大学物理 静电场教案
大学物理 第一章静止电荷的电场(必看)

q2d (A) 2 S 0
Байду номын сангаас
)。
q2d (B) S 0 q2d (D) S 0
q2 F Eq 2S 0
q2d (C) 2 S 0
d
d
q E 2 0 2S 0
q 2d A Fd 2S 0
量等于该闭合面内所包围的电荷代数和除以真空的
介电常数,数学表达式为
1 E ds
s
0 ( s面内)
q
典型电荷的电场
(1)点电荷
E
q 4 0 r
2
er
(2)半径为R 、带电量为Q均匀带电球面
E0
E Q 4 0 r
2
rR
er
rR
(3)均匀带电无限长直线
E 2 0 r
2 ES 2 xS
底面
E
x
0
0
d x 时: 2 q DS
2 ES DS
0
D E 2 0
例 题 15 15、如图所示,一无限长的均匀带电圆柱体,
体电荷密度为 ,截面半径为 R 。
求:
(1)柱内( r R )电场强度分布?
(2)柱外(r R)的电场强度分布?
直线中垂线的P点到带电直线中心o的距离
OP L
时,P点的电场强度大小。 解(1)
dE
E
L 2 L 2
y
L r ax 2
o
x
1 1 ( ) L 4 0 ( a x) 2 4 0 a a L 2
dq 4 0 r 2 dx
大学物理学(上册)第5章 静电场

e 1.6021019C 量子性
电荷量e的数值最早由美国 科学家密立根用实验测得.
量子性始终不变
强子理论研究中提出所谓夸克模型,以四味夸克为例
夸克 U quark (上)
带电量 2/3 |e|
D quark(下) S quark(奇) C quark(粲)
-1/3 |e| -1/3 |e|
电量为Q
电量为Q
+
v
X′
X
⑵ 库仑定律
库仑(1736~1806)
库仑扭秤
① 库仑定律的内容主要内容 在真空中处于静止状态的两个点电荷的相互作用力的大 小,与每个点电荷的电量成正比,与两个点电荷间距离的 平方成反比,作用力的方向沿着两个点电荷的连线. 当 两个点电荷带同号电荷时,它们之间是排斥力,带异号 电荷时,它们之间是吸引力.
例1 长为L的均匀带电直杆,电荷线密度为 ,求它在空
解 d间q一点dPx产生d的E电场4强1度0 (rd2Px点到杆的垂直dy距Ey离为dEa).
dEx dE cos dEy dE sin
P
dEx
由图上的几何关系
x a tan(θ ) acotθ 2
r
1
a
2
dq O
x
dx a csc2θ dθ
dq
讨论
E
qx
q
4 0 (x2 R2 )3/ 2
R
1)环心处:x=0 E=0 表明环心处的电场强度为零
o
xP
Ex
2)当 x >> R,则
(x2 R2 )3/2 x3
E
1
4 0
q x2
dq '
静电场中的电介质(2)

23
[例2]如图,两个半径分别为R1和R3的同心导体球面,带电量分 别为+Q、-Q,其中间充满相对介电常数分别为r1和r2的两层各向 同性均匀电介质,它们的分界面为一半径为R2的同心球面。求此 带电体系产生电场的能量。
解: 分析电场分布,求E。
选取球形高斯面,
则
D dS D4r2 Q
S1
D 0rE
S令
D 0rE E
称为电位移矢量
介质场中的高斯定理: D dS q0
S
说明:① D是一个辅助量,真正有意义的是场强 E。
它指出,通过闭合曲面的电位移通量,等于此闭合曲面内所 含的自由电荷。
② q0指曲面内所包含的自由电荷,与极化电荷无关,
E是由空间所有的电荷产生。
10
四、电位移矢量与电场强度的比较
E E0
r
' (1 1 ) r
介质场中的高斯定理
sD dS q0
29
三、电场的能量
e
1 2
DE
W
V edV
V
1 2
D
EdV
V
1 E2dV
2
We
Q2 2C
1 2
C(
UA
UB )2
1 2
Q(
U
A
UB)
四、电容和电容器
孤立导体:
q U
C
先设q 再求C
电容器: q C 先设q 再求C
解:两层介质中有
D1 D2 0 D
0 +
+
+
+
A
+
r1
d1
E1
D 1
0 0r1
E2
大学物理静电场

二
静电力的叠加原理
两个以上点电荷对于另一个点电荷的静电 作用力等于各个点电荷单独存在时对该点电荷 作用力的矢量和. N F qqi F2 ˆ e F Fi 2 ri i 4 0 ri i 1 r1 F 1 q 连续分布电荷Q对点电荷q作用力 q 1 r2 qdq q2
dl
电荷线密度
1 λe r E dl 2 l 4 πε 0 r
r
P
dE
17
求解电场强度的步骤:
1、按其几何形状的带电特征任取一电荷元dq
2、写出dq在所求场点的电场表达式 dE 3、分析不同电荷元在所求场点的电场方向是 否相同,如果不同则需要将 dE 分解,写出 dE 在具体坐标系各坐标轴方向上的分量式,并将 分量式进行积分,最后将各分量结果进行矢量 合成。
2 xr0 q E E E 2 2 2 i 4 πε0 ( x r0 4)
q -
r0
. 2
O
r0 2
q
+
x
E
A
.
E
x
21
q 2r0 1 2 xr0 q E i 2 2 2 2 i 4πε x 3 r0 2 4πε0 ( x r0 4) 0 (1 2 ) 4x
F dF Q
4 0 r
ˆ e 2 r
11.3
电场和电场强度
1. 库仑相互作用力的两种解释:
1)一个点电荷不需中间媒介直接施力与另一点电荷 -----超距相互作用 2)电荷产生电场,电场再作用于另一电荷
-----场传递相互作用
对静电情况 两种观点等价
在动态下会怎样呢? 结果完全不同!
静电场教学单元的详细规划

静电场教学单元的详细规划目标本教学单元的目标是让学生了解静电场的基本概念和原理,并能够应用所学知识解决相关问题。
通过实验和练,培养学生的观察和实验能力,提高他们的科学思维和解决问题的能力。
研究内容安排第一课:静电基础知识- 介绍静电的概念和特点- 解释电荷的性质和相互作用- 讲解电场的概念和表示方法- 给出静电场的基本定律和公式第二课:电场的计算和测量- 介绍电场强度的计算方法- 解释电场线的概念和绘制方法- 实验测量电场强度的方法和步骤- 练计算和测量电场强度的例题第三课:电场的应用- 探讨静电场的应用领域和意义- 介绍电场对电荷的作用力和电势能的关系- 解释电场对导体和绝缘体的影响- 练应用电场概念解决实际问题的例题第四课:电势和电势差- 讲解电势的概念和计算方法- 解释电势差的概念和意义- 实验测量电势差的方法和步骤- 练计算和测量电势差的例题第五课:电场的图像化表示- 介绍电场的图像化表示方法- 解释电势线和等势面的概念和特点- 练绘制电场图像的例题教学方法和策略- 使用简明易懂的语言和图示解释概念和原理- 引导学生通过实验和观察来发现规律和解决问题- 提供大量练和例题,让学生进行实际操作和计算- 鼓励学生积极参与讨论和互动,培养他们的合作和沟通能力- 针对学生的不同水平和兴趣,提供个性化的辅导和拓展活动教学评估- 设计小组实验任务,评估学生在实验设计和数据处理方面的能力- 组织小组讨论,评估学生对静电场相关概念和原理的理解程度- 布置作业和练题,评估学生应用知识解决问题的能力- 进行课堂小测验,评估学生对教学内容的掌握情况- 定期进行个人面谈,了解学生研究进展和需求,提供个性化的指导和支持参考资源- 《物理教学参考书》- 《静电场实验指导手册》- 在线教学资源和模拟实验平台以上是静电场教学单元的详细规划,希望能够帮助学生全面了解静电场的知识和应用,提高他们的科学素养和问题解决能力。
《大学物理》静电场的模拟实验

2、根据等势线作出电场线(做电场线时要注意:电场线与等势线正交,导体表面是等势面,电场线垂直于导体表面,电场线发自正电荷而中止于负电荷,疏密能表示出场强的大小,根据电极正,负画出电场线方向)。
五、实验步骤
1、打开描绘架上层的黑色金属方框,放上描绘用的坐标纸,并将其合上压紧。
2、水槽内注入干净的自来水至略低于电极板高度的位置,并将电极板水槽放于描绘架下层,居中。
六、实验记录与数据处理
本实验由于使用的是描点作图,故不再进行不确定度计算和数据的数学处理。要求在图上画出电极(必须与实际电极相同,如何画?)、测绘的等势线(虚线)及电力线图(实线)。
注意:作图要科学,不能违背相关物理概念。
七、课后作业题
(1)出现下列情况时测绘的等势线和电力线的形状有无变化?
①电源电压提高一倍
①;
②;
③。
通过对稳恒电流场和静电场的分析、比较,可以看到:两种场都有电势的概念,而且两种场都遵守高斯定理和拉普拉斯方程。因而只要
,便可由微分方程的唯一性定理得知稳恒电流场的电势分布与静电场的电势分布为一一对应关系。
2.准确模拟静电场需保证的实验条件
本实验是用稳恒电流场模拟真空或空气中的静电场,故如上物理相似性的条件要通过以下实验条件来保证:
(1)
。
(2)
。
(3)
(4)
。
四、 实验内容
物理教案(新教材鲁科版)第九章静电场第4讲带电粒子在电场中的偏转
第4讲 带电粒子在电场中的偏转目标要求 1.掌握带电粒子在电场中的偏转规律.2.会分析带电粒子在电场中偏转的功能关系.3.掌握带电粒子在电场和重力场的复合场中的运动规律.4.会分析、计算带电粒子在交变电场中的偏转问题.考点一 带电粒子在匀强电场中的偏转带电粒子在匀强电场中偏转的两个分运动(1)沿初速度方向做匀速直线运动,t =lv 0(如图).(2)沿电场力方向做匀加速直线运动 ①加速度:a =F m =qE m =qUmd.②离开电场时的偏移量:y =12at 2=qUl 22md v 02.③离开电场时的偏转角:tan θ=v y v 0=qUlmd v 02.1.两个重要结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:在加速电场中有qU 0=12m v 02在偏转电场偏移量y =12at 2=12·qU 1md ·(l v 0)2偏转角θ,tan θ=v y v 0=qU 1lmd v 02得:y =U 1l 24U 0d ,tan θ=U 1l2U 0dy 、θ均与m 、q 无关.(2)粒子经电场偏转后射出,速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为偏转极板长度的一半. 2.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 02,其中U y=Ud y ,指初、末位置间的电势差.考向1 带电粒子在匀强电场中的偏转例1 (2023·广东佛山市模拟)如图所示,正方形ABCD 区域内存在竖直向上的匀强电场,质子(11H)和α粒子(42He)先后从A 点垂直射入匀强电场,粒子重力不计,质子从BC 边中点射出,则( )A .若初速度相同,α粒子从CD 边离开B .若初速度相同,质子和α粒子经过电场的过程中速度增量之比为1∶2C .若初动能相同,质子和α粒子经过电场的时间相同D .若初动能相同,质子和α粒子经过电场的过程中动能增量之比为1∶4 答案 D解析 对任一粒子,设其电荷量为q ,质量为m ,粒子在电场中做类平抛运动,水平方向有 x =v 0t ,竖直方向有y =12at 2=12·qE m ·x 2v 02,若初速度相同,水平位移x 相同时,由于α粒子的比荷比质子的小,则α粒子的偏转距离y 较小,所以α粒子从BC 边离开,由t =xv 0知两个粒子在电场中的运动时间相等,由Δv =at =qE m t ,知Δv ∝qm ,则质子和α粒子经过电场的过程中速度增量之比为2∶1,故A 、B 错误;粒子经过电场的时间为t =xv 0,若初动能相同,质子的初速度较大,则质子的运动时间较短,故C 错误;由y =12·qE m ·x 2v 02,E k =12m v 02得y =qEx 24E k ,若初动能相同,已知x 相同,则y ∝q ,根据动能定理知:经过电场的过程中动能增量ΔE k =qEy ,E 相同,则ΔE k ∝q 2,则质子和α粒子经过电场的过程中动能增量之比为1∶4,故D正确.例2 (2020·浙江7月选考·6)如图所示,一质量为m 、电荷量为q ()q >0的粒子以速度v 0从MN 连线上的P 点水平向右射入大小为E 、方向竖直向下的匀强电场中.已知MN 与水平方向成45°角,粒子的重力可以忽略,则粒子到达MN 连线上的某点时( )A .所用时间为m v 0qEB .速度大小为3v 0C .与P 点的距离为22m v 02qED .速度方向与竖直方向的夹角为30° 答案 C解析 粒子在电场中只受电场力,F =qE ,方向向下,如图所示.粒子的运动为类平抛运动.水平方向做匀速直线运动,有x =v 0t ,竖直方向做初速度为0的匀加速直线运动,有y =12at 2=12·qE m t 2,yx =tan 45°,联立解得t =2m v 0qE,故A 错误;v y =at =qE m ·2m v 0qE =2v 0,则速度大小v =v 02+v y 2=5v 0,tan θ=v 0v y =12,则速度方向与竖直方向夹角θ≠30°,故B 、D 错误;x =v 0t =2m v 02qE ,与P 点的距离s =xcos 45°=22m v 02qE ,故C 正确.考向2 带电粒子在组合场中的运动例3 (2023·广东湛江市模拟)示波管原理图如图甲所示.它由电子枪、偏转电极和荧光屏组成,管内抽成真空.如果在偏转电极XX ′和YY ′之间都没有加电压,电子束从电子枪射出后沿直线运动,打在荧光屏中心,产生一个亮斑如图乙所示.若板间电势差U XX′和U YY′随时间变化关系图像如丙、丁所示,则荧光屏上的图像可能为()答案A解析U XX′和U YY′均为正值,两偏转电极的电场强度方向分别由X指向X′,Y指向Y′,电子带负电,所受电场力方向与电场强度方向相反,所以分别向X、Y方向偏转,可知A正确.例4(多选)(2023·福建福州市模拟)如图所示是一个示波器工作的原理图,电子经过电压为U1的电场加速后垂直进入偏转电场,离开偏转电场时偏转位移是y,两平行板间的距离为d,电压为U2,板长为L,每单位电压引起的偏移yU2叫作示波管的灵敏度,为了提高示波管的灵敏度.下列方法可行的是()A.增大U2B.增大LC.减小d D.增大U1答案BC解析 电子在加速电场中运动,根据动能定理有qU 1=12m v 2,电子在偏转电场中运动时有y=12at 2=12·U 2q dm ⎝⎛⎭⎫L v 2,联立解得y U 2=L 24U 1d ,增大U 2,灵敏度不变,A 错误;增大L 或者减小d ,灵敏度都增大,B 、C 正确;增大U 1,灵敏度减小,D 错误.考点二 带电粒子在重力场和电场复合场中的偏转例5 (多选)(2023·福建龙岩市第一中学模拟)如图所示,在竖直平面内xOy 坐标系中分布着与水平方向成45°角的匀强电场,将一质量为m 、带电荷量为q 的小球,以某一初速度从O 点竖直向上抛出,它的轨迹恰好满足抛物线方程x =ky 2,且小球通过点P ⎝⎛⎭⎫1k ,1k ,已知重力加速度为g ,则( )A .电场强度的大小为mg qB .小球初速度的大小为g 2kC .小球通过点P 时的动能为5mg4kD .小球从O 点运动到P 点的过程中,电势能减少2mgk答案 BC解析 小球做类平抛运动,则电场力与重力的合力沿x 轴正方向,可知qE =2mg ,电场强度的大小为E =2mg q ,选项A 错误;因为F 合=mg =ma ,所以a =g ,由类平抛运动规律有1k=v 0t ,1k =12gt 2,得小球初速度大小为v 0=g2k ,选项B 正确;由P 点的坐标分析可知v 0v x =12,所以小球通过点P 时的动能为12m v 2=12m (v 02+v x 2)=5mg4k ,选项C 正确;小球从O 到P 过程中电势能减少,且减少的电势能等于电场力做的功,即W =qE ·1k ·1cos 45°=2mgk ,选项D 错误.例6 (2019·全国卷Ⅲ·24)空间存在一方向竖直向下的匀强电场,O 、P 是电场中的两点.从O 点沿水平方向以不同速度先后发射两个质量均为m 的小球A 、B .A 不带电,B 的电荷量为q (q >0).A 从O 点发射时的速度大小为v 0,到达P 点所用时间为t ;B 从O 点到达P 点所用时间为t2.重力加速度为g ,求:(1)电场强度的大小; (2)B 运动到P 点时的动能. 答案 (1)3mgq(2)2m (v 02+g 2t 2)解析 (1)设电场强度的大小为E ,小球B 运动的加速度为a .根据牛顿第二定律、运动学公式和题给条件,有mg +qE =ma ① 12a (t 2)2=12gt 2② 解得E =3mg q③(2)设B 从O 点发射时的速度为v 1,到达P 点时的动能为E k ,O 、P 两点的高度差为h ,根据动能定理有mgh +qEh =E k -12m v 12④且有v 1·t2=v 0t ⑤h =12gt 2⑥ 联立③④⑤⑥式得E k =2m (v 02+g 2t 2).考点三 带电粒子在交变电场中的偏转1.带电粒子在交变电场中的运动,通常只讨论电压的大小不变、方向做周期性变化(如方波)的情形.当粒子垂直于交变电场方向射入时,沿初速度方向的分运动为匀速直线运动,沿电场方向的分运动具有周期性.2.研究带电粒子在交变电场中的运动,关键是根据电场变化的特点,利用牛顿第二定律正确地判断粒子的运动情况.根据电场的变化情况,分段求解带电粒子运动的末速度、位移等. 3.注重全面分析(分析受力特点和运动规律):抓住粒子运动时间上的周期性和空间上的对称性,求解粒子运动过程中的速度、位移、做功或确定与物理过程相关的临界条件. 4.对于锯齿波和正弦波等电压产生的交变电场,若粒子穿过板间的时间极短,带电粒子穿过电场时可认为是在匀强电场中运动.例7 在如图甲所示的极板A 、B 间加上如图乙所示的大小不变、方向周期性变化的交变电压,其周期为T ,现有一电子以平行于极板的速度v 0从两板中央OO ′射入.已知电子的质量为m 、电荷量为e ,不计电子的重力,问:(1)若电子从t =0时刻射入,在半个周期内恰好能从A 板的边缘飞出,则电子飞出时速度的大小为多少?(2)若电子从t =0时刻射入,恰能平行于极板飞出,则极板至少为多长?(3)若电子恰能沿OO ′平行于极板飞出,电子应从哪一时刻射入?两极板间距至少为多大? 答案 见解析解析 (1)由动能定理得e U 02=12m v 2-12m v 02解得v =v 02+eU 0m. (2)t =0时刻射入的电子,在垂直于极板方向上做匀加速运动,向A 极板方向偏转,半个周期后电场方向反向,电子在该方向上做匀减速运动,再经过半个周期,电子在电场方向上的速度减小到零,此时的速度等于初速度v 0,方向平行于极板,以后继续重复这样的运动;要使电子恰能平行于极板飞出,则电子在OO ′方向上至少运动一个周期,故极板长至少为L =v 0T .(3)若要使电子沿OO ′平行于极板飞出,则电子在电场方向上应先加速、再减速,减速到零后反向加速、再减速,每阶段时间相同,一个周期后恰好回到OO ′上,可见应在t =T 4+k T2(k=0,1,2,…)时射入,极板间距离要满足电子在加速、减速阶段不打到极板上,设两板间距为d ,由牛顿第二定律有a =eU 0md ,加速阶段运动的距离s =12·eU 0md ⎝⎛⎭⎫T 42≤d4,解得d ≥TeU 08m,故两极板间距至少为T eU 08m. 例8 如图甲所示,热电子由阴极飞出时的初速度忽略不计,电子发射装置的加速电压为U 0,电容器极板长L =10 cm ,极板间距d =10 cm ,下极板接地,电容器右端到荧光屏的距离也是L =10 cm ,荧光屏足够长,在电容器两极板间接一交变电压,上极板与下极板的电势差随时间变化的图像如图乙所示.每个电子穿过极板的时间都极短,可以认为电子穿过极板的过程中电压是不变的.求:(1)在t = s 时刻,电子打在荧光屏上的位置到O 点的距离; (2)荧光屏上有电子打到的区间长度. 答案 (1) cm (2)30 cm解析 (1)设电子经电压U 0加速后的速度为v 0,根据动能定理得eU 0=12m v 02,设电容器间偏转电场的场强为E ,则有E =Ud,设电子经时间t 通过偏转电场,偏离轴线的侧向位移为y ,则沿中心轴线方向有t =Lv 0,垂直中心轴线方向有a =eE m ,联立解得y =12at 2=eUL 22md v 02=UL 24U 0d,设电子通过偏转电场过程中产生的侧向速度为v y ,偏转角为θ,则电子通过偏转电场时有v y =at ,tan θ=v y v 0,则电子在荧光屏上偏离O 点的距离为Y =y +L tan θ=3UL 24U 0d ,由题图乙知t= s 时刻,U =U 0,解得Y = cm.(2)由题知电子偏移量y 的最大值为d 2,根据y =UL 24U 0d 可得,当偏转电压超过2U 0时,电子就打不到荧光屏上了,所以代入得Y max =3L2,所以荧光屏上电子能打到的区间长度为2Y max =3L =30 cm.课时精练1.(多选)如图所示,一带正电的小球向右水平抛入范围足够大的匀强电场,电场方向水平向左.不计空气阻力,则小球()A.做直线运动B.做曲线运动C.速率先减小后增大D.速率先增大后减小答案BC解析对小球受力分析,小球受重力、电场力作用,合外力的方向与初速度的方向不在同一条直线上,故小球做曲线运动,故A错误,B正确;在运动的过程中合外力方向与速度方向间的夹角先为钝角后为锐角,故合外力对小球先做负功后做正功,所以速率先减小后增大,故C正确,D错误.2.(多选)(2023·辽宁葫芦岛市高三检测)如图所示,在竖直向上的匀强电场中,A球位于B球的正上方,质量相等的两个小球以相同初速度水平抛出,它们最后落在水平面上同一点,其中只有一个小球带电,不计空气阻力,下列判断正确的是()A.如果A球带电,则A球一定带负电B.如果A球带电,则A球的电势能一定增加C.如果B球带电,则B球一定带负电D.如果B球带电,则B球的电势能一定增加答案AD解析平抛时的初速度相同,在水平方向通过的位移相同,故下落时间相同,A球在上方,可知,A球下落的加速度较大,所受合外力较大,如果A球带电,竖直位移较大,由h=12at2则A球受到向下的电场力,一定带负电,电场力做正功,电势能减小,故A正确,B错误;如果B球带电,由于B球的竖直位移较小,加速度较小,所受合外力较小,则B球受到的电场力向上,应带正电,电场力对B球做负功,电势能增加,故C错误,D正确.3.(多选)(2023·福建省福州第十五中学月考)如图所示,a、b两个不同的带电粒子,从同一点平行于极板方向射入电场,a粒子打在B板的a′点,b粒子打在B板的b′点,不计重力,下列判断正确的是( )A .若粒子比荷相同,则初速度一定是b 粒子大B .若粒子比荷相同,则初速度一定是a 粒子大C .两粒子在电场中运动的时间一定相同D .若粒子初动能相同,则带电荷量一定是a 粒子大 答案 AD解析 对每个粒子,水平方向有s =v t ,竖直方向有h =12·qE m t 2=qEs 22m v 2.若粒子比荷相同,因b粒子的水平位移大,则初速度一定较大,选项A 正确,B 错误;由h =12·qEm t 2可知,因两粒子的比荷不确定,则时间关系不能确定,选项C 错误;由h =12·qE m t 2=qEs 22m v 2=qEs 24E k ,则若粒子初动能相同,因a 粒子的水平位移较小,则带电荷量一定较大,选项D 正确.4.(多选)(2021·全国乙卷·20)四个带电粒子的电荷量和质量分别为(+q ,m )、(+q ,2m )、(+3q ,3m )、(-q ,m ),它们先后以相同的速度从坐标原点沿x 轴正方向射入一匀强电场中,电场方向与y 轴平行.不计重力,下列描绘这四个粒子运动轨迹的图像中,可能正确的是( )答案 AD解析 带电粒子在匀强电场中做类平抛运动,加速度为a =qEm ,由类平抛运动规律可知,带电粒子在电场中运动时间为t =lv 0,离开电场时,带电粒子的偏转角的正切值为tan θ=v y v x =at v 0=qElm v 02,因为四个带电的粒子的初速度相同,电场强度相同,水平位移相同,所以偏转角只与比荷有关,(+q ,m )粒子与(+3q ,3m )粒子的比荷相同,所以偏转角相同,轨迹相同,且与(-q ,m )粒子的比荷也相同,所以(+q ,m )、(+3q ,3m )、(-q ,m )三个粒子偏转角相同,但(-q ,m )粒子与上述两个粒子的偏转角方向相反,(+q ,2m )粒子的比荷比(+q ,m )、(+3q ,3m )粒子的比荷小,所以(+q ,2m )粒子比(+q ,m )(+3q ,3m )粒子的偏转角小,但都带正电,偏转方向相同,故A 、D 正确,B 、C 错误.5.如图所示,一电子枪发射出的电子(初速度很小,可视为零)经过加速电场加速后,垂直射入偏转电场,射出后偏转位移为Y .要使偏转位移增大,下列哪些措施是可行的(不考虑电子射出时碰到偏转极板的情况)( )A .增大偏转电压UB .增大加速电压U 0C .增大偏转极板间距离D .将发射电子改成发射负离子 答案 A解析 设偏转极板长为l ,极板间距为d ,由eU 0=12m v 02,t =l v 0,a =eU md ,y =12at 2,联立得偏转位移y =Ul 24U 0d ,增大偏转电压U ,减小加速电压U 0,减小偏转极板间距离,都可使偏转位移增大,选项A 正确,B 、C 错误;由于偏转位移y =Ul 24U 0d 与粒子质量、带电荷量无关,故将发射电子改成发射负离子,偏转位移不变,选项D 错误.6.(多选)如图甲所示,真空中水平放置两块长度为2d 的平行金属板P 、Q ,两板间距为d ,两板间加上如图乙所示最大值为U 0且周期性变化的电压,在两板左侧紧靠P 板处有一粒子源A ,自t =0时刻开始连续释放初速度大小为v 0、方向平行于金属板的相同带电粒子,t =0时刻释放的粒子恰好从Q 板右侧边缘离开电场,已知电场变化周期T =2dv 0,粒子质量为m ,不计粒子重力及相互间的作用力,则( )A .在t =0时刻进入的粒子离开电场时速度大小仍为v 0B .粒子的电荷量为m v 022U 0C .在t =18T 时刻进入的粒子离开电场时电势能减少了18m v 02D .在t =14T 时刻进入的粒子刚好从P 板右侧边缘离开电场答案 AD解析 粒子进入电场后,水平方向做匀速运动,则t =0时刻进入电场的粒子在电场中运动时间t =2dv 0,此时间正好是交变电压的一个周期,粒子在竖直方向先做加速运动后做减速运动,经过一个周期,粒子的竖直速度为零,故粒子离开电场时的速度大小等于水平速度v 0,选项A 正确;在竖直方向,t =0时刻进入电场的粒子在T 2时间内的位移为d 2,则d 2=12a ·(T 2)2=U 0q 2dm (d v 0)2,计算得出q =m v 02U 0,选项B 错误;在t =T8时刻进入电场的粒子,离开电场时在竖直方向上的位移为d =2×12a (38T )2-2×12a (T 8)2=d 2,故电场力做功为W =U 0q d ×12d =12U 0q =12m v 02,电势能减少了12m v 02,选项C 错误;t =T 4时刻进入的粒子,在竖直方向先向下加速运动T4,然后向下减速运动T 4,再向上加速T 4,然后再向上减速T4,由对称可以知道,此时竖直方向的位移为零,故粒子从P 板右侧边缘离开电场,选项D 正确.7.(2023·重庆市高三模拟)如图所示,一圆形区域有竖直向上的匀强电场,O 为圆心,两个质量相等、电荷量大小分别为q 1、q 2的带电粒子甲、乙,以不同的速率v 1、v 2从A 点沿AO 方向垂直射入匀强电场,甲从C 点飞出电场,乙从D 点飞出,它们在圆形区域中运动的时间相同,已知∠AOC =45°,∠AOD =120°,不计粒子的重力,下列说法正确的是( )A.v 1v 2=2-22+3B.v 1v 2=2-23 C.q 1q 2=32 D.q 1q 2=2 答案 B解析 甲、乙在电场中均做类平抛运动,沿初速度方向做匀速直线运动,它们在圆形区域中运动时间t 相同,在水平方向上,根据题图中几何关系可得x AC =v 1t =R -R cos 45°,x AD =v 2t =R +R cos 60°,联立可得v 1v 2=1-221+12=2-23,A 错误,B 正确;甲、乙在电场中沿电场力方向均做初速度为零的匀加速直线运动,则有y AC =12·q 1E m t 2=R sin 45°,y AD =12·q 2Em t 2=R sin 60°,联立可得q 1q 2=sin 45°sin 60°=23,C 、D 错误.8.(2022·浙江6月选考·9)如图所示,带等量异种电荷的两正对平行金属板M 、N 间存在匀强电场,板长为L (不考虑边界效应).t =0时刻,M 板中点处的粒子源发射两个速度大小为v 0的相同粒子,垂直M 板向右的粒子,到达N 板时速度大小为2v 0;平行M 板向下的粒子,刚好从N 板下端射出.不计重力和粒子间的相互作用,则( )A .M 板电势高于N 板电势B .两个粒子的电势能都增加C .粒子在两板间的加速度为a =2v 02LD .粒子从N 板下端射出的时间t =(2-1)L2v 0答案 C解析 由于不知道两粒子的电性,故不能确定M 板和N 板的电势高低,故A 错误;根据题意垂直M 板向右的粒子到达N 板时速度增加,动能增加,则电场力做正功,电势能减小,则平行M 板向下的粒子到达N 板时电场力也做正功,电势能同样减小,故B 错误;设两板间距离为d ,对于平行M 板向下的粒子刚好从N 板下端射出,在两板间做类平抛运动,有L2=v 0t ,d =12at 2,对于垂直M 板向右的粒子,在板间做匀加速直线运动,因两粒子相同,则在电场中加速度相同,有(2v 0)2-v 02=2ad ,联立解得t =L2v 0,a =2v 02L,故C 正确,D 错误. 9.(多选)如图所示,一充电后与电源断开的平行板电容器的两极板水平放置,板长为L ,板间距离为d ,距板右端L 处有一竖直屏M .一带电荷量为q 、质量为m 的质点以初速度v 0沿中线射入两板间,最后垂直打在M 上,则下列说法中正确的是(已知重力加速度为g )( )A .两极板间电压为mgd2qB .板间电场强度大小为2mgqC .整个过程中质点的重力势能增加mg 2L 2v 02D .若仅增大两极板间距,则该质点不可能垂直打在M 上 答案 BC解析 据题分析可知,质点在平行板间轨迹应向上偏转,做类平抛运动,飞出电场后,轨迹向下偏转,才能最后垂直打在M 屏上,前后过程质点的运动轨迹有对称性,如图所示,可知两次偏转的加速度大小相等,对两次偏转分别由牛顿第二定律得qE -mg =ma ,mg =ma ,解得a =g ,E =2mg q ,由U =Ed 得两极板间电压为U =2mgd q ,故A 错误,B 正确;质点在电场中向上偏转的距离y =12at 2,t =L v 0,解得y =gL 22v 02,故质点打在屏上的位置与P 点的距离为s =2y =gL 2v 02,整个过程中质点的重力势能的增加量E p =mgs =mg 2L 2v 02,故C 正确;仅增大两极板间的距离,因两极板上电荷量不变,根据E =U d =Q Cd =Q εr S 4πkd d =4πkQεr S可知,板间电场强度不变,质点在电场中受力情况不变,则运动情况不变,仍垂直打在M 上,故D 错误. 10.(2023·黑龙江佳木斯市第八中学调研)如图所示,两平行金属板A 、B 长L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一个不计重力的带正电的粒子电荷量q =10-10C 、质量m =10-20kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2×106 m/s ,粒子飞出平行板电场后,可进入界面MN 和光屏PS 间的无电场的真空区域,最后打在光屏PS 上的D 点(未画出).已知界面MN 与光屏PS 相距12 cm ,O 是中心线RO 与光屏PS 的交点.sin 37°=,cos 37°=,求:(1)粒子穿过界面MN 时偏离中心线RO 的距离; (2)粒子射出平行板电容器时偏转角; (3)OD 两点之间的距离. 答案 (1) m (2)37° (3) m解析 (1)带电粒子垂直进入匀强电场后做类平抛运动,加速度为a =F m =qU md水平方向有L =v 0t 竖直方向有y =12at 2联立解得y =qUL 22md v 02= m(2)设粒子射出平行板电容器时偏转角为θ,v y =at tan θ=v y v 0=at v 0=qUL md v 02=34,故偏转角为37°.(3)带电粒子离开电场时速度的反向延长线与初速度延长线的交点为水平位移的中点,设两界面MN 、PS 相距为L ′,由相似三角形得L 2L 2+L ′=yY ,解得Y =4y = m.11.(2023·辽宁大连市第八中学高三检测)如图甲所示,真空中的电极可连续不断均匀地逸出电子(设电子的初速度为零),经加速电场加速,由小孔穿出,沿两个彼此绝缘且靠近的水平金属板A 、B 的中线射入偏转电场,A 、B 两板距离为d ,A 、B 板长为L ,AB 两板间加周期性变化的电场U AB ,如图乙所示,周期为T ,加速电压U 1=2mL 2eT 2,其中m 为电子质量、e 为电子电荷量,T 为偏转电场的周期,不计电子的重力,不计电子间的相互作用力,且所有电子都能离开偏转电场,求:(1)电子从加速电场U 1飞出后的水平速度v 0的大小;(2)t =0时刻射入偏转电场的电子离开偏转电场时距A 、B 间中线的距离y ;(3)在0~T2内射入偏转电场的电子中从中线上方离开偏转电场的电子占离开偏转电场电子总数的百分比.答案 (1)2L T (2) eU 0T 28md (3)50%解析 (1)电子在加速电场中加速, 由动能定理得eU 1=12m v 02-0解得v 0=2LT(2) 电子在偏转电场中做类平抛运动,水平方向L =v 0t ,解得t =T2,t =0时刻进入偏转电场的电子加速度a =eE m =eU 0md ,电子离开电场时距离A 、B 中心线的距离y =12at 2,解得y =eU 0T 28md(3)在0~T2内射入偏转电场的电子,设向上的方向为正方向,设电子恰在A 、B 间中线离开偏转电场,则电子先向上做初速度为零、加速度大小为a 的匀加速直线运动,经过时间t ′后速度v =at ′,此后两板间电压大小变为3U 0,加速度大小变为a ′=eE ′m =3eU 0md =3a电子向上做加速度大小为3a 的匀减速直线运动,速度减为零后,向下做初速度为零、加速度大小为3a 的匀加速直线运动,最后回到A 、B 间的中线,经历的时间为T 2,则12at ′2+v (T2-t ′)-12×3a (T 2-t ′)2=0,解得t ′=T4,则能够从中线上方向离开偏转电场的电子的发射时间为t ″=T 4,则在0~T2时间内,从中线上方离开偏转电场的电子占离开偏转电场电子总数的百分比η=T 4T 2×100%=50%.12.(多选)如图,质量为m 、带电荷量为q 的质子(不计重力)在匀强电场中运动,先后经过水平虚线上A 、B 两点时的速度大小分别为v a =v 、v b =3v ,方向分别与AB 成α=60°角斜向上、θ=30°角斜向下,已知AB =L ,则( )A .质子从A 到B 的运动为匀变速运动 B .电场强度大小为2m v 2qLC .质子从A 点运动到B 点所用的时间为2Lv D .质子的最小速度为32v 答案 ABD解析 质子在匀强电场中受力恒定,故加速度恒定,则质子从A 到B 的运动为匀变速运动,A 正确;质子在匀强电场中做抛体运动,在与电场垂直的方向上分速度相等,设v a 与电场线的夹角为β,如图所示.则有v a sin β=v b cos β,解得β=60°,根据动能定理有qEL cos 60°=12m v b 2-12m v a 2,解得E =2m v 2qL ,B 正确;根据几何关系可得,AC 的长度为L sin 60°=32L ,则质子从A 点运动到B 点所用的时间为t =32L v a sin β=Lv ,C 错误;在匀变速运动过程中,当速度方向与电场力方向垂直时,质子的速度最小,有v min =v a sin β=32v ,D 正确.。
大学物理(上)6静电场 下
v EA
v EB
B
1
二.电通量 电通量:通过电场中任一给定面的电场线条数; 电通量:通过电场中任一给定面的电场线条数; 条数 1.均匀电场中: 1.均匀电场中: 均匀电场中 a.平面S与场强垂直 则
S
ΦE = E⋅ S
S
θ
S⊥
2
v v 则 ΦE = E⋅ S⊥ = ES cos θ = E⋅ S 注: Φ 可正,可负,也可为零; E 可正,可负,也可为零;
电通量、 §7-3 电通量、高斯定理
一.电场线 电场方向: 曲线上每一点的切 电场方向 : 曲线上每一点的 切 为该点的场强方向; 向为该点的场强方向; v A 表示场强大小: 表示场强大小:电场线的疏密 E 程度表示场强的大小; 程度表示场强的大小; dΦ E= ∴dΦ = E dS⊥ dS⊥ 电场线的性质 的性质: 电场线的性质: 电场线起于正电荷 或无限远处) 起于正电荷( a.电场线起于正电荷(或无限远处),终于负电荷 或无限远处) 不会形成闭合曲线; (或无限远处),不会形成闭合曲线; 两条电场线不会在空间相交。 b.两条电场线不会在空间相交。
Q
R
rP r r
o
E
r dS
S
r r E⋅dS = ∫ EdS ∫
S
= E∫dS = E4πr
S
S
2
10
求过场点的高斯面内电量代数和
r <R
r >R
∑q
∑q
i
i内
i内
=0
Q
i
R
rP r
i内
=Q
o
S
根据高斯定理列方程 解方程
E4πr =
2
∑q
高斯定理
非均匀电场强度电通量
dS dS en dΦe E dS
en
E dS
E
dS
E
Φe dΦe E cosdS s Φe E dS s
E ds EdS cos 0 E ds EdS cos 0
球对称分布:包 括均匀带电的球 面,球体和多层 同心球壳等
轴对称分布:包 括无限长均匀带 电的直线,圆柱 面,圆柱壳等;
无限大平面电荷: 包括无限大的均匀 带电平面,平板等。
关键:选取高斯面
电场分布的对称性分析 选取适当的高斯面
一般原则是: ①高斯面要通过所求场强的点 ②高斯面上(部分面上)各点的E(大小)=常量; 且 方向与曲面处处成 一定的角度,即 cos 为定值,从而使积分简化为: e E cosdS E cos dS
取长 L 的同轴圆柱面,加上底、下底构成高斯面 S
S
dq
L
r
P
' dE dE
o dq
'
' dE dE
E dS E dS
S 上
下
E dS
侧
E dS
上
E cos
2
dS E cos
下
2
dS E cos 0 dS
闭合曲面
闭合曲面的电场强度通量
E
S
Φe E dS E cosdS
S S
dΦe E dS
dS
E
解: e E ds E ds E ds E ds
大学物理高斯定理教案
课时:2课时教学目标:1. 让学生掌握高斯定理的基本概念和公式。
2. 培养学生运用高斯定理解决实际问题的能力。
3. 提高学生的逻辑思维和数学计算能力。
教学重点:1. 高斯定理的基本概念和公式。
2. 高斯定理的应用。
教学难点:1. 高斯定理的适用范围。
2. 高斯定理在解决实际问题中的应用。
教学过程:第一课时一、导入1. 回顾静电场的基本概念,如电场强度、电势等。
2. 引出高斯定理的定义。
二、讲授新课1. 介绍高斯定理的基本概念:高斯定理是描述电场强度在任意封闭曲面上的面积分与封闭曲面内总电荷量之间关系的定理。
2. 介绍高斯定理的公式:Φ = ∮E·dS = Q/ε0,其中Φ表示电通量,E表示电场强度,dS表示闭合曲面的面积元素,Q表示闭合曲面内的总电荷量,ε0表示真空介电常数。
3. 讲解高斯定理的适用范围:高斯定理适用于任何静电场,包括均匀电场、点电荷电场等。
三、例题讲解1. 给出一些典型的高斯定理应用例题,如均匀带电球体、点电荷等。
2. 讲解如何利用高斯定理求解电场强度、电势等。
四、课堂练习1. 学生独立完成课后习题,巩固所学知识。
2. 教师巡视指导,解答学生疑问。
第二课时一、复习导入1. 回顾上一节课所学的高斯定理基本概念和公式。
2. 提出问题:高斯定理在解决实际问题中有何作用?二、讲授新课1. 讲解高斯定理在解决实际问题中的应用,如:a. 求解均匀带电球体内部和外部的电场强度。
b. 求解点电荷产生的电场强度。
c. 求解均匀带电平面附近的电场强度。
2. 分析高斯定理在解决实际问题中的优点,如:a. 简化计算过程。
b. 提高计算精度。
三、例题讲解1. 给出一些实际应用的高斯定理例题,如:a. 求解一个带电球体内部和外部的电场强度。
b. 求解一个点电荷产生的电场强度。
c. 求解一个均匀带电平面附近的电场强度。
2. 讲解如何利用高斯定理解决实际问题。
四、课堂练习1. 学生独立完成课后习题,巩固所学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理静电场教案
教案标题:大学物理静电场教案
教学目标:
1. 理解静电场的概念和性质。
2. 掌握计算电荷分布的电势和电场强度。
3. 理解库仑定律,并能够运用该定律解决相关问题。
4. 理解电场线、电场强度、电势及其相互关系。
5. 掌握电势差、电势能和电场线密度的计算方法。
教学步骤:
引入活动:
1. 引发学生对于静电场的兴趣,可以通过一个实例或者简短的问题引导学生思考,例如:你有没有遇到过小纸屑被吸附在塑料笔上的情况?为什么?
知识讲解:
2. 介绍静电场的定义和基本概念,如电场强度和电势概念。
3. 讲解电势和电场强度的计算公式,并引导学生理解电场线的概念和表示方法。
4. 简要介绍库仑定律的概念和公式,并给出一些具体的计算例子。
案例分析:
5. 提供一些具体的静电场案例,例如点电荷、均匀带电环等,并引导学生运用所学知识计算相关的电势、电场强度和电势能等。
6. 可以设计一些小组活动或者讨论,让学生在小组内共同分析和解决案例问题,加强合作和团队合作能力。
巩固练习:
7. 提供一系列练习题,包括计算电势、电场强度和电势能等各种问题,以检验学生对于所学知识的掌握程度。
8. 引导学生思考一些拓展问题,如电荷分布对于电势和电场强度的影响,或者电势差与电场强度的关系等。
知识总结:
9. 对所学内容进行总结,强调重点和难点,并解答学生在学习过程中遇到的问题。
课堂作业:
10. 布置适当的课后作业,包括练习题、阅读参考书籍或者进行一些小型实验观察等,以巩固所学知识。
评价与反馈:
11. 设计一份针对学生学习效果的评价问卷,收集学生对于本节课的反馈和建议,以便进一步优化教学。
扩展活动:
12. 可以组织一次实践活动,例如参观静电场相关的实验室,或者邀请专业人士进行专题讲座,深化学生对静电场的理解和应用。
备注:以上教案仅供参考,具体的教学内容和教学方法可以根据实际情况进行调整。