。
例1:等差数列4,10,16,22,…,52共有多少项?练习一:1、等差数列中,首项=1,末项=39,公差=2。
这个等差数列共有多少项?2、等差数列2,5,8,11,…,101共有多少项?3、已知一个等差数列的首项是11,末项是101,总和是504,这个数列共有多少项?例2:已知等差数列3,7,11,15,…,则该等差数列的第100项是多少?练习二:1、一个等差数列的首项=3,公差=2,项数=10,则它的末项是多少?2、已知等差数列1,4,7,10,…,则该等差数列的第30项是多少?3、已知等差数列2,6,10,14,…,则该等差数列的第100项是多少?例3:有这样的一个列数1,2,3,4,…,99,100,请你求出这列数各项相加的和。
练习三:计算下面各题。
1、1+2+3+4+…+49+502、6+7+8+9+…+753、100+99+98+…+61+60例4:求等差数列2,4,6,…,48,50的和。
练习四:计算下面各题。
1、2+6+10+14+19+222、5+10+15+20+…+195+2003、9+18+27+36+…+261+270例5:如果一个等差数列的第4项为21,第6项为33,那么它的第8项是多少?练习五:1、如果一个等差数列的第5项是19,第8项是61,那么它的第11项是多少?2、如果一个等差数列的第3项是10,第7项是26,那么它的第12项是多少?3、如果一个等差数列的第2项是10,第6项是18,那么它的第110项是多少?1、有一个等差数列:9,12,15,18,…,2004,这个数列共有多少项?2、已知等差数列:1000,993,986,979,…,20,这个数列共有多少项?3、求等差数列:1,6,11,16,…的第61项。
四年级奥数《高斯求和》答案及解析

高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
]例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
四年级奥数巧妙求和(一)

第2讲巧妙求和(一)一、知识要点若干个数排成一列称为数列. 数列中的每一个数称为一项. 其中第一项称为首项, 最后一项称为末项, 数列中项的个数称为项数.从第二项开始, 后项与其相邻的前项之差都相等的数列称为等差数列, 后项与前项的差称为公差.在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”.通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1等差数列总和=(首项+末项)×项数÷2这个公式也叫做等差数列求和公式.二、精讲精练【例题1】有一个数列:4, 10, 16, 22.…, 52.这个数列共有多少项?练习1:1、等差数列中, 首项=1, 末项=39, 公差=2.这个等差数列共有多少项?2、有一个等差数列:2.5, 8, 11.…, 101.这个等差数列共有多少项?【例题2】有一等差数列:3.7, 11.15, ……, 这个等差数列的第100项是多少?练习2:1、一等差数列, 首项=3.公差=2.项数=10, 它的末项是多少?2、求1, 4, 7, 10……这个等差数列的第30项.【例题3】有这样一个数列:1.2.3.4, …, 99, 100. 请求出这个数列所有项的和.练习3:计算下面各题.(1)1+2+3+…+49+50(2)6+7+8+…+74+75【例题4】求等差数列2, 4, 6, …, 48, 50的和.练习4:计算下面各题.(1)2+6+10+14+18+22(2)5+10+15+20+…+195+200【例题5】计算(2+4+6+...+100)-(1+3+5+ (99)练习5:用简便方法计算下面各题.(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+...+2000)-(1+3+5+ (1999)三、课后作业1、已知等差数列11, 16, 21, 26, …, 1001.这个等差数列共有多少项?2、求等差数列2, 6, 10, 14……的第100项.3、100+99+98+…+61+604、(1+3+5+...+1999)-(2+4+6+ (1998)5、100+95+90+…+15+10+56、4+7+10+13+…+298+301+298+…+13+10+7+47、 2013-2012+2011-2010+…+3-2+18、影剧院有座位若干排, 第一排有25个座位, 以后每一排比前一排多3个座位, 最后一排有94个座位. 问:这个影剧院共有多少个座位?巧算年龄一、知识要点:年龄问题是一类与计算有关的问题, 它通常以和倍、差倍或和差等问题的形式出现. 有些年龄问题往往是和、差、倍数等问题的综合, 需要灵活地加以解决.解答年龄问题, 要灵活运用以下三条规律:1、无论是哪一年, 两人的年龄差总是不变的;2、随着时间的向前或向后推移, 几个人的年龄总是在减少或增加相等的数量;3、随着时间的变化, 两人的年龄之间的倍数关系也会发生变化.二、精讲精练例1:爸爸今年43岁, 儿子今年11岁. 几年后爸爸的年龄是儿子的3倍?练习一1、妈妈今年36岁, 儿子今年12岁. 几年后妈妈年龄是儿子的2倍?2、小强今年15岁, 小亮今年9岁. 几年前小强的年龄是小亮的3倍?例2:妈妈今年的年龄是女儿的4倍, 3年前, 妈妈和女儿的年龄和是39岁. 妈妈和女儿今年各多少岁?练习二1、今年爸爸的年龄是儿子的4倍, 3年前, 爸爸和儿子的年龄和是44岁. 爸爸和儿子今年各是多少岁?2、今年小丽和她爸爸的年龄和是41岁, 4年前爸爸的年龄恰好是小丽的10倍. 小丽和爸爸今年各是多少岁?例3:今年小红的年龄是小梅的5倍, 3年后小红的年龄是小梅的2倍. 小红和小梅今年各多少岁?练习三1、今年小明的年龄是小娟的3倍, 3年后小明的年龄是小娟的2倍. 小明和小娟今年各多少岁?2、今年小亮的年龄是小英的2倍, 6年前小亮的年龄是小英的5倍. 小英和小亮今年各多少岁?例4:甜甜的爸爸今年28岁, 妈妈今年26岁. 再过多少年, 她的爸爸和妈妈的年龄和为80岁?练习四1、蜜蜜的爸爸今年27岁, 她的妈妈今年26岁. 再过多少年, 她爸爸和妈妈的年龄和为73岁?2、林星今年8岁, 爸爸今年34岁. 当他们的年龄和为72岁时, 爸爸和林星各多少岁?例5:小英一家由小英和她的父母组成. 小英的父亲比母亲大3岁, 今年全家年龄总和是71岁, 8年前这个家的年龄总和是49岁. 今年三人各多少岁?练习五1、父、母、子三人今年的年龄和为70岁, 而10年前三人的年龄和为46岁, 父亲比母亲大4岁. 求三人今年各多少岁.2、全家四口人, 父亲比母亲大3岁, 姐姐比弟弟大2岁. 4年前他们的年龄和为58岁, 现在全家的年龄和是73岁. 现在每个人各多少岁?三、课后作业1、爷爷今年60岁, 孙子今年6岁. 再过多少年爷爷的年龄比孙子大2倍?2、今年小芳和她妈妈的年龄和是38岁, 3年前妈妈的年龄比小芳的9倍多2岁. 小芳和妈妈今年各多少岁?3、10年前父亲的年龄是儿子的7倍, 15年后父亲的年龄是儿子的2倍. 父亲和儿子今年各多少岁?4、今年爸爸56岁, 儿子30岁. 当父子的年龄和为46岁时, 爸爸和儿子各是多少岁?5、吴琪一家由吴琪和他的孪生姐姐吴林还有他们的父母组成, 其中父亲比母亲大2岁. 今年全家的年龄和是64岁, 5年前全家的年龄和是52岁. 求今年每人的年龄.。
四年级奥数-高斯求和

高斯求和一、高斯求和相关定义:若干个数按一定顺序规律排列起来就是一个数列。
如果这个数列中任意两个相邻的数之间的差都相等,我们就把这个数列称为等差数列。
其中第一个数称为首项,最后一个数称为末项。
相邻两个数之间的差称为公差,这数列中数的个数称为项数。
求和公式为: 等差数列的和=(首项+末项)⨯项数÷2项数=(末项-首项)÷公差+1末项=首项+公差⨯(项数-1)首项=末项-公差⨯(项数-1)二、例题例1.计算10987654321+++++++++练习 (1) 1917531+++++ (2) 求50以内所有偶数的和。
例2.建筑工地上堆着一些钢管(如图),求这些钢管一共有多少根?练习(1)图中一共有多少个三角形?(2)下图是一垛电线杆的侧面示意图,试计算一下图中共有多少根电线杆?例3.下面一列数是按照一定规律排列的:3,7,11,15,...,95,99.请问:(1)这列数中的第20个数是多少?(2)39是这列数中的第几项?练习:(1)自1开始,每隔三个数数一数,得到数列1,4,7,10......问第100个数是多少?(2)某饭店的餐桌都是能做4人的正方形,如图①所示。
当团体客人在10人以上时,饭店允许客人将餐桌拼成一长条,如图②所示,但每张桌子不能呢个有空位。
问如果团体客人是22人,那么需要几张桌子?例4.计算11+21+31+41+51+61+71+81+91练习:(1)计算:11+13+15+17+19+21+23(2)明明用棋子摆了一个五层图形,每两层棋子的个数相差5,最内层用了18个棋子。
问一共用了多少个棋子?例5.求首项为5,末项为155,公差是3的等差数列的和。
练习:一个有17项的等差数列,末项为117,公差为7,求这个等差数列的和是多少?例6.如图所示,如果用3根火柴摆成一个等边三角形,用这样的方法,按图中所示铺满一个大的等边三角形,如果这个大的等边三角形的底边是10根火柴,那么一共放多少根火柴?练习:如图所示是一个五边形点阵,中心是一个点为第一层,第二层每边两个点,第三层每边三个点,第四层每边四个点,一次类推,如果这个五边形点阵共有100层,那么点阵中一共有多少个点?三、课后练习1、下面数列中,哪些是等差数列?如果是,请指明公差;如果不是,说明理由。
四年级奥数等差数列和等比数列
四年级奥数等差数列和等比数列
简介
本文将介绍四年级奥数中的等差数列和等比数列概念及其求和公式。
等差数列
等差数列是指一个数列中的每一项与它的前一项之差都相等。
例如,2、4、6、8、10 就是一个等差数列,其中公差为2。
公式
对于等差数列,可以使用以下公式来求前n项和:
$$S_n = \frac{n}{2} (a_1 + a_n)$$
其中,$S_n$表示前n项的和,$a_1$表示数列的首项,
$a_n$表示数列的第n项。
等比数列
等比数列是指一个数列中的每一项与它的前一项之比都相等。
例如,2、6、18、54、162 就是一个等比数列,其中公比为3。
公式
对于等比数列,可以使用以下公式来求前n项和:
$$S_n = \frac{a_1(1-q^n)}{1-q}$$
其中,$S_n$表示前n项的和,$a_1$表示数列的首项,$q$表示公比,$n$表示项数。
总结
等差数列和等比数列是四年级奥数中常见的数列类型。
通过掌握它们的概念和求和公式,可以帮助学生更好地理解数列的特点和规律,并能应用到实际问题中。
以上是对四年级奥数中的等差数列和等比数列的简要介绍。
希望本文能够对大家有所帮助。
小学四年级奥数教案 第2讲 巧妙求和(一)
第2讲巧妙求和(一)一、知识要点若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。
通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1等差数列总和=(首项+末项)×项数÷2这个公式也叫做等差数列求和公式。
二、精讲精练【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项?练习1:1、等差数列中,首项=1,末项=39,公差=2.这个等差数列共有多少项?2、有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项?【例题2】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?练习2:1、一等差数列,首项=3.公差=2.项数=10,它的末项是多少?2、求1,4,7,10……这个等差数列的第30项。
【例题3】有这样一个数列:1.2.3.4,…,99,100。
请求出这个数列所有项的和。
练习3:计算下面各题。
(1)1+2+3+…+49+50(2)6+7+8+…+74+75【例题4】求等差数列2,4,6,…,48,50的和。
练习4:计算下面各题。
(1)2+6+10+14+18+22(2)5+10+15+20+…+195+200【例题5】计算(2+4+6+...+100)-(1+3+5+ (99)练习5:用简便方法计算下面各题。
(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+...+2000)-(1+3+5+ (1999)三、课后作业1、已知等差数列11,16,21,26,…,1001.这个等差数列共有多少项?2、求等差数列2,6,10,14……的第100项。
举一反三四年级奥数第6讲巧妙求和一
举一反三四年级奥数第6讲巧妙求和一奥数(即奥林匹克数学竞赛)是一项旨在培养学生逻辑思维能力和解决问题技巧的数学竞赛活动。
对于四年级学生而言,学习奥数可以培养他们的数学思维和动手能力,提高他们对数学的兴趣和学习效果。
在本文中,我们将从第六讲的巧妙求和一这一话题来探讨如何举一反三。
巧妙求和一:等差数列求和在第六讲中,我们遇到了一个有关等差数列的求和问题。
等差数列是由一个初始项和一个公差确定的一系列数,其中每个数与它的前一个数的差值都是相等的。
通过找到这个差值,我们可以利用求和公式来快速求解等差数列的和。
以数列1,4,7,10,13为例,我们可以观察到每个数与前一个数的差值都是3。
因此,我们可以使用求和公式S = (a1 + an) * n / 2来求得该数列的和,其中a1为初始项,an为最后一项,n为项数。
在这个例子中,我们有a1 = 1,an = 13,n = 5,代入公式计算得到S = (1 + 13) * 5 / 2 = 35。
举一反三:寻找等差数列通过上述例子,我们学会了如何利用求和公式求解等差数列的和。
那么,如果我们只知道数列的和S、项数n,我们能否反过来寻找等差数列呢?答案是肯定的。
假设我们知道一个等差数列的和S为35,项数n为5,我们可以先假设初始项a1为未知数x,公差d也为未知数y。
根据求和公式,我们可以得到一个方程式:S = (a1 + an) * n / 2。
将具体数值代入方程,我们得到35 = (x + (x + (n-1)y)) * n / 2,化简得 35 = (2x + (n-1)y) * n / 2,继续化简可得 70 = 2x + (n-1)y * n,即 2x + 4y = 70。
从这个方程中,我们可以发现x和y的取值不是唯一的,但它们需要满足方程。
我们可以通过试探不同的x和y值,来寻找满足这个方程的合理解。
通过上述例子,我们可以看到在已知一些条件的情况下,通过方程求解的方法可以帮助我们寻找等差数列。
四年级奥数----等差数列求和一
第三周等差数列求和(一)*数列的基本知识:(1) 1、2、3、4、5、6…… 公差:____ (2) 2、4、6、8、10、12…… 公差:_______ (3) 5、10、15、20、25、30……公差:____像这样按照一定规律排列成的一列数我们称它为数列,数列中的每一个数称为一项; 第1项称为首项;最后1项称为末项;在第几个位置上的数就叫第几项;有多少项称为项数;通过观察,我们可以发现上面的每一个数列中,从第一项开始,后项与前项的差都是相等的,具有这样特征的数列称为等差数列,这个差称为这个数列的公差。
通项公式:某一项二首项+ (项数-1 )X公差项数公式:项数=(末项—首项)十公差+ 1求和公式:总和=(首项+末项)x项数十2例题1:已知数列2、5、& 11、14……求它的第10项是多少?它的第98项是多少?【思路导航】这个等差数列的首项是2,公差是3,项数是10.要求第10项,可根据,某一项=首项+ (项数-1 ) x公差进行计算。
第10项:2+3 x ( 10-1 ) =29 第98 项:2+3 x( 98-1 ) =293练习1:某一项=首项+(项数-1 )x公差(1)求等差数列:1、3、5、7、9……它的第21项是多少?(2)求等差数列: 2、6、10、14、18 它的第60项是多少?(3)求等差数列: 7、12、17、22 它的第100项是多少?例题2:已知数列2、5、& 11、14……35,这个数列共有多少项?【思路导航】第2项比首项多1个公差,第3项比首项多2个公差,第4项比首项多3 个公差……,那第n项比首项多(n-1)个公差。
可根据,项数=(末项—首项)十公差+ 1 进行计算,(35-2)- 3+1=12。
所以,这个数列共有12项。
练习2:项数=(末项一首项)十公差+ 1(1)有一个等差数列:1、3、5、7、9……99,这个等差数列共有多少项?(2) 有一个等差数列:2、5、& 11……101,这个等差数列共有多少项?(3) 有一个等差数列:11、16、21、26……1001,这个等差数列共有多少项?例题3: 6 + 10 + 14 + 18 + 22 + 26 + 30 + 34 + 38=?【思路导航】这是一个等差数列;首项=6,末项=38,公差=4原数列的和:6 + 10 + 14 + 18 + 22 + 26 + 30 + 34 + 38倒过来的和:38+ 34 + 30 + 26 + 22 + 18 + 14 + 10 + 644 44 44 44 44 44 44 44 44这里一共有9个44相加,所得的和就是所求数列的和的2倍,再除以2,就是所求数列的和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和
公式:(首项+末项)×(项数÷2)
1、1+2+3+4+5+6+7+……+10
2、1+2+3+4+5+6+……+98+99+100
3、2+4+6+8+10+12+……+98+100
4、1+3+5+7+9+……+97+99
5、5+10+15+20+25+……+90+95+100
6、4+8+12+16+18+……+96+100
7、3+6+9+12+15+……+297+300
8有一个数列6、10、14、18、22、26……的前100个和是多少?