高一数学数列练习题

合集下载

人教版高一数学“一种奇妙的数列求和”一题多解案例

人教版高一数学“一种奇妙的数列求和”一题多解案例

一种奇妙的数列求和一道“希望杯”培训题的研究题目:正数数列{}n a 的前n 项和为n S ,且对一切+∈N n 都有362=-+n na S n n .(1) 求{}n a 的通项公式;(2) 令(),1)2(+-=n a b n n 求{}n b 的前n 项和n T .这是第二十一届”希望杯”高一培训题第84题,本文从一题多解、一题多变两个角度对本题进行研究,供同学们参考。

一、一题多解解法一 (1)当1=n 时,36211=-+a S ,得31=a ;当2≥n 时,∵362=-+n na S n n ①∴()()3161211=---+--n a n S n n ②①-② 得6)1()2(1+-=+-n n a n a n可化为:()()2)1(2)2(1--=-+-n n a n a n ,两边同乘以()n n 1+,得()()()()2)1(121)2(1--+=-++-n n a n n n a n n n .∴数列()(){}21)2(-++n a n n n 是常数列,得()()()6212321)2(1=-⨯⨯=-++a a n n n n ,∴)2)(1(62+++=n n n a n . (2)∵())2(61)2(+=+-=n n n a b n n , ∴)2(642631621+++⨯+⨯=+++=n n b b b T n n =⎪⎭⎫ ⎝⎛+-+-+=⎪⎭⎫ ⎝⎛+-++-+-2111211321141213113n n n n =2396292+++-n n n . 评注:这里得到式子()()2)1(2)2(1--=-+-n n a n a n 后,通过两边同乘以()n n 1+,化数列()(){}21)2(-++n a n n n 为常数列,是求数列{}n a 的通项公式关键的一步.解法二 得到式子()()2)1(2)2(1--=-+-n n a n a n 后,还可以通过叠乘法求得数列{}n a 的通项公式.将式子变形为:21221+-=---n n a a n n , 得 122221+-=----n n a a n n , ……,312212=--a a . 将上面1-n 个式子相乘,得)2)(1(321221++⨯⨯=--n n n a a n ,∵31=a , ∴)2)(1(62+++=n n n a n ,以下同解法一. 评注:如果数列{}n c 满足)1(1-=-n f c c n n 且)1()2()1(f n f n f --可求时,可通过叠乘法求出数列{}n c 的通项.解法三 ① - ② 得6)1()2(1+-=+-n n a n a n ③∴6)3(1+=++n n na a n ④然后④ - ③得()))(1()3(11-+--=-+n n n n a a n a a n即 3111+-=---+n n a a a a n n n n , 得22211+-=-----n n a a a a n n n n ,……,511223=--a a a a . 将上面1-n 个式子相乘,得)3)(2)(1(4321121+++⨯⨯⨯=--+n n n n a a a a n n , ∵31=a ,3122222=-+a S ,得492=a ,∴4312-=-a a , ∴)3)(2)(1(181+++-=-+n n n n a a n n ,即)3)(2)(1(181+++-=+n n n n a a n n ⑤ 由④、⑤两式消去1+n a 得:)2)(1(62+++=n n n a n ,以下同解法一.评注:③式中的常数6,可以由③式得出④,然后④ - ③消去常数,再用叠乘法求出⑤,由④、⑤两式消去1+n a 得到数列{}n a 的通项公式。

高一数学_等比数列综合练习_精心整理_含答案版本

高一数学_等比数列综合练习_精心整理_含答案版本

考点1等比数列的通项与前n 项和 题型1已知等比数列的某些项,求某项【例1】已知{}n a 为等比数列,162,262==a a ,则=10a【解题思路】可以考虑基本量法,或利用等比数列的性质【解析】方法1: 811622451612=⇒⎩⎨⎧====q q a a q a a ∴1312281162469110=⨯===q a q a a方法2: 812162264===a a q,∴13122811624610=⨯==q a a 方法3:{}n a 为等比数列∴13122216222261026102===⇒=⋅a a a a a a【名师指引】给项求项问题,先考虑利用等比数列的性质,再考虑基本量法.题型2 已知前n 项和n S 及其某项,求项数.【例2】⑴已知n S 为等比数列{}n a 前n 项和,93=nS ,48=n a ,公比2=q ,则项数=n .⑵已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数. 【解题思路】⑴利用等比数列的通项公式11-=n nqa a 及qq a S n n --=1)1(1求出1a 及q ,代入n S 可求项数n ;⑵利用等差数列、等比数列设出四个实数代入已知,可求这四个数.【解析】⑴由93=n S ,48=n a ,公比2=q ,得532248293)12(111=⇒=⇒⎩⎨⎧=⋅=--n a a nn n . ⑵方法1:设这四个数分别为d c b a ,,,,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=363722c b b a bd c c a b ;方法2:设前2个数分别为b a ,,则第43、个数分别为a b --3736,,则 ⎩⎨⎧-=-+-=)37()36()36(22a b b a b b ,解得⎩⎨⎧==1612b a 或⎪⎩⎪⎨⎧==481499b a ; 方法3:设第32、个数分别为c b ,,则第1个数为c b -2,第1个数为bc 2,则⎩⎨⎧==⇒⎪⎩⎪⎨⎧=++-20163622c b c b b c c b 或⎪⎩⎪⎨⎧==463481c b ; 方法4:设第32、个数分别为c b ,,设第4,1个数分别为ca c c a ++22,2;方法5:设第43、个数分别为d c ,,则设第2,1个数分别为c d --36,37,则⎩⎨⎧===⇒⎩⎨⎧-=+-=-251620)36()37()36(22d c c d c c d c 或.449,463==d c 【名师指引】平时解题时,应注意多方位、多角度思考问题,加强一题多解的练习,这对提高我们的解题能力大有裨益.题型3 求等比数列前n 项和【例3】等比数列 ,8,4,2,1中从第5项到第10项的和. 【解题思路】可以先求出10S ,再求出4S ,利用410S S -求解;也可以先求出5a 及10a ,由10765,,,,a a a a 成等比数列求解.【解析】由2,121==a a ,得2=q ,∴102321)21(11010=--=S ,1521)21(144=--=S ,∴.1008410=-S S 【例4】已知n S 为等比数列{}n a 前n 项和,13233331-+++++=n na ,求n S【解题思路】可以先求出n a ,再根据n a 的形式特点求解.【解析】 212331)31(133331132-=--=+++++=-n n n na ,∴n n S n nn 2131)31(32121)3333(2132---⨯=-++++= 即.432143--=n S n n 【例5】已知n S 为等比数列{}n a 前n 项和,n n n a 3)12(⋅-=,求n S .【解题思路】分析数列通项形式特点,结合等比数列前n 项和公式的推导,采用错位相减法求和. 【解析】 n nn a 3)12(⋅-=∴n n n S 3)12(35333132⋅-++⋅+⋅+⋅= ,----------------①14323)12(3)32(3533313+⋅-+⋅-++⋅+⋅+⋅=n n nn n S -------------②①—②,得14323)12()3333(232+⋅--+++++=-n n n n S63)22(3)12(31)31(923111-⋅-=⋅----⨯+=++-n n n n n∴.33)1(1+⋅-=+n n n S【名师指引】根据数列通项的形式特点,等比数列求和的常用方法有:公式法、性质法、分解重组法、错位相减法,即数列求和从“通项”入手.【新题导练】 1.已知{}n a 为等比数列,6,3876321=++=++a a a a a a ,求131211a a a ++的值.【解析】设等比数列{}n a 的公比为q ,6,3876321=++=++a a a a a a ,∴23216545=++++=a a a a a a q ,∴131211a a a ++;2.如果将100,50,20依次加上同一个常数后组成一个等比数列,则这个等比数列的公比为 .【解析】设这个常数为x ,则x x x +++100,50,20成等比数列,∴)100)(20()50(2x x x ++=+,解得45=x ,∴17418520545204550==++=q . 3.已知n S 为等比数列{}n a 的前n 项和,364,243,362===n S a a ,则=n ;【解析】3,12433151612==⎩⎨⎧⇒====q a q a a q a a 或3,11-=-=q a , 当3,11==q a 时,636431)31(1=⇒=--=n S n n ; 当3,11-=-=q a 时,[]n S nn ⇒=+---=36431)3(11无整数解. 4.已知等比数列{}n a 中,21a =,则其前3项的和3S 的取值范围是 .【解析】∵等比数列()n a 中21a = ∴312321111S a a a a q q q q⎛⎫=++=++=++ ⎪⎝⎭ ∴当公比0q>时,31113S q q =++≥+=; 当公比0q<时,31111S q q ⎛⎫=---≤-=- ⎪⎝⎭, ∴(][)3,13,S ∈-∞-+∞5.已知n S 为等比数列{}n a 前n 项和,0>n a ,80=nS ,65602=n S ,前n 项中的数值最大的项为54,求100S .【解析】由0>na ,80=n S ,65602=n S ,知1≠q ,∴.65601)1(,801)1(2121=--==--=qq a S q q a S n n n n∴81821122=⇒=--=n n nn n q q q S S ,∴1>q ,又 前n 项中的数值最大的项为: 5411==-n n q a a ,∴321=q a ,∴.133,21001001-=⇒==S q a 考点2 证明数列是等比数列【例6】已知数列{}n a 和{}n b 满足:λ=1a ,4321-+=+n a a n n ,)213()1(+--=n a b n n n ,其中λ为实数,+∈N n . ⑴ 对任意实数λ,证明数列{}n a 不是等比数列;⑵ 试判断数列{}n b 是否为等比数列,并证明你的结论.【解题思路】⑴证明数列{}n a 不是等比数列,只需举一个反例;⑵证明数列{}n b 是等比数列,常用:①定义法;②中项法.【解析】⑴ 证明:假设存在一个实数λ,使{}n a 是等比数列,则有3122a a a ⋅=,即,094949494)494()332(222=⇔-=+-⇔-=-λλλλλλλ矛盾. 所以{}n a 不是等比数列.⑵ 解:因为[]21)1(3)1()213()1(11++--=+--=++n a n a b n n n n n[])14232()1(183)1(111+--=+--=+++n a n a n n n nn n n b n a 32)213()1(321-=+--=+又)18(11+-=λb ,所以当)(0,18+∈=-=N n b n λ,此时{}n b 不是等比数列; 当)8(,181+-=-≠λλb 时,由上可知)(32,01++∈-=∴≠N n b b b n n n ,此时{}n b 是等比数列.【名师指引】等比数列的判定方法: ⑴定义法:q a a nn =+1(+∈N n ,0≠q 是常数)⇔{}n a 是等比数列; ⑵中项法:221++⋅=n n n a a a (+∈N n )且0≠n a ⇔{}n a 是等比数列.【新题导练】6.已知数列{}n a 的首项123a =,121n n n a a a +=+,1,2,3,n =….证明:数列1{1}n a -是等比数列;【解析】 121n n n a a a +=+,∴ 111111222n n n na a a a ++==+⋅,∴11111(1)2n n a a +-=-,又123a =,∴11112a -=, ∴数列1{1}n a -是以12为首项,12为公比的等比数列.考点3 等比数列的性质【例7】已知n S 为等比数列{}n a 前n 项和,54=nS ,602=n S ,则=n S 3 .【解题思路】结合题意考虑利用等比数列前n 项和的性质求解. 【解析】{}n a 是等比数列,∴n n n n n S S S S S 232,,--为等比数列,∴318236)60(5433=⇒=-n n S S .【名师指引】给项求项问题,先考虑利用等比数列的性质,再考虑基本量法.【新题导练】 7.已知等比数列{}n a 中,36)2(,04624=++>a a a a a n ,则=+53a a .【解析】{}n a 是等比数列,0>n a∴⇒=+⇒=++36)(36)2(2534624a a a a a a 653=+a a .考点4 等比数列与其它知识的综合【例8】设n S 为数列{}n a 的前n 项和,已知()21n n n ba b S -=-⑴证明:当2b =时,{}12n na n --⋅是等比数列;⑵求{}n a 的通项公式【解题思路】由递推公式{}0,,=n a S n n 求数列的通项公式)(n f a n=,主要利用:⎩⎨⎧≥-==-)2()1(11n S S n S a n nn ,同时注意分类讨论思想.【解析】由题意知12a =,且 ()21n n n ba b S -=-,()11121n n n ba b S +++-=-两式相减,得()()1121n n n n ba ab a ++--=-,即 12n n n a ba +=+ ①⑴当2b =时,由①知 122n n n a a +=+于是 ()()1122212n n n n n a n a n +-+⋅=+-+⋅()122n n a n -=-⋅又111210n a --⋅=≠,所以{}12n n a n --⋅是首项为1,公比为2=q 的等比数列。

人教版高中数学高一下册选择性必修第二册《等比数列的应用及性质》第二课时专项突破练习

人教版高中数学高一下册选择性必修第二册《等比数列的应用及性质》第二课时专项突破练习

第2课时 等比数列的应用及性质学习目标 1.理解复利计算方法,能解决存款利息的有关计算方法.2.通过建立数列模型并应用数列模型解决生活中的实际问题. 3.理解等比数列的常用性质.4.掌握等比数列的判断及证明方法.知识点一 实际应用题常见的数列模型1.储蓄的复利公式:本金为a 元,每期利率为r ,存期为n 期,则本利和y =a (1+r )n .2.总产值模型:基数为N ,平均增长率为p ,期数为n , 则总产值y = N (1 + p )n .知识点二 等比数列的常用性质设数列{a n }为等比数列,则:(1)若k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n .(2)若m ,p ,n 成等差数列,则a m ,a p ,a n 成等比数列.(3)在等比数列{a n }中,连续取相邻k 项的和(或积)构成公比为q k (或2k q )的等比数列.(4)若{a n }是等比数列,公比为q ,则数列{λa n }(λ≠0),{1a n},{a 2n }都是等比数列,且公比分别是q ,1q,q 2.(5)若{a n },{b n }是项数相同的等比数列,公比分别是p 和q ,那么{a n b n }与{a n b n}也都是等比数列,公比分别为pq 和pq.1.某细菌培养过程中,每15分钟分裂1次,经过2小时,这种细菌由1个繁殖成( )A .64 B .128 C .256 D .255答案 C解析 某细菌培养过程中,每15分钟分裂1次,经过2小时,共分裂8次,所以经过2小时,这种细菌由1个繁殖成28=256.2.已知{a n },{b n }都是等比数列,那么( )A .{a n +b n },{a n b n }都一定是等比数列B .{a n +b n }一定是等比数列,但{a n b n }不一定是等比数列C .{a n +b n }不一定是等比数列,但{a n b n }一定是等比数列D .{a n +b n },{a n b n }都不一定是等比数列答案 C解析 当两个数列都是等比数列时,这两个数列的和不一定是等比数列,比如取两个数列是互为相反数的数列,两者的和就不是等比数列.两个等比数列的积一定是等比数列.3.某储蓄所计划从2018年底起,力争做到每年的吸蓄量比前一年增加8%,则到2021年底该储蓄所的吸蓄量比2018年的吸蓄量增加( )A .24% B .32%C .1.083-1 D .1.084-1答案 C解析 设2018年储蓄量为a ,根据等比数列通项公式得2019年储蓄量为a (1+0.08)=1.08a ,2020年储蓄量为a (1+0.08)(1+0.08)=1.082a ,2021年储蓄量为a (1+0.08)(1+0.08)(1+0.08)=1.083a ,所以2021年底该储蓄所的吸蓄量比2018年的吸蓄量增加了1.083a -aa=1.083-1.4.已知等比数列{a n }共有10项,其中奇数项之积为2,偶数项之积为64,则其公比是( )A.32 B.2 C .2 D .22答案 C解析 奇数项之积为2,偶数项之积为64,得a 1a 3a 5a 7a 9=2,a 2a 4a 6a 8a 10=64,则a 2a 4a 6a 8a 10a 1a 3a 5a 7a 9=q 5=32,则q =2.一、数列的实际应用例1 某人买了一辆价值13.5万元的新车,专家预测这种车每年按10%的速度贬值.(1)用一个式子表示n (n ∈N *)年后这辆车的价值;(2)如果他打算用满4年时卖掉这辆车,他大概能得到多少钱?解 (1)从第一年起,每年车的价值(万元)依次设为:a 1,a 2,a 3,…,a n ,由题意,得a 1=13.5,a 2=13.5(1-10%),a 3=13.5(1-10%)2,….由等比数列的定义,知数列{a n }是等比数列,首项a 1=13.5,公比q =1-10%=0.9,∴a n =a 1·q n -1=13.5×0.9n -1.∴n 年后车的价值为a n +1=(13.5×0.9n )万元.(2)由(1)得a5=a1·q4=13.5×0.94≈8.9(万元),∴用满4年时卖掉这辆车,大概能得到8.9万元.反思感悟 等比数列实际应用问题的关键是:建立数学模型即将实际问题转化成等比数列的问题,解数学模型即解等比数列问题.跟踪训练1 有纯酒精a(a>1)升,从中取出1升,再用水加满,然后再取出1升,再用水加满,如此反复进行,则第九次和第十次共取出纯酒精________升.答案 (1-1a)8(2-1a)解析 由题意可知,取出的纯酒精数量是一个以1为首项,1-1a为公比的等比数列,即:第一次取出的纯酒精为1升,第二次取出的为1-1a(升),第三次取出的为(1-1a)2升,…,第n次取出的纯酒精为(1-1a)n-1升,则第九次和第十次共取出纯酒精数量为a9+a10=(1-1a)8+(1-1a)9=(1-1a)8(2-1a)(升).二、等比数列的性质及其应用例2 已知{a n}为等比数列.(1)等比数列{a n}满足a2a4=12,求a1a23a5;(2)若a n>0,a5a7+2a6a8+a6a10=49,求a6+a8;(3)若a n>0,a5a6=9,求log3a1+log3a2+…+log3a10的值.解 (1)在等比数列{a n}中,∵a2a4=1 2,∴a23=a1a5=a2a4=1 2,∴a1a23a5=1 4 .(2)由等比中项,化简条件得a26+2a6a8+a28=49,即(a6+a8)2=49,∵a n>0,∴a6+a8=7.(3)由等比数列的性质知a5a6=a1a10=a2a9=a3a8=a4a7=9,∴log3a1+log3a2+...+log3a10=log3(a1a2.. (10)=log3[(a1a10)(a2a9)(a3a8)(a4a7)(a5a6)]=log395=10.反思感悟 利用等比数列的性质解题(1)基本思路:充分发挥项的“下标”的指导作用,分析等比数列项与项之间的关系,选择恰当的性质解题.(2)优缺点:简便快捷,但是适用面窄,有一定的思维含量.跟踪训练2 (1)公比为32的等比数列{a n}的各项都是正数,且a3a11=16,则log2a16等于( ) A.4 B.5 C.6 D.7答案 B解析 因为a3a11=16,所以a27=16.又因为a n>0,所以a7=4,所以a16=a7q9=32,即log2a16=5.(2)已知在各项均为正数的等比数列{a n}中,a1a2a3=5,a7a8a9=10,则a4a5a6=________.答案 52解析 方法一 因为{a n}是等比数列,所以a1a7=a24,a2a8=a25,a3a9=a26.所以a24·a25·a26=(a1a7)·(a2a8)·(a3a9)=(a1a2a3)·(a7a8a9)=5×10=50.因为a n>0,所以a4a5a6=52.方法二 因为a1a2a3=(a1a3)a2=a2·a2=a32=5,所以a2=1 3 5.因为a7a8a9=(a7a9)a8=a38=10,所以a8=13 10.同理a 4a 5a 6=a 35=()()3111332233222528=510=50a a a ⎛⎫=⋅ ⎪⎝⎭三、等比数列的判定与证明例3 已知S n 是数列{a n }的前n 项和,且S n =2a n +n -4.(1)求a 1的值;(2)若b n =a n -1,试证明数列{b n }为等比数列.(1)解 因为S n =2a n +n -4,所以当n =1时,S 1=2a 1+1-4,解得a 1=3.(2)证明 因为S n =2a n +n -4,所以当n ≥2时,S n -1=2a n -1+n -1-4,S n -S n -1=(2a n +n -4)-(2a n -1+n -5),即a n =2a n -1-1,所以a n -1=2(a n -1-1),又b n =a n -1,所以b n =2b n -1,且b 1=a 1-1=2≠0,所以数列{b n }是以2为首项,2为公比的等比数列.反思感悟 判断一个数列是等比数列的常用方法(1)定义法:若数列{a n }满足a n +1a n =q (n ∈N *,q 为常数且不为零)或a na n -1=q (n ≥2,且n ∈N *,q为常数且不为零),则数列{a n }是等比数列.(2)通项公式法:若数列{a n }的通项公式为a n =a 1q n -1(a 1≠0,q ≠0),则数列{a n }是等比数列.(3)等比中项法:若a 2n +1=a n a n +2(n ∈N *且a n ≠0),则数列{a n }为等比数列.(4)构造法:在条件中出现a n +1=ka n +b 关系时,往往构造数列,方法是把a n +1+x =k (a n +x )与a n +1=ka n +b 对照,求出x 即可.跟踪训练3 (1)已知各项均不为0的数列{a n }中,a 1,a 2,a 3成等差数列,a 2,a 3,a 4成等比数列,a 3,a 4,a 5的倒数成等差数列,证明:a 1,a 3,a 5成等比数列.证明 由已知,有2a 2=a 1+a 3,①a 23=a 2·a 4,②2a 4=1a 3+1a 5.③由③得2a 4=a 3+a 5a 3·a 5,∴a 4=2a 3·a 5a 3+a 5.④由①得a 2=a 1+a 32.⑤将④⑤代入②,得a 23=a 1+a 32·2a 3·a 5a 3+a5.∴a 3=(a 1+a 3)a 5a 3+a 5,即a 3(a 3+a 5)=a 5(a 1+a 3).化简,得a 23=a 1·a 5.又a 1,a 3,a 5均不为0,∴a 1,a 3,a 5成等比数列.(2)已知数列{a n }是首项为2,公差为-1的等差数列,令b n =1,2na ⎛⎫⎪⎝⎭求证数列{b n }是等比数列,并求其通项公式.解 依题意a n =2+(n -1)×(-1)=3-n ,于是b n =(12)3-n .而b n +1bn =(12)2-n(12)3-n=(12)-1=2.∴数列{b n }是首项为14,公比为2的等比数列,通项公式为b n =14·2n -1=2n -3.1.在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于( )A.32 B.23 C .-23 D.23或-23答案 C解析 因为a 4=a 2·q 2,所以q 2=a 4a 2=818=49.又因为a 1<0,a 2>0,所以q<0.所以q=-2 3 .2.在等比数列{a n}中,若a2a3a6a9a10=32,则a29a12的值为( ) A.4 B.2 C.-2 D.-4答案 B解析 由a2a3a6a9a10=(a2a10)·(a3a9)·a6=a56=32=25,得a6=2,则a29a12=a6a12a12=a6=2.3.已知各项均为正数的等比数列{a n}中,lg(a3a8a13)=6,则a1·a15的值为( ) A.100 B.-100C.10 000 D.-10 000答案 C解析 ∵lg(a3a8a13)=lg a38=6,∴a38=106,∴a8=102=100.∴a1a15=a28=10 000.4.(多选)在等比数列{a n}中,3a1,12a3,2a2成等差数列,则a2 020-a2 021a2 018-a2 019等于( )A.-3 B.-1 C.1 D.9答案 CD解析 由3a1,12a3,2a2成等差数列可得a3=3a1+2a2,即a1q2=3a1+2a1q,∵a1≠0,∴q2-2q-3=0.解得q=3或q=-1.∴a2 020-a2 021a2 018-a2 019=a2 020(1-q)a2 018(1-q)=a2 020a2 018=q2=9或1.5.某工厂2020年1月的生产总值为a万元,计划从2020年2月起,每月生产总值比上一个月增长m%,那么到2021年8月底该厂的生产总值为_____________万元.答案 a(1+m%)19解析 设从2020年1月开始,第n个月该厂的生产总值是a n万元,则a n+1=a n+a n m%,∴a n+1a n=1+m%.∴数列{a n}是首项a1=a,公比q=1+m%的等比数列.∴a n=a(1+m%)n-1.∴2021年8月底该厂的生产总值为a 20=a (1+m %)20-1=a (1+m %)19(万元).1.知识清单:(1)等比数列的实际应用.(2)等比数列的常用性质.(3)等比数列的判定和证明.2.方法归纳:方程和函数思想.3.常见误区:不注重运用性质,使解题过程烦琐或者性质运用不正确而出错.1.已知等比数列{a n },a 1=1,a 3=19,则a 5等于( )A .±181B .-181 C.181 D .±12答案 C解析 根据等比数列的性质可知a 1a 5=a 23⇒a 5=a 23a1=181.2.在等比数列{a n }中,a 2a 3a 4=1,a 6a 7a 8=64,则a 5等于( )A .2 B .-2 C .±2 D .4答案 A解析 由等比数列的性质可得,a 2a 3a 4=a 3=1,a 6a 7a 8=a 37=64,∴a 3=1,a 7=4,∴a 25=a 3a 7=4,易知a 5与a 3和a 7同号,∴a 5=2.3.设各项均为正数的等比数列{a n }满足a 4a 8=3a 7,则log 3(a 1a 2·…·a 9)等于( )A .38 B .39 C .9 D .7答案 C解析 因为a 4a 8=a 5a 7=3a 7且a 7≠0,所以a 5=3,所以log 3(a 1a 2·…·a 9)=log 3a 95=log 339=9.4.已知等比数列{a n }的公比q =-13,则a 1+a 3+a 5+a 7a 2+a 4+a 6+a 8等于( )A .-13B .-3 C.13 D .3答案 B解析 因为a 2+a 4+a 6+a 8=q (a 1+a 3+a 5+a 7),所以a 1+a 3+a 5+a 7a 2+a 4+a 6+a 8=1q=-3.5.(多选)设{a n }是等比数列,有下列四个命题,其中正确的是( )A .{a 2n }是等比数列B .{a n a n +1}是等比数列C.{1a n}是等比数列D .{lg|a n |}是等比数列答案 ABC解析 由{a n }是等比数列可得a na n -1=q (q 为定值,n >1).A 中,a 2na2n -1=(a n a n -1)2=q 2为常数,故A 正确;B 中,a n a n +1a n -1a n =a n +1a n -1=q 2,故B 正确;C 中,1a n 1an -1=a n -1a n =1q 为常数,故C 正确;D 中,lg|a n |lg|a n -1|不一定为常数,故D 错误.6.已知在等比数列{a n }中,a 3=3,a 10=384,则该数列的通项公式a n =________.答案 3×2n -3解析 由已知得a 10=a 3·q 7=3·q 7=384,所以q 7=128=27,故q =2.所以a n =a 3·q n -3=3×2n -3.7.已知数列{a n }为等比数列,且a 3+a 5=π,则a 4(a 2+2a 4+a 6)=________.答案 π2解析 因为数列{a n }为等比数列,且a 3+a 5=π,所以a 4(a 2+2a 4+a 6)=a 4a 2+2a 24+a 4a 6=a 23+2a 3a 5+a 25=(a3+a5)2=π2.8.在数列{a n}中,a2=32,a3=73,且b n=na n+1,若{b n}是等比数列,则数列{b n}的公比是________,a n=________.答案 2 2n-1 n解析 因为在数列{a n}中,a2=32,a3=73,且数列{na n+1}是等比数列,2a2+1=3+1=4,3a3+1=7+1=8,所以数列{na n+1}是首项为2,公比为2的等比数列,所以na n+1=2n,解得a n=2n-1 n.9.已知数列{a n}是等比数列,a3+a7=20,a1a9=64,求a11的值.解 ∵{a n}为等比数列,∴a1·a9=a3·a7=64.又∵a3+a7=20,∴a3=4,a7=16或a3=16,a7=4.①当a3=4,a7=16时,a7a3=q4=4,此时a11=a3q8=4×42=64.②当a3=16,a7=4时,a7a3=q4=14,此时a11=a3q8=16×(14)2=1.10.已知数列{a n}为等比数列.(1)若a n>0,且a2a4+2a3a5+a4a6=36,求a3+a5的值;(2)若数列{a n}的前三项和为168,a2-a5=42,求a5,a7的等比中项.解 (1)∵a2a4+2a3a5+a4a6=36,∴a23+2a3a5+a25=36,即(a3+a5)2=36,又∵a n>0,∴a3+a5=6.(2)设等比数列{a n}的公比为q,∵a2-a5=42,∴q≠1.由已知,得Error!∴Error!解得Error!若G是a5,a7的等比中项,则有G2=a5·a7=a1q4·a1q6=a21q10=962×(12)10=9,∴a5,a7的等比中项为±3.11.设{a n}是首项为a1,公差为-1的等差数列,S n为其前n项和.若S1,S2,S4成等比数列,则a1等于( )A.2 B.-2C.12D.-12答案 D解析 因为{a n}是首项为a1,公差为-1的等差数列,所以S n=na1+12n·(n-1)·(-1),由S1,S2,S4成等比数列可知S2=S1·S4,代入可得(2a1-1)2=a1·(4a1-6),解得a1=-1 2 .12.等比数列{a n}是递减数列,前n项的积为T n,若T13=4T9,则a8a15等于( ) A.±2 B.±4 C.2 D.4答案 C解析 ∵T13=4T9,∴a1a2...a9a10a11a12a13=4a1a2 (9)∴a10a11a12a13=4.又∵a10·a13=a11·a12=a8·a15,∴(a8·a15)2=4,∴a8a15=±2.又∵{a n}为递减数列,∴q>0,∴a8a15=2.13.在等比数列{a n}中,若a7=-2,则此数列的前13项之积等于________.答案 -213解析 由于{a n}是等比数列,∴a1a13=a2a12=a3a11=a4a10=a5a9=a6a8=a27,∴a1a2a3…a13=(a27)6·a7=a137,而a7=-2.∴a 1a 2a 3…a 13=(-2)13=-213.14.已知等比数列{a n }满足a 2a 5=2a 3,且a 4,54,2a 7成等差数列,则a 1a 2a 3·…·a n 的最大值为________.答案 1 024解析 因为等比数列{a n }满足a 2a 5=2a 3,且a 4,54,2a 7成等差数列,所以Error!解得a 1=16,q =12,所以a n =16×(12)n -1=25-n ,所以a 1a 2a 3·…·a n =24+3+2+…+(5-n )=2922,n n-+所以当n =4或n =5时,a 1a 2a 3·…·a n 取最大值,且最大值为210=1 024.15.在等比数列{a n }中,若a 7a 11=6,a 4+a 14=5,则a 20a 10=________.答案 23或32解析 ∵{a n }是等比数列,∴a 7·a 11=a 4·a 14=6,又a 4+a 14=5,∴Error!或Error!∵a 14a 4=q 10,∴q 10=32或q 10=23.而a 20a 10=q 10,∴a 20a 10=23或32.16.设关于x 的二次方程a n x 2-a n +1x +1=0(n =1,2,3,…)有两根α和β,且满足6α-2αβ+6β=3.(1)试用a n 表示a n +1;(2)求证:{a n -23}是等比数列;(3)当a 1=76时,求数列{a n }的通项公式.(1)解 根据根与系数的关系,得Error!代入题设条件6(α+β)-2αβ=3,得6a n +1a n -2a n =3.所以a n +1=12a n +13.(2)证明 因为a n +1=12a n +13,所以a n +1-23=12(a n -23).若a n =23,则方程a n x 2-a n +1x +1=0,可化为23x 2-23x +1=0,即2x 2-2x +3=0.此时Δ=(-2)2-4×2×3<0,所以a n ≠23,即a n -23≠0.所以数列{a n -23}是以12为公比的等比数列.(3)解 当a 1=76时, a 1-23=12,所以数列{a n -23}是首项为12,公比为12的等比数列.所以a n -23=12×(12)n -1=(12)n ,所以a n =23+(12)n ,n ∈N *即数列{a n }的通项公式为a n =23+(12)n ,n ∈N *.。

高一下数学等比数列

高一下数学等比数列

高一下数学等比数列一.选择题(共21小题)1.已知等比数列{a n}中,a3a11=4a7,数列{b n}是等差数列,且b7=a7,则b5+b9等于()A.2B.4C.8D.162.已知各项均不相等的等比数列{a n},若3a2,2a3,a4成等差数列,设S n为数列{a n}的前n项和,则等于()A.B.C.3D.13.已知等比数列{a n}的各项都为正数,且a3,成等差数列,则的值是()A.B.C.D.4.等比数列{a n}满足a1=1,q=﹣3,则a5=()A.81B.﹣81C.243D.﹣2435.已知单调递减的等比数列{a n}中,a1>0,则该数列的公比q的取值范围是()A.q=1B.q<0C.q>1D.0<q<16.已知{a n}为等比数列,且a1=32,a2a3=128,设b n=log2a n,数列{b n}的前n项和为S n,则S n的最大值为()A.13B.14C.15D.167.已知数列{a n}满足a1=2,a n+1﹣a n=2n,则a9=()A.510B.512C.1022D.10248.已知{a n}是等比数列,a2=2,a5=,则公比q=()A.B.﹣2C.2D.9.在△ABC中,角A,B,C所对的边分别为a,b,c,若角A,B,C依次成等差数列,边a,b,c依次成等比数列,且b=2,则S△ABC=()A.B.1C.2D.10.等比数列{a n}的各项均为正数,且a2a9+a5a6=6,则log3a1+log3a2+…+log3a10=()A.6B.5C.4D.1+log3511.已知数列{a n}的前n项和为S n,且满足S n=2a n﹣2,a1=2,则a2020=()A.22019B.22020C.22021D.22021﹣212.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思是“有一个人走378里,第一天健步行走,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地.”请问第三天走了()A.60里B.48里C.36里D.24里13.在等比数列{a n}中,a1=﹣16,a4=8,则a7=()A.﹣4B.±4C.﹣2D.±214.已知等比数列{a n}中,a1=2,a5=18,则a2a3a4等于()A.36B.216C.±36D.±21615.已知等比数列{a n}满足a n+1<a n,a3=1,2a12+a11=a10,若{a n}的前n项和为S n,则S3为()A.1或7B.﹣1C.7D.116.在等比数列{a n}中,a2,a10是方程x2﹣5x+3=0的两根,则log3a6=()A.1B.C.D.﹣117.已知等比数列{a n}的各项均为正数,若a1=1,a2+a3=6a1,则a5=()A.4B.10C.16D.3218.等比数列{a n}的前n项和为S n,已知S3=1,S6=9,则S9等于()A.81B.17C.24D.7319.在等比数列{a n}中,已知a2a4a6=8,则a3a5=()A.3B.5C.4D.220.等比数列{a n}的各项均为正数,且a6a7+a5a8=18,则log3a1+log3a2+…log3a12=()A.12B.10C.8D.2+log3521.已知各项不为0的等差数列{a n},满足a72﹣a3﹣a11=0,数列{b n}是等比数列,且b7=a7,则b6b8=()A.2B.4C.8D.16二.填空题(共3小题)22.已知等差数列{a n}的前n项和为S n,若,则cos(a2+a4)=23.若{a n}是等比数列,且前n项和为S n=3n﹣1+t,则t=.24.正项等比数列{a n}其中a2•a5=10,则lga3+lga4=.三.解答题(共16小题)25.已知△ABC的面积为S,且.(1)求tan2A的值;(2)若,,求△ABC的面积S.26.在等比数列{a n}中,a1+a2=6,a2+a3=12.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设{b n}是等差数列,且b2=a2,b4=a4.求数列{b n}的公差,并计算b1﹣b2+b3﹣b4+…﹣b100的值.27.已知数列{a n}的前n项和为S n,且满足2S n=3a n﹣3.(1)证明数列{a n}是等比数列;(2)若数列{b n}满足b n=log3a n,记数列{}前n项和为T n,证明:≤T n<1.28.已知等差数列{a n}的前n项和为S n,S5=30,S7=56;各项均为正数的等比数列{b n}满足b1b2=,b2b3=.(1)求数列{a n}和{b n}的通项公式;(2)求数列{a n•b n}的前n项和T n.29.已知数列{a n}的前n项和S n和通项a n满足S n=2a n﹣1,n∈N*.(1)求数列{a n}的通项公式;(2)已知数列{b n}中,b1=3a1,b n+1=b n+3,n∈N*,求数列{a n+b n}的前n项和T n.30.已知首项为的等比数列{a n}不是递减数列,其前n项和为S n(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设T n=S n﹣(n∈N*),求数列{T n}的最大项的值与最小项的值.31.设递增等差数列{a n}的前n项和为S n,已知a3=1,a4是a3和a7的等比中项,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n.32.等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6.(1)求数列{a n}的通项公式;(2)设b n=log3a1+log3a2+…+log3a n,求数列的前n项和T n.33.在公差不为零的等差数列{a n}中,a1+a3=8,且a1,a3,a9成等比数列.(1)求数列{a n}的通项公式;(2)设b n=,数列{b n}的前n项和为S n,求证:S n<.34.已知各项均为正数的等比数列{a n}满足:,且3a3是a4,a5的等差中项.(1)求a n;(2)若,求数列{b n}的前n项和T n.35.在公差不为零的等差数列{a n}中,若首项a1=1,a4是a2与a8的等比中项.(1)求数列{a n}的通项公式;(2)求数列{2n•a n}的前n项和S n.36.已知{a n}是公差不为0的等差数列,满足a3=7,且a1、a2、a6成等比数列.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和S n.37.已知数列{a n}中,a1=1,a n=2a n﹣1+1(n≥2,n∈N*).(Ⅰ)记b n=a n+1,求证:{b n}为等比数列;(Ⅱ)在(Ⅰ)的条件下,设c n=(n+1)b n,求数列{c n}的前n项和T n.38.已知等比数列{a n}的公比q>1,且a1,a3的等差中项为5,a2=4.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.39.(1)设等差数列{a n}的前n项和为S n,若a6=S3=12,求{a n}的通项a n;(2)等比数列{a n}中,a5﹣a1=15,a4﹣a2=6,求公比q.40.在等比数列{a n}中a2=3,a5=81.(1)求a n;(2)设b n=log3a n,求数列{b n}的前n项和S n.高一下数学等比数列参考答案一.选择题(共21小题)1.C;2.A;3.A;4.A;5.D;6.C;7.B;8.D;9.D;10.B;11.B;12.B;13.A;14.B;15.C;16.B;17.C;18.D;19.C;20.A;21.B;二.填空题(共3小题)22.;23.;24.1;。

职高高一数学数列练习

职高高一数学数列练习

沭阳中专2012-2013学年度第二学期高一数学3月月考试卷出卷人:韩扬一、 选择题(12*5分=60分)1、在等比数列{a n }中,若35a a •=4 ,则26a a •=( ) (A)-2 (B)2 (C)-4 (D)42、已知{}n a 是首项为2,公差为4的等差数列,如果2006,n a n ==则( ) A 、500 B 、501 C 、502 D 、5033、已知等差数列{a n }的前三项依次为-1, 1, 3,则数列的通项公式是( )A 、a n =2n -5B 、a n =2n+1C 、a n =2n -1D 、a n =2n -34、3,,则9是这个数列的( )A 、第12项B 、第13项C 、第14项D 、第15项5、下列通项公式表示的数列为等差数列的是( )A 、1+=n na n B 、12-=n a nC 、nn n a )1(5-+= D 、13-=n a n6、等差数列{a n }中,已知前13项和s 13=65,则a 7=( )A 、10B 、25C 、5D 、157、已知等差数列{a n }中74=a ,1261=+a a ,则=9a ( )A 、10B 、13C 、14D 、178、等差数列{a n }中, a 1=4,a 3=3,则当n 为何值时,n S 最大?( )A 、7B 、8C 、9D 、8或9 9、9、已知等差数列{}n a 中, 27741=++a a a ,9963=++a a a 则9S 等于( ) A 、27B 、36C 、54D 、7210、在等比数列}{n a 中,若8543-=⋅⋅a a a ,则=⋅62a a ( ) A 、–2 B 、2 C 、–4 D 、4 11、已知等比数例{ a n }中,a n >0且14+=n n a a 那么这个数列的公比是( )A .4B .2C .±2D .-2 12、在等比数列}{n a 中,已知21=a ,83=a ,则=5a ( ) (A )8 (B )10 (C )12 (D )14二、 填空题(6*4分=24分)13、在等比数列}{n a 中,已知3241=a a ,则=32a a . 14、在等差数列}{n a 中,若a 5=4, a 7=6, 则a 9=15、若等比数列{}n a 的公比3,22==a q ,则=4a 。

高中数学 第二章 数列 2.4.1 等比数列的概念及通项公式练习 新人教A版必修5-新人教A版高一必

高中数学 第二章 数列 2.4.1 等比数列的概念及通项公式练习 新人教A版必修5-新人教A版高一必

第1课时等比数列的概念及通项公式课后篇巩固探究A组1.若a,b,c成等差数列,则一定()A.是等差数列B.是等比数列C.既是等差数列也是等比数列D.既不是等差数列也不是等比数列解析因为a,b,c成等差数列,所以2b=a+c,于是,所以一定是等比数列.答案B2.在等比数列{a n}中,a2 017=-8a2 014,则公比q等于()A.2B.-2C.±2D.解析由a2 017=-8a2 014,得a1q2 016=-8a1q2 013,所以q3=-8,故q=-2.答案B3.在等比数列{a n}中,a n>0,且a2=1-a1,a4=9-a3,则a4+a5的值为()A.16B.27C.36D.81解析由a2=1-a1,a4=9-a3,得a1+a2=1,a4+a3=9.设公比为q,则q2==9.因为a n>0,所以q=3,于是a4+a5=(a1+a2)q3=27.答案B4.已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2=()A.-4B.-6C.-8D.-10解析∵a4=a1+6,a3=a1+4,a1,a3,a4成等比数列,∴=a1·a4,即(a1+4)2=a1·(a1+6),解得a1=-8,∴a2=a1+2=-6.故选B.答案B5.已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n=()A.2n-1B.C.D.解析由S n=2a n+1,得S n=2(S n+1-S n),即2S n+1=3S n,.又S1=a1=1,所以S n=,故选B.答案B6.已知等比数列{a n},a3=3,a10=384,则该数列的通项a n=.解析设公比为q.∵=q7==27,∴q=2.∴a n=a3q n-3=3·2n-3.答案3·2n-37.在数列{a n}中,已知a1=3,且对任意正整数n都有2a n+1-a n=0,则a n=.解析由2a n+1-a n=0,得,所以数列{a n}是等比数列,公比为.因为a1=3,所以a n=3·.答案3·8.在等比数列{a n}中,若a1=,q=2,则a4与a8的等比中项是.解析依题意,得a6=a1q5=×25=4,而a4与a8的等比中项是±a6,故a4与a8的等比中项是±4.答案±49.导学号04994040已知数列{a n}是等差数列,且a2=3,a4+3a5=56.若log2b n=a n.(1)求证:数列{b n}是等比数列;(2)求数列{b n}的通项公式.(1)证明由log2b n=a n,得b n=.因为数列{a n}是等差数列,不妨设公差为d,则=2d,2d是与n无关的常数,所以数列{b n}是等比数列.(2)解由已知,得解得于是b1=2-1=,公比q=2d=24=16,所以数列{b n}的通项公式b n=·16n-1.10.已知数列{a n}满足a1=,且a n+1=a n+(n∈N*).(1)求证:是等比数列;(2)求数列{a n}的通项公式.(1)证明∵a n+1=a n+,∴a n+1-a n+.∴.∴是首项为,公比为的等比数列.(2)解∵a n-,∴a n=.B组1.若a,b,c成等差数列,而a+1,b,c和a,b,c+2都分别成等比数列,则b的值为()A.16B.15C.14D.12解析依题意,得解得答案D2.在等比数列{a n}中,a1=1,公比|q|≠1.若a m=a1a2a3a4a5,则m等于()A.9B.10C.11D.12解析∵a m=a1a2a3a4a5=q·q2·q3·q4=q10=1×q10,∴m=11.答案C3.已知等比数列{a n},各项都是正数,且a1,a3,2a2成等差数列,则=()A.3+2B.1-C.1+D.3-2解析由a1,a3,2a2成等差数列,得a3=a1+2a2.在等比数列{a n}中,有a1q2=a1+2a1q,即q2=1+2q,得q=1+或1-(舍去),所以=q2=(1+)2=3+2.答案A4.已知-7,a1,a2,-1四个实数成等差数列,-4,b1,b2,b3,-1五个实数成等比数列,则=. 解析由题意,得a2-a1==2,=(-4)×(-1)=4.又b2是等比数列中的第3项,所以b2与第1项同号,即b2=-2,所以=-1.答案-15.已知一个等比数列的各项均为正数,且它的任何一项都等于它的后面两项的和,则它的公比q=.解析依题意,得a n=a n+1+a n+2,所以a n=a n q+a n q2.因为a n>0,所以q2+q-1=0,解得q=(q=舍去).答案6.若数列a1,,…,,…是首项为1,公比为-的等比数列,则a5=.解析由题意,得=(-)n-1(n≥2),所以=-=(-)2,=(-)3,=(-)4,将上面的四个式子两边分别相乘,得=(-)1+2+3+4=32.又a1=1,所以a5=32.答案327.已知数列{a n}满足S n=4a n-1(n∈N*),求证:数列{a n}是等比数列,并求出其通项公式.解依题意,得当n≥2时,S n-1=4a n-1-1,所以a n=S n-S n-1=(4a n-1)-(4a n-1-1),即3a n=4a n-1,所以,故数列{a n}是公比为的等比数列.因为S1=4a1-1,即a1=4a1-1,所以a1=,故数列{a n}的通项公式是a n=.8.导学号04994041已知数列{a n}的前n项和S n=2a n+1,(1)求证:{a n}是等比数列,并求出其通项公式;(2)设b n=a n+1+2a n,求证:数列{b n}是等比数列.证明(1)∵S n=2a n+1,∴S n+1=2a n+1+1,S n+1-S n=a n+1=(2a n+1+1)-(2a n+1)=2a n+1-2a n,∴a n+1=2a n.由已知及上式可知a n≠0.∴由=2知{a n}是等比数列.由a1=S1=2a1+1,得a1=-1,∴a n=-2n-1.(2)由(1)知,a n=-2n-1,∴b n=a n+1+2a n=-2n-2×2n-1=-2×2n=-2n+1=-4×2n-1.∴数列{b n}是等比数列.。

高中数学专题突破练习《等差数列前n项和及其性质》含详细答案解析

4.2.2等差数列的前n项和公式第1课时等差数列前n项和及其性质基础过关练题组一求等差数列的前n项和1.已知等差数列{a n}满足a1=1,a m=99,d=2,则其前m项和S m等于()A.2300B.2400C.2600D.25002.在-20与40之间插入8个数,使这10个数成等差数列,则这10个数的和为()A.200B.100C.90D.703.设S n是等差数列{a n}的前n项和,已知a2=3,a6=11,则S7等于()A.13B.35C.49D.634.(2020安徽合肥高三第一次教学质量检测)已知等差数列{a n}的前n 项和为S n,a1=-3,2a4+3a7=9,则S7等于()A.21B.1C.-42D.05.若数列{a n}为等差数列,S n为其前n项和,且a1=2a5-1,则S17等于()A.-17B.-172C.172D.176.(2019湖南师大附中高二上期中)在等差数列{a n}中,若a5,a7是方程x2-2x-6=0的两个根,则数列{a n}的前11项的和为()A.22B.-33C.-11D.117.已知等差数列{a n}.(1)若a6=10,a8=16,求S5;(2)若a2+a4=48,求S5.5题组二等差数列前n项和的性质8.设等差数列{a n}的前n项和为S n,若S3=9,S6=36,则a7+a8+a9等于()A.63B.45C.36D.279.在等差数列{a n}中,S n是其前n项和,且S2011=S2018,S k=S2008,则正整数k为()A.2019B.2020C.2021D.202210.含2n+1项的等差数列,其奇数项的和与偶数项的和之比为()A.2n+1n B.n+1nC.n-1n D.n+12n11.已知等差数列{a n},{b n}的前n项和分别为S n,T n,若S nT n =3n2n+5,则a8b8=()A.87B.4837C.97D.1213题组三等差数列前n项和的应用12.数列{a n}为等差数列,它的前n项和为S n,若S n=(n+1)2+λ,则λ的值是()A.-2B.-1C.0D.113.(2020山东济南一中高二上期中)已知等差数列{a n}的前9项和为27,a10=8,则a100=()A.100B.99C.98D.9714.(2020山东青岛高二上期末)已知数列{a n}的前n项和为S n,若a n+1=a n+2,S5=25,n∈N*,则a5=()A.7B.5C.9D.315.(2020天津一中高二上期中)已知等差数列前3项的和为34,后3项的和为146,所有项的和为390,则这个数列的项数为()A.13B.12C.11D.1016.若数列{a n}的前n项和S n=2n2-3n(n∈N*),则a1+a7等于()A.11B.15C.17D.2217.(2019湖南怀化三中高二上期中)已知{a n}是首项为a1,公差为d的等差数列,S n是其前n项和,且S5=5,S6=-3.求数列{a n}的通项公式及S n.能力提升练题组一求等差数列的前n项和1.(2020湖南郴州高二上期中,)已知数列{a n}是等差数列且a n>0,设其前n项和为S n.若a1+a9=a52,则S9=()A.36B.18C.27D.92.(2020江西九江一中高二上期中,)等差数列{a n}的前n项和为S n,若a2+a7+a12=30,则S13等于()A.130B.65C.70D.753.(2019湖北黄冈高一下期末,)如图,将若干个点摆成三角形图案,每条边(包括两个端点)有n(n≥2,n∈N*)个点,相应的图案中点的总数记为a n,则a2+a3+a4+…+a n等于()A.3n 22B.n(n+1)2C.3n(n-1)2D.n(n-1)24.(2020安徽阜阳高二上期末,)已知数列{a n}中,a1=1,a2=2,对任意正整数n,a n+2-a n=2+cos nπ,S n为{a n}的前n项和,则S100=.题组二等差数列前n项和的性质5.()已知数列{a n},{b n}均为等差数列,其前n项和分别记为A n,B n,满足A nB n =4n+12n+3,则a5b7的值为(深度解析)A.2117B.3729C.5329D.41316.()设等差数列{a n}的前n项和为S n,且S m=-2,S m+1=0,S m+2=3,则m=.7.(2019河北沧州一中高二期中,)在等差数列{a n}中,前m(m为奇数)项的和为135,其中偶数项之和为63,且a m-a1=14,则a100=.题组三等差数列前n项和的应用8.(2020河北正定中学高二期末,)设S n是等差数列{a n}的前n项和,若a5a3=59,则S9S5等于()A.1B.-1C.2D.129.(2019陕西西安一中高二上月考,)设S n(S n≠0,n∈N*)是数列{a n}的前n项和,且a1=-1,a n+1=S n·S n+1,则S n等于()A.nB.-nC.1n D.-1n10.()若数列{a n}的前n项和S n=n2-4n+2(n∈N*),则|a1|+|a2|+…+|a10|等于()A.15B.35C.66D.10011.(2020天津耀华中学高二上期中,)数列{a n}满足a n=1+2+3+…+nn (n∈N*),则数列{1a n a n+1}的前n项和为()A.nn+2B.2nn+2C.nn+1D.2nn+112.()已知数列{a n}的前n项和S n=n2+2n-1(n∈N*),则a1+a3+a5+…+a25=.13.()已知等差数列的前三项依次为a,3,5a,前n项和为S n,且S k=121.(1)求a及k的值;(2)设数列{b n}的通项公式为b n=S nn,求{b n}的前n项和T n.14.()在数列{a n}中,a1=8,a4=2,且满足a n+2-2a n+1+a n=0(n∈N*).(1)求数列{a n}的通项公式;(2)设T n=|a1|+|a2|+…+|a n|,求T n.深度解析答案全解全析 基础过关练1.D 解法一:由a m =a 1+(m-1)d,得99=1+(m-1)×2,解得m=50, 所以S m =S 50=50×1+50×492×2=2 500.解法二:同解法一,得m=50, 所以S m =S 50=50(a 1+a 50)2=50×(1+99)2=2 500.故选D.2.B 设该等差数列为{a n },其前n 项和为S n ,则由题意可知,a 1=-20,a 10=40,所以S 10=10×(-20+40)2=100.3.C 由题意得,S 7=7(a 1+a 7)2=7(a 2+a 6)2=7×(3+11)2=49. 4.D 设等差数列{a n }的公差为d,则2a 4+3a 7=2(-3+3d)+3(-3+6d)=9,解得d=1,∴S 7=7a 1+7×62×d=7×(-3)+7×3×1=0,故选D.5.D 设等差数列{a n }的公差为d,∵a 1=2a 5-1,∴a 1=2(a 1+4d)-1,∴a 1+8d=1,即a 9=1,∴S 17=17×(a 1+a 17)2=17a 9=17.故选D.6.D 在等差数列{a n }中,若a 5,a 7是方程x 2-2x-6=0的两个根,则a 5+a 7=2, ∴a 6=12(a 5+a 7)=1,∴数列{a n }的前11项的和为11×(a 1+a 11)2=11a 6=11×1=11.故选D.7.解析 设等差数列{a n }的首项为a 1,公差为d. (1)∵a 6=10,a 8=16,∴{a 1+5d =10,a 1+7d =16,解得{a 1=-5,d =3. ∴S 5=5a 1+5×42d=5.(2)解法一:∵a 2+a 4=a 1+d+a 1+3d=485,∴a 1+2d=245.∴S 5=5a 1+5×42d=5a 1+10d=5(a 1+2d)=5×245=24.解法二:∵a 2+a 4=a 1+a 5,∴a 1+a 5=485, ∴S 5=5(a 1+a 5)2=52×485=24.8.B 由等差数列前n 项和的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列,所以S 3+(S 9-S 6)=2(S 6-S 3),即S 9=3S 6-3S 3,又S 3=9,S 6=36,所以S 9=3×36-3×9=81,所以a 7+a 8+a 9=S 9-S 6=81-36=45.9.C 因为等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数图象的对称性及S 2 011=S 2 018,S k =S 2 008,可得2 011+2 0182=2 008+k2,解得k=2 021,故选C.10.B 设该等差数列为{a n },其首项为a 1,前n 项和为S n ,则S 奇=(n+1)(a 1+a 2n+1)2,S 偶=n(a 2+a 2n )2,∵a 1+a 2n+1=a 2+a 2n ,∴S 奇S 偶=n+1n.11.C 由等差数列的性质知a 8b 8=15(a 1+a 15)215(b 1+b 15)2=S 15T 15=3×152×15+5=4535=97.故选C.12.B ∵等差数列前n 项和S n 的形式为S n =An 2+Bn(A,B 为常数),且S n =(n+1)2+λ=n 2+2n+1+λ,∴λ=-1.13.C 设等差数列{a n }的首项为a 1,公差为d,由等差数列{a n }的前9项和为27,a 10=8,得{9a 1+9×82d =9a 1+36d =27,a 1+(10-1)d =a 1+9d =8,解得{a 1=-1,d =1.故a 100=a 1+99d=98.故选C.14.C ∵a n+1=a n +2,即a n+1-a n =2,∴{a n }是公差为2的等差数列,设其首项为a 1, 则S 5=5a 1+5×42×2=25,解得a 1=1,∴a 5=1+(5-1)×2=9.15.A 设该等差数列为{a n },其前n 项和为S n .由题意得,a 1+a 2+a 3=34,a n-2+a n-1+a n =146,∴(a 1+a 2+a 3)+(a n-2+a n-1+a n )=(a 1+a n )+(a 2+a n-1)+(a 3+a n-2)=3(a 1+a n )=34+146,∴a 1+a n =60. 又S n =n(a 1+a n )2,∴390=n×602,解得n=13,故选A.16.D 由S n =2n 2-3n(n ∈N *)可知,数列{a n }为等差数列,所以S 7=7×(a 1+a 7)2=2×72-3×7,解得a 1+a 7=22,故选D.17.解析 由S 5=5,S 6=-3,得{5a 1+5×42d =5,6a 1+6×52d =-3,解得{a 1=7,d =-3, ∴a n =7+(n-1)×(-3)=-3n+10(n ∈N *),S n =n[7+(-3n+10)]2=-32n 2+172n(n ∈N *).能力提升练1.B 由a 1+a 9=a 52得,2a 5=a 52,又a n >0,∴a 5=2,∴S 9=9(a 1+a 9)2=9×2a 52=18,故选B.2.A 解法一:设等差数列{a n }的首项为a 1,公差为d,则a 2+a 7+a 12=(a 1+d)+(a 1+6d)+(a 1+11d)=3a 1+18d=30,∴a 1+6d=10. ∴S 13=13a 1+13×122d=13(a 1+6d)=13×10=130,故选A.解法二:设等差数列{a n }的首项为a 1,∵a 2+a 7+a 12=30,∴3a 7 =30,即a 7 =10,∴S 13=13(a 1+a 13)2=13×2a 72=13a 7=130.故选A.3.C 由题图可知,a 2=3,a 3=6,a 4=9,a 5=12,依此类推,n 每增加1,图案中的点数增加3,所以相应图案中的点数构成首项为a 2=3,公差为3的等差数列,所以a n =3+(n-2)×3=3n-3,n ≥2,n ∈N *, 所以a 2+a 3+a 4+…+a n =(n -1)(3+3n -3)2=3n(n -1)2.故选C.4.答案 5 050解析 当n 为奇数时,a n+2-a n =1,即数列{a n }的奇数项是以1为首项,1为公差的等差数列;当n 为偶数时,a n+2-a n =3,即数列{a n }的偶数项是以2为首项,3为公差的等差数列,所以S 100=(a 1+a 3+…+a 99)+(a 2+a 4+…+a 100)=(50×1+50×492)+50×2+50×492×3=5 050.5.B 由等差数列前n 项和的特征及An B n =4n+12n+3,可设A n =kn(4n+1),B n =kn(2n+3). ∴a 5=A 5-A 4=5×(4×5+1)k-4×(4×4+1)k=37k,b 7=B 7-B 6=7×(2×7+3)k-6×(2×6+3)k=29k. ∴a5b 7=37k 29k =3729.故选B.解题模板易错警示 等差数列{a n }的前n 项和的表示形式为S n =an 2+bn(a,b 为常数),解题时可采用这种形式简化运算.本题要注意A n B n中有比例系数k,防止遗漏导致错误. 6.答案 4解析 因为S n 是等差数列{a n }的前n 项和,所以数列{Sn n }是等差数列,所以Sm m +S m+2m+2=2S m+1m+1,即-2m +3m+2=0,解得m=4.7.答案 101解析 设等差数列{a n }的公差为d,前n 项和为S n ,由题意可知,S m =135,前m 项中偶数项之和S 偶=63,∴S 奇=135-63=72,∴S 奇-S 偶=a 1+(m -1)d 2=2a 1+(m -1)d 2=a 1+a m2=72-63=9.∵S m =m(a 1+a m )2=135,∴m=15,又∵a m -a 1=14,a m =a 1+(m-1)d, ∴a 1=2,d=a m -a 1m -1=14m -1=1,∴a 100=a 1+99d=101. 8.AS 9S 5=92(a 1+a 9)52(a 1+a 5)=92×2a 552×2a 3=9a 55a 3=95·a 5a 3=1.故选A.9.D ∵a n+1=S n+1-S n ,∴S n+1-S n =S n+1·S n , 又∵S n ≠0,∴1S n+1-1S n=-1.又S 1=a 1=-1,∴1S 1=-1,∴数列{1Sn}是以-1为首项,-1为公差的等差数列,∴1S n=-1+(n-1)×(-1)=-n,∴S n =-1n.故选D.10.C 由S n =n 2-4n+2①得,当n=1时,a 1=S 1=1-4+2=-1,当n ≥2时,S n-1=(n-1)2-4(n-1)+2②,①-②得,a n =2n-5(n ≥2,n ∈N *),经检验,当n=1时,不符合a n =2n-5,∴a n ={-1,n =1,2n -5,n ≥2,n ∈N *.∴|a 1|=1,|a 2|=1,a 3=1,令a n >0,则2n-5>0, ∴n ≥3.∴|a 1|+|a 2|+…+|a 10|=1+1+a 3+…+a 10=2+(S 10-S 2)=2+[(102-4×10+2)-(22-4×2+2)]=66.故选C. 11.B 依题意得,a n =n(1+n)2n=n+12, ∴1a n a n+1=4(n+1)(n+2)=4(1n+1-1n+2).∴1a 1a 2+1a 2a 3+…+1a n a n+1=4(12-13)+(13-14)+…+1n+1-1n+2=4(12-1n+2)=2nn+2,故选B. 12.答案 350解析 当n=1时,a 1=S 1=12+2×1-1=2; 当n ≥2时,a n =S n -S n-1=2n+1, 经检验,当n=1时,不符合上式, ∴a n ={2,n =1,2n +1,n ≥2,n ∈N *,因此{a n }除第1项外,其余项构成以a 2=5为首项,2为公差的等差数列,从而a 3,a 5,…,a 25是以a 3=7为首项,4为公差的等差数列, ∴a 1+a 3+a 5+…+a 25 =a 1+(12a 3+12×112×4)=350.13.解析 (1)设该等差数列为{a n },首项为a 1,公差为d,则a 1=a,a 2=3,a 3=5a. 由已知得a+5a=6,得a=1, ∴a 1=1,a 2=3,a 3=5, ∴d=2,∴S k=ka1+k(k-1)2·d=k+k(k-1)2×2=k2.由S k=k2=121,得k=11(负值舍去).∴a=1,k=11.(2)由(1)得S n=n2,则b n=S nn=n,∴b n+1-b n=1,又b1=S11=1,∴数列{b n}是首项为1,公差为1的等差数列,∴T n=n 2+n 2.14.解析(1)∵a n+2-2a n+1+a n=0,∴a n+2-a n+1=a n+1-a n,∴数列{a n}是等差数列,设其公差为d,∵a1=8,a4=2,∴d=a4-a14-1=-2,∴a n=a1+(n-1)d=10-2n,n∈N*.(2)设数列{a n}的前n项和为S n,则由(1)可得,S n=8n+n(n-1)2×(-2)=9n-n2,n∈N*.由(1)知a n=10-2n,令a n=0,得n=5.∴当n>5时,a n<0,则T n=|a1|+|a2|+…+|a n|=a1+a2+…+a5-(a6+a7+…+a n)=S5-(S n-S5)=2S5-S n=2×(9×5-25)-(9n-n2)=n2-9n+40;当n ≤5时,a n ≥0, 则T n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =9n-n 2.∴T n ={9n -n 2,n ≤5,n ∈N *,n 2-9n +40,n ≥6,n ∈N *.解题反思 求数列{|a n |}的前n 项和,关键在于分清哪些项为非负的,哪些项为负的,最终应化为去掉绝对值符号后的数列进行求和. 如果数列{a n }为等差数列,S n 为其前n 项和,T n =|a 1|+|a 2|+…+|a n |,那么有: (1)若a 1>0,d<0,则存在k ∈N *,使得a k ≥0,a k+1<0, 从而有T n ={S n (n ≤k),2S k -S n (n >k);(2)若a 1<0,d>0,则存在k ∈N *,使得a k ≤0,a k+1>0, 从而有T n ={-S n (n ≤k),S n -2S k (n >k).。

高一数学数列的概念


的图象

● ●
1
1 2 3


4
5
6
7
8
9
10
有穷数列、无穷数列
项数有限的数列叫做有穷数列。
例如:数列 4, 5, 6, 7, 8, 9,10. 项数无限的数列叫做无穷数列。 例如:数列
1 1 1 1 , , , , 2 3 4 5
1,

按项的大小分: 递增数列 —— a n <a n + 1 递减数列 —— a n >a n + 1
数列练习4
例4 观察下面数列的特点,用适当的 数填空,并写出一个通项公式.
(1)2,4,( 6 ),8,10, ( 12 ),14. (2)2,4,( 8 ),16,32,( 64 ),128,( 256 ) (3)( 1 ),4,9,16,25,( 36 ),49. (4)( 5 ),4,3,2,1,( 0 ),-1,( -2 ). (5)1, 2 ,( 3 ),2, 5 ,( 6 ), ( 7 )
1 1 1 1 (3 ) , , , ; 1 2 2 3 3 4 4 5
数列的例题3 a n 例3 已知数列 的第1项是1, 1 以后的各项由公式 an 1 给出, 写出这个数列的前5项。 an 1
1 1 a1 1 a2 1 1 2 a1 1 1 2 5 1 1 3 a3 1 1 a4 1 1 a2 2 2 a3 3 3 1 3 8 a5 1 1 a4 5 5
(2).数列的通项公式不唯一
数列的图象表示
1. 数列 4,5,6,7,8,9,10.的图象 ● 10 ● 9 8 7 6 5 4 3 2
● ● ● ●

人教版高一数学下学期练习题

高一数学下学期练习题1
1.已知等差数列前n项和为,若, 为数列的前n项和, 则=()
A:9 B:17 C:26 D:153 (P17.4)
2.已知两个等差数列和的前n项和分别为和,且= , 则=()
A: 59
5B: 11 C:1 D: 13
5
(P19.4)
3.若{x∣2<x<3}是的解集, 则的解集为______
(P37.6)
4.已知a∈R,解关于x的不等式
22
20 x ax a
--<
(P38.9)
5.在ABC中, 角A,B,C所对的边分别为a,b,c,若2b=a+c,B=
ABC的面积是, 求b
1.不等式31
1
2
x
x
-

-的解集是______
2.若关于x的方程有一正根一负根, 则实数a范围是____
__
3.已知x,y满足约束条件, 则最小值为______
(P43.4)
4.已知x,y满足约束条件,则最小值为_____. (P43.4)
5.某企业生产甲乙两种产品, 已知生产每吨甲产品要用A原料3
吨, B原料2吨, 生产每吨乙产品要用A原料1吨, B原料3
吨, 销售每吨甲产品可获利5万元, 每吨乙产品可获利3万元, 该企业在一个生产周期内消耗A原料不超过13吨, B原料不超过18吨, 那么甲乙分别生产多少吨可获利做多, 最多为多少万元(P43.6)。

高一数学数列复习题有详细答案新人教版必修1

数列复习题班级______ 姓名______ 学号_______一、选择题1、若数列{a n }的通项公式是a n =2(n +1)+3,则此数列 ( )(A)是公差为2的等差数列 (B)是公差为3的等差数列(C) 是公差为5的等差数列 (D)不是等差数列2、等差数列{a n }中,a 1=3,a 100=36,则a 3+a 98等于 ( )(A)36 (B)38 (C)39 (D)423、含2n+1个项的等差数列,其奇数项的和与偶数项的和之比为 ( ) (A)n n 12+ (B)n n 1+ (C)n n 1- (D)nn 21+ 4、设等差数列的首项为a,公差为d ,则它含负数项且只有有限个负数项的条件是( )(A)a >0,d >0 (B)a >0,d <0 (C)a <0,d >0 (D)a <0,d <05、在等差数列{a n }中,公差为d ,已知S 10=4S 5,则d a 1是 ( ) (A)21 (B)2 (C)41 (D)4 6、设{a n }是公差为-2的等差数列,如果a 1+ a 4+ a 7+……+ a 97=50,则a 3+ a 6+ a 9……+ a 99=( )(A)182 (B)-80 (C)-82 (D)-847、等差数列{a n } 中,S 15=90,则a 8= ( )(A)3 (B)4 (C)6 (D)128、等差数列{a n }中,前三项依次为xx x 1,65,11+,则a 101= ( ) (A)3150 (B)3213 (C)24 (D)328 9、数列{a n }的通项公式nn a n ++=11,已知它的前n 项和为S n =9,则项数n= ( )(A)9 (B)10 (C)99 (D)10010、等差数列{a n }中,a 3+ a 4+ a 5+ a 6+ a 7=450,求a 2+a 8= ( )(A)45 (B)75 (C)180 (D)30011、已知{a n }是等差数列,且a 2+ a 3+ a 8+ a 11=48,则a 6+ a 7= ( )(A)12 (B)16 (C)20 (D)2412、在项数为2n+1的等差数列中,若所有奇数项的和为165,所有偶数项的和为150,则n 等于 ( )(A)9 (B)10 (C)11 (D)1213、等差数列{a n } 的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )(A)130 (B)170 (C)210 (D)16014、等差数列{a n }的公差为21,且S 100=145,则奇数项的和a 1+a 3+a 5+……+ a 99=( ) (A)60 (B)80 (C)72.5 (D)其它的值15、等差数列{a n }中,a 1+a 2+……a 10=15,a 11+a 12+……a 20=20,则a 21+a 22+……a 30=( )(A)15 (B)25 (C)35 (D)4516、等差数列{a n }中,a 1=3,a 100=36,则a 3+a 98= ( )(A)36 (B)39 (C)42 (D)4517、{a n }是公差为2的等差数列,a 1+a 4+a 7+……+a 97=50,则a 3+a 6+……+ a 99= ( )(A)-50 (B)50 (C)16 (D)1.8218、若等差数列{a n }中,S 17=102,则a 9= ( )(A)3 (B)4 (C)5 (D)619、夏季高山上温度从山脚起每升高100米,降低0.7℃,已知山顶的温度是14.1℃,山脚的温度是26℃,则山的相对高度是 ( )(A)1500 (B)1600 (C)1700 (D)180020、若x ≠y ,且两个数列:x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各成等差数列,那么=--31b y x a ( )(A)43 (B)34 (C)32 (D)值不确定 21、一个等差数列共有2n 项,奇数项的和与偶数项的和分别为24和30,且末项比首项大10.5,则该数列的项数是 ( )(A)4 (B)8 (C)12 (D)2022、等差数列{a n }中如果a 6=6,a 9=9,那么a 3= ( )(A)3 (B)32 (C)916 (D)4 23、设{a n }是等比数列,且a 1=32,S 3=916,则它的通项公式为a n = ( ) (A)1216-⎪⎭⎫ ⎝⎛∙n (B)n ⎪⎭⎫ ⎝⎛-∙216 (C)1216-⎪⎭⎫ ⎝⎛-∙n (D)1216-⎪⎭⎫ ⎝⎛-∙n 或23 24、已知a 、b 、c 、d 是公比为2的等比数列,则dc b a ++22= ( ) (A)1 (B)21 (C)41 (D)81 25、已知等比数列{a n } 的公比为q ,若21+n a =m (n 为奇数),则213+n a = ( ) (A)mq n -1 (B) mq n (C) mq (D) 8126、已知等比数列前10项的和为10,前20项的和为30,那么前30项的和为( )(A)60 (B)70 (C)90 (D)12627、若{a n }是等比数列,已知a 4 a 7=-512,a 2+a 9=254,且公比为整数,则数列的a 12是( )(A)-2048 (B)1024 (C)512 (D)-51228、数列{a n }、{b n }都是等差数列,它们的前n 项的和为1213-+=n n T S n n ,则这两个数列的第5项的比为 ( ) (A)2949 (B)1934 (C)1728 (D)以上结论都不对29、已知cb b a ac lg lg 4lg 2∙=,则a ,b ,c ( ) (A)成等差数列 (B)成等比数列(C)既成等差数列又成等比数列 (D)既不成等差数列又不成等比数列30、若a+b+c ,b+c -a ,c+a -b ,a+b -c 成等比数列,且公比为q ,则q 3+q 2+q 的值为( )(A)1 (B)-1 (C)0 (D)231、若一等差数列前四项的和为124,后四项的和为156,又各项的和为350,则此数列共有 ( )(A)10项 (B)11项 (C)12项 (D)13项32、在3和9之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则二数之和为 ( ) (A)2113 (B)04111或 (C)2110 (D)219 33、数列1,211+,3211++,……,n+⋅⋅⋅++211的前n 项和为 ( ) (A) n n 12+ (B)122+n n (C)12++n n (D)12+n n 34、设数列{a n }各项均为正值,且前n 项和S n =21(a n +n a 1),则此数列的通项a n 应为 ( )(A) a n =n n -+1 (B) a n =1--n n(C) a n =12+-+n n (D) a n =12-n35、数列{a n }为等比数列,若a 1+ a 8=387,a 4 a 5=1152,则此数列的通项a n 的表达式为( )(A) a n =3×2n -1 (B) a n =384×(21)n -1 (C) a n =3×2n -1或a n =384×(21)n -1 (D) a n =3×(21)n -1 36、已知等差数{a n }中,a 3+ a 4+ a 5+ a 6+ a 7=450,则a 1+ a 9= ( )(A)45 (B)75 (C)180 (D)30037、已知等比数列{a n }中,a n >0,公比q ≠1,则 ( )(A)26242723a a a a +〉+ (B)26242723a a a a +〈+(C)26242723a a a a +=+ (D)的大小不确定与26242723a a a a ++38、在等比数列中,首项89,末项31,公比32,求项数 ( ) (A)3 (B)4 (C)5 (D)639、等比数列{a n }中,公比为2,前四项和等于1,则前8项和等于 ( )(A)15 (B)17 (C)19 (D)2140、某厂产量第二年增长率为p ,第三年增长率为q ,第四年增长率为r ,设这三年增长率为x ,则有 ( ) (A)3r q p x ++= (B)3r q p x ++<(C)3r q p x ++≤ (D)3r q p x ++≥ 二、填空题1、已知等差数列公差d >0,a 3a 7=-12,a 4+a 6=-4,则S 20=_______2、数列{a n }中,若a 1,a 2,a 3成等差数列,a 2,a 3,a 4成等比数列,a 3,a 4,a 5的倒数又成等差数列,则a 1,a 3,a 5成_______数列3、已知{a n }为等差数列,a 1=1,S 10=100,a n =_______.令a n =log 2b n ,则的前五项之和S 5′=_______4、已知数列 )2)(1(1,,201,121,61++n n 则其前n 项和S n =________. 5、数列前n 项和为S n =n 2+3n,则其通项a n 等于____________.6、等差数列{a n }中, 前4项和为26, 后4项之和为110, 且n 项和为187, 则n 的值为____________.7、已知等差数列{a n }的公差d ≠0, 且a 1,a 3,a 9成等比数列, 1042931a a a a a a ++++的值是________. 8、等差数列{a n }中, S 6=28, S 10=36(S n 为前n 项和), 则S 15等于________.9、等比数列{a n }中, 公比为2, 前99项之和为56, 则a 3+a 6+a 9+…a 99等于________.10、等差数列{a n }中, a 1=1,a 10=100,若存在数列{b n }, 且a n =log 2b n ,则b 1+b 2+b 3+b 4+b 5等于____________.11、已知数列1, ,3,2,1nn n n n n --- , 前n 项的和为____________. 12、已知{a n }是等差数列,且有a 2+a 3+a 10+a 11=48, 则a 6+a 7=____________.13、等比数列{a n }中, a 1+a 2+a 3+a 4=80, a 5+a 6a 7+a 8=6480, 则a 1必为________.14、三个数a 1、1、c 1成等差数列,而三个数a 2、1、c 2成等比数列, 则22c a c a ++等于____________.15、已知12, lgy 成等比数列, 且x >1,y >1, 则x 、y 的最小值为________. 16、在数列{a n }中, 5221-=+n n n a a a , 已知{a n }既是等差数列, 又是等比数列,则{a n }的前20项的和为________.17、若数列{a n }, )1)(2(1,3211+++==+n n a a a n n 且 (n ∈N), 则通项a n =________. 18、已知数列{a n }中, n n a a a )12(,22314-=-=+(n ≥1), 则这个数列的通项公式a n =________.19、正数a 、b 、c 成等比数列, x 为a 、b 的等差中项, y 为b 、c 的等差中项, 则a c x y+的值为________. 20、等比数列{a n }中, 已知a 1·a 2·a 3=1,a 2+a 3+a 4=47, 则a 1为________. 三、解答题1、在等差数列{a n }中,a 1=-250,公差d=2,求同时满足下列条件的所有a n 的和,(1)70≤n ≤200;(2)n 能被7整除.2、设等差数列{a n }的前n 项和为S n .已知a 3=12, S 12>0,S 13<0.(Ⅰ)求公差d 的取值范围; (Ⅱ)指出S 1,S 2,…,S 12,中哪一个值最大,并说明理由.3、数列{n a }是首项为23,公差为整数的等差数列,且前6项为正,从第7项开始变为负的,回答下列各问:(1)求此等差数列的公差d;(2)设前n 项和为n S ,求n S 的最大值;(3)当n S 是正数时,求n 的最大值.4、设数列{n a }的前n 项和n S .已知首项a 1=3,且1+n S +n S =21+n a ,试求此数列的通项公式n a 及前n 项和n S .5、已知数列{n a }的前n 项和31=n S n(n +1)(n +2),试求数列{n a 1}的前n 项和.6、已知数列{n a }是等差数列,其中每一项及公差d 均不为零,设2122++++i i i a x a x a =0(i=1,2,3,…)是关于x 的一组方程.回答:(1)求所有这些方程的公共根;(2)设这些方程的另一个根为i m ,求证111+m ,112+m ,113+m ,…, 11+n m ,…也成等差数列.7、如果数列{n a }中,相邻两项n a 和1+n a 是二次方程n n n c nx x ++32=0(n=1,2,3…)的两个根,当a 1=2时,试求c 100的值.8、有两个无穷的等比数列{n a }和{n a },它们的公比的绝对值都小于1,它们的各项和分别是1和2,并且对于一切自然数n,都有1+n a ,试求这两个数列的首项和公比.9、有两个各项都是正数的数列{n a },{n b }.如果a 1=1,b 1=2,a 2=3.且n a ,n b ,1+n a 成等差数列, n b ,1+n a ,1+n b 成等比数列,试求这两个数列的通项公式.10、若等差数列{log 2x n }的第m 项等于n ,第n 项等于m(其中m ≠n),求数列{x n }的前m +n 项的和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
高一数学数列练习题
一、单项选择题
1.若a,2a+2,3a+3成等比数列,则实数a的值为 ( )
A.-4或-1 B.-4 C.-1 D.1或4
2.在等差数列{an}中,Sn为前n项和,且已知S2=3,S3=6,则公差
为 ( )

A.3 B.-3 C.1 D.-1
3.若等差数列{an}中,S50=25,S100=100,则S150 ( )
A.125 B.150 C.175 D.225
4.a2=7,a4=15,则前10项的和S10= ( )
A.100 B.210 C.380 D.400
5.数列{an}满足a1=1,an=-n+an+1,(n∈N*),则a5= ( )
A.9 B.10 C.11 D.12
6.已知等差数列{an}的公差为2,若a1,a3,a4成等比数列,则a1=( )
A.-4 B.-6 C.-8 D.-10
7.等差数列{an}满足:a2=18,a10=2,则a6等于 ( )
A.9 B.10 C.7 D.8
8.若等差数列的前n项和Sn=n2+4n,则a5+a6+a7+a8等于( )
2

A.96 B.72 C.64 D.51
9.已知数列{an}是等差数列,a3+a11=50,且a4=13,则公差d等于
( )

A.1 B.4 C.5 D.6
10.在等差数列{an}中,a1+a2+a3=5,a2+a3+a4=11,则公差d
为( )

A.6 B.3 C.1 D.2
11.在等比数列{an}中,若a2=3,a10=27,则a6= ( )
A.9 B.-9 C.15 D.9或-9
12.在等差数列{an}中,已知a1+a2+a3=-24,a18+a19+a20=78,
则S20= ( )

A.220 B.200 C.180 D.160
13.在等差数列{an}中,已知a1=2,a3+a5=10,则a7= ( )
A.5 B.8 C.10 D.14
14.在等差数列{an}中,若a1+a4=30,a2+a5=26,则a3+a6等于
( )

A.24 B.22 C.20 D.18
15.已知等差数列{an}的前n项和为Sn,且S11=110,则a6等于( )
A.10 B.20 C.30 D.40
3

16.设Sn是等差数列{an}的前n项和,若a6a5=911,则S11S9等于( )
A.1 B.-1 C.2 D.12
17.等比数列{an}中,Sn=2n+a,则a= ( )
A.-1 B.-2 C.1 D.2
答案
一、单项选择题
1.B 【分析】 由题意得(2a+2)2=a(3a+3),整理得a2+5a+4
=0,即(a+1)(a+4)=0,解得a=-4或a=-1(舍),故选
B.

2.C 【分析】 因为Sn=na1+12nnd,所以1132633adad==,所以d=1故
选C.
3.D
4.B
5.C
6.C
7.B
8.C
4

【提示】a5+a6+a7+a8=S8-S4=96-32=64.
9.B【提示】根据等差数列性质求得a7=25,则d=a7-a43=4,选B.
10.D
11.A
12.C
13.B
14.B【解析】∵(a1+a4)+(a3+a6)=2(a2+a5),∴a3+a6=
2(a2+a5)-(a1+a4)=2×26-30=22.故选B.

15.A 【解析】 由S11=11(a1+a11)2=110得a1+a11=2a6=20,
∴a6=10.

16.A
17.A

相关文档
最新文档