2011年中考数学复习—统计与概率

合集下载

中考数学概率知识点归纳

中考数学概率知识点归纳

中考数学概率知识点归纳一天天积累,一点点努力,一步步前进,一滴滴汇聚,终于到了中考这一天。

放松心情,面带微笑,保持信心,你必将拥有灿烂的人生。

祝中考顺利!下面是小编给大家带来的中考数学概率知识点,欢迎大家阅读参考,我们一起来看看吧!中考数学概率知识点:随机事件1.随机事件的定义.2·计算简单事件概率的方法,重点学习了两种随机事件概率的计算方法,第一种,只涉及一步实验的随机事件发生的概率,如根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种,通过列表法、列举法、树形图来计算涉及两步或两步以上实验的随机事件发生的概率,如配紫色,对游戏是否公平的计算.3·利用频率估计概率,分为如下两种情况:第一种,利用实验的方法进行概率估算;第二种,利用模拟实验的方法进行概率估算.如利用计算器产生随机数来模拟实验的方法.4.体会大量重复实验中的频率与事件发生的概率之间的关系,通过设计简单的概率模型.重在对事件发生可能性的刻画,来帮助人们在不确定的情境中做出合理的决策,如通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型.中考数学备考知识点:随机事件发生的可能性随机事件发生的可能性一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。

对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。

要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。

所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。

中考数学知识点总结:概率统计的9个考点考点1:确定事件和随机事件考核要求:(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。

考点2:事件发生的可能性大小,事件的概率考核要求:(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。

初中数学统计与概率中考知识点整理_统计与概率中考数学题_统计与概率思维导图

初中数学统计与概率中考知识点整理_统计与概率中考数学题_统计与概率思维导图

初中数学统计与概率中考知识点整理_统计与概率中考数学题_统计与概率思维导图·初中数学统计与概率知识点“统计与概率是中考数学的必考知识点了,是不能翻车、必须稳稳拿在手里的,但总有一部分同学因为粗心、因为混淆概念等等的小错误就丢了分数。

统计与概率的题目一旦出现了错误,就像扣错纽扣一样,一步错步步错。

在中考数学中常考点有数据的收集方法,平均数、众数和中位数的计算与选择,方差和标准差的计算和应用,统计图的应用及信息综合分析;事件的分类,简单事件的概率计算,画树状图或列表求概率,对频率和概率的理解等。

统计初步和概率考试一定要注意,平均数、中位数、众数、方差、极差、标准差、加权平均数的计算要准确。

统计科学记数法:一个大于10的数可以表示成A*10N的形式,其中1小于等于A小于10,N是正整数。

扇形统计图:①用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。

②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。

各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

近似数字和有效数字:①测量的结果都是近似的。

②利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。

③对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。

平均数:对于N个数X1,X2…XN,我们把X1X2…XN/N叫做这个N个数的算术平均数,记为X上边一横。

加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。

中位数与众数:①N个数据按大小顺序排列,处于最中间位置的一个数据或最中间两个数据的平均数叫做这组数据的中位数。

中考数学一轮复习专题解析—统计与概率

中考数学一轮复习专题解析—统计与概率

中考数学一轮复习专题解析—统计与概率复习目标1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现;2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算;3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍;4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件;考点梳理一、数据的收集及整理1.一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展开调查、记录结果、得出结论.2.调查收集数据的方法:普查与抽样调查.要点诠释:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想.(3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样.3.数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图.【特别提醒】这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.例1. 连云港市实行中考改革,需要根据该市中学生体能的实际情况重新制定中考体育标准.为此,抽取了50名初中毕业的女学生进行“一分钟仰卧起坐”次数测试.测试的情况绘制成表格如下:次数 6 12 15 18 20 25 27 30 32 35 36 人数 1 1 7 18 10 5 2 2 1 1 2⑴求这次抽样测试数据的平均数、众数和中位数;⑵根据这一样本数据的特点,你认为该市中考女生“一分钟仰卧起坐”项目测试的合格标准应定为多少次较为合适?请简要说明理由;⑶根据⑵中你认为合格的标准,试估计该市中考女生“一分钟仰卧起坐”项目测试的合格率是多少?【答案】⑴该组数据的平均数众数为18,中位数为18;⑵该市中考女生一分钟仰卧起坐项目测试的合格标准应定为18次较为合适,因为众数及中位数均为18,且50人中达到18次的人数有41人,确定18次能保证大多数人达标;⑶根据⑵的标准,估计该市中考女生一分钟仰卧起坐项目测试的合格率为82%.二、数据的分析1.基本概念:总体:把所要考查的对象的全体叫做总体;个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本;样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数;极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果通常称为方差.计算方差的公式:设一组数据是,是这组数据的平均数。

中考数学 精讲篇 考点系统复习 第八章 统计与概率 第一节 统计

中考数学 精讲篇 考点系统复习 第八章 统计与概率 第一节 统计

(3)因出口规格为 75 g,甲厂和乙厂的平均数都为 75 g,故从平均数角 度选择甲厂和乙厂都一样.甲厂的中位数为 76 g,乙厂的中位数为 75 g, 故从中位数角度选择乙厂.甲厂的方差为 6.3,乙厂的方差为 6.6,因为 s2甲<s2乙,故从方差的角度选择甲厂.
(4)从甲厂 20 只鸡腿质量中 71≤x<77 占比为3+2010=1230, 13
的是
( C)
A.扇形统计图能反映各部分在总体中所占的百分比
B.每天阅读 30 分钟以上的居民家庭孩子超过 50%
C.每天阅读 1 小时以上的居民家庭孩子占 20%
D.每天阅读 30 分钟至 1 小时的居民家庭孩子对应扇形的圆心角是 108°
4.已知一组数据:2,3,1,3,6,求出下列统计量:
(1)平均数: 3 3;(2)中位数 3 3;(3)众数:3 3 ;(4)方差:2 2..8. 8
分析上述数据,得到下表:
统计量
平均数 中位数
众数
方差
厂家
甲厂
75
76
b
6.3
乙厂
75
75
77
6.6
请你根据图表中的信息完成下列问题: (1)a=________;b=________; (2)补全频数分布直方图; (3)如果只考虑出口鸡腿规格.请结合表中的某个统计量,为外贸公司选 购鸡腿提供参考建议; (4)某外贸公司从甲厂采购了 20 000 只鸡腿,并将质量(单位:g)在 71≤x<77 的鸡腿加工成优等品,请估计可以加工成优等品的鸡腿有多少 只?
组别 睡眠时间分组 频数 频率
A
t<6
4
0.08
B 6≤t<7

中考数学统计与概率基础知识

中考数学统计与概率基础知识

中考数学统计与概率基础知识概率与统计是数学中的一个重要分支,也是中考数学中的一项重要内容。

通过学习概率与统计的基础知识,我们能够更好地理解和应用数学在实际生活中的意义。

本文将从概率与统计的概念、统计数据的描述与分析以及概率的计算等方面介绍中考数学中的基础知识。

一、概率与统计的概念1. 概率的定义概率是指某一事件发生的可能性大小。

概率的取值范围为0-1,其中0表示不可能发生,1表示必然发生。

一般情况下,概率用一个介于0和1之间的实数表示。

2. 统计的定义统计是指通过收集、整理和分析数据,以了解和描述一定现象或现象的规律性。

统计可以帮助我们从大量的数据中提取有用的信息,为决策提供依据。

二、统计数据的描述与分析1. 数据的收集在进行统计分析之前,首先需要进行数据的收集。

数据的收集可以通过实地调查、问卷调查、实验观测等方式进行。

收集到的数据应具有代表性,以确保统计结果准确可靠。

2. 数据的整理收集到的数据需要进行整理,包括数据的录入、分类、排序等。

通过数据的整理,可以更好地进行后续的统计分析。

3. 数据的分析数据的分析包括描述性统计和推论性统计两个方面。

描述性统计主要是对数据的基本特征进行描述,包括频数、众数、中位数、均值等。

推论性统计则是通过样本数据的分析来推断总体的特征。

三、概率的计算1. 随机事件随机事件是在一定的条件下可能发生也可能不发生的事件。

在计算概率时,首先要确定随机事件的样本空间和样本点,并根据事件发生的可能性来计算概率。

2. 概率的计算方法概率的计算主要通过以下两种方法进行:频率法和几何法。

频率法是指通过大量实验或观测数据来计算概率。

几何法是指通过对几何模型进行分析和推理来计算概率。

四、概率与统计的应用1. 随机抽样随机抽样是统计中常用的一种方法,通过从总体中随机选择一部分个体作为样本,来推断总体的特征。

使用随机抽样的方法可以减小误差,提高结果的可靠性。

2. 概率统计模型概率统计模型是利用统计学原理和概率理论来描述和分析一定现象的数学模型。

人教版中考数学第一轮复习第八章 统计与概率

人教版中考数学第一轮复习第八章 统计与概率

第八章统计与概率第二十七讲数据的收集与处理【基础知识回顾】一、数据的收集方式。

1、全面调查(普查):是为了一定的目的对考察对象进行的全面调查,其中所要考查对象的称为总体,组成总体的考查对象称为个体2、抽样调查(抽查):是指从总体中抽取对象进行调查,然后根据调查数据推理全体对象的情况,其中,被抽取的那些组成一个样本,样本中的数目叫做样本容量。

【名师提醒:1、对被考查对象进行全面调查还是抽样调查要根据就考查对象的特点而选择,例如:当被考查对象数量有限时可采取,当受条件限制无法对所有个体都进行调查或调查具有破坏性时,应采用,然后用样本估计总体的情况。

2、注意:被考察对象不是笼统的某人某物,而是某人某物的某项指标。

】二、统计图:1、统计图是表示统计数据的图形,是数据及其关系的直观表现的反映,几种常见的统计图有统计图统计图统计图2、频数分布直方图:⑴频数:在统计数据中落在不同小组中的个数,叫做频数⑵频率:=⑶绘制频数直方图的步骤:a:计算与的差,b:决定和c:确定分点d:列出f:画出【名师提醒:1、各类统计图的特点:条形统计图可以反映折线统计图能够显示从扇形统计图能够看出,扇形的圆心角=3600×2、频数分布直方圆中每个长方形的高是所有小长方形高的和为】【典型例题解析】1.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有条鱼.3.2013年3月28日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表分数段频数频率50.5-60.5 16 0.0860.5-70.5 40 0.270.5-80.5 50 0.2580.5-90.5 m 0.3590.5-100.5 24 n(1)这次抽取了名学生的竞赛成绩进行统计,其中:m= ,n= ;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?第二十八讲数据分析【基础知识回顾】一、数据的代表:1、平均数:⑴算术平均数如果有n个数x1 ,x2 ,x3 …xn那么它们的平均数x=⑵加权平均数:若在一组数据中x1出现f1次,x2出现f2次...... xk出现fk次,则其平均数x= (其中f1+ f2+...... fk=n)2、中位数:将一组数据按大小依次排列,把处在或叫做这组数据的中位数。

中考数学专题知识点题型复习训练及答案解析(经典珍藏版):06统计与概率的基本概念


( 2)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结 果叫方差,通常用 s2 来表示,计算公式是:
s2 [( x1 ) 2+( x2 ) 2+… +(xn )2](可简单记忆为“方差等于差方的平均数” )
( 3)方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反
得分(分)
60
70
80
90
100
人数(人)
7
12
10
8
3
则得分的众数和中位数分别为(

A . 70 分, 70 分
B. 80 分, 80 分
C. 70 分, 80 分
D . 80 分, 70 分
5.( 2016?成都)学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,
各组的平时成绩的平均数 (单位:分)及方差 s2 如表所示:
较合适的依据应是月销售量的(

A .平均数
B .极差数
C.最小值
D .中位数和众数
4.某车间需加工一批零件,车间 20 名工人每天加工零件数如表所示:
每天加工零件
4
5
6
7
8

人数
3
6
5
4
2
每天加工零件数的中位数和众数为(
备考中考一轮复习点对点必考题型
题型 6 统计与概率基本概念 考点解析
1.全面调查与抽样调查 1、统计调查的方法有全面调查(即普查)和抽样调查. 2、全面调查与抽样调查的优缺点: ① 全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某 些调查不宜用全面调查. ② 抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系 到对总体估计的准确程度. 3、如何选择调查方法要根据具体情况而定.一般来讲:通过普查可以直接得到较为全面、可靠的信息,但 花费的时间较长,耗费大,且一些调查项目并不适合普查.其一,调查者能力有限,不能进行普查.如: 个体调查者无法对全国中小学生身高情况进行普查.其二,调查过程带有破坏性.如:调查一批灯泡的使 用寿命就只能采取抽样调查, 而不能将整批灯泡全部用于实验. 其三,有些被调查的对象无法进行普查. 如: 某一天,全国人均讲话的次数,便无法进行普查. 2.条形统计图 ( 1)定义:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把 这些直条排列起来. ( 2)特点:从条形图可以很容易看出数据的大小,便于比较. ( 3)制作条形图的一般步骤: ① 根据图纸的大小,画出两条互相垂直的射线. ② 在水平射线上,适当分配条形的位置,确定直条的宽度和间隔. ③ 在与水平射线垂直的射线上,根据数据大小的具体情况,确定单位长度表示多少. ④ 按照数据大小,画出长短不同的直条,并注明数量. 3.折线统计图 ( 1)定义:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接 起来.以折线的上升或下降来表示统计数量增减变化. ( 2)特点:折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况. ( 3)绘制折线图的步骤 ① 根据统计资料整理数据.

中考数学专题复习课件 --- 第三十二概率初步


200-(20+30+20+80)=50(人);参观C展馆的人数的百分比为:
30÷200=15%.补全的统计图如下:
6 3 16 8 P(小华获胜)= 6 3 16 8 二者获胜的概率相同,所以规则对双方公平.
P(小明获胜)=
6.(2010·西宁中考)现有分别标有数字-1,1,2的3个质地和 大小完全相同的小球.若3个小球都装在一个不透明的口袋中,
日游,上午可以先从台湾馆、香港馆、韩国馆中随机选择一个
馆, 下午再从加拿大馆、法国馆、俄罗斯馆中随机选择一个
馆游玩.则小明恰好上午选中台湾馆,下午选中法国馆这两个 场馆的概率是(
1 A 9 1 B 3
)
2 C 3 2 D 9
【解析】选A.∵上、下午各选一个馆共有9种选法.
∴小明恰好上午选中台湾馆,下午选中法国馆这两个场馆的概
(2)P(图象不经过第四象限)=
1 . 3
统计与概率教学设计 一、教材分析及学生分析
数学课程标准在各个学段中,安排了“数与代数”、
“空间与图形”、“统计与概率”、“实践与综合应用”四 个学习领域.其中“统计与概率”中统计初步知识在七、八年 级已经涉及,但概率知识对于学生来说还是一个全新的概念, 它是学生以后学习有关知识的基础,并且概率问题是一个与
2 一个球,它是白球的概率为 , 则黄球的个数为( 3 (A)2 (B)4 (C)12 (D)16
)
【解析】选B.由题意可知,袋中共有球8÷ 球12-8=4(个).
2 =12(个),∴有黄 3
7.(2011·义乌中考)某校安排三辆车,组织九年级学生团员
去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆
车中任选一辆搭乘,则小王与小菲同车的概率为( )

2011广州各区中考数学一模试题分类——概率统计

2011广州各区一模试题分类——概率统计1、(2011白云19)我区很多学校开展了大课间活动.某校初三(1)班抽查了10名同学每分钟仰卧起坐的次数,数据如下(单位:次):51,69,64,52,64,72,48,52,76,52. (1)这组数据的众数为 ;求这组数据的中位数;(2)在对初三(2)班10名同学每分钟仰卧起坐次数的抽查中,已知这组数据的平均数正好与初三(1)班上述数据的平均数相同,且除众数(唯一)之外的6个数之和为348.求这组数据的众数.2、(2011从化23)在初三毕业前,团支部进行“送赠言”活动,某班团支部对该班全体团员在一个月内所发赠言条数的情况进行了统计,并制成了如图9两幅不完整的统计图:(1)求该班团员共有多少?该班团员在这一个月内所发赠言的平均条数是多少?并将该条形统计图补充完整;(2)如果发了3条赠言的同学中有两位男同学,发了4条赠言的同学中有三位女同学.现要从发了3条赠言和4条赠言的同学中分别选出一位参加该校团委组织的“送赠言”活动总结会,请你用列表法或画树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.1条 2条 3条 4条 5条 条数人数12 3 452 3 2 1图91条2条 3条 4条 5条25%所发赠言条数扇形统计图所发赠言条数条形统计图把分别写有1、2、3、4数字的四张卡片(卡片除数字外其他完全一样)搅匀后放在一个不透明的袋子中,先抽出一张记下数字后,放回袋中搅匀后再抽出一张. (1)请用树形图或列表把所有可能表示出来;(2)若把第一次抽出的数字记为十位数,第二次抽出的数字记为个位数,求组成的两位数是3的倍数的概率.4、(2011海珠21)某校九年级有400名学生参加全国初中数学竞赛初赛,从中抽取了50名学生,他们的初赛成绩(得分为整数,满分为100分)都不低于40分,把成绩分成六组:第一组39.5~49.5,第二组49.5~59.5,第三组59.5~69.5,第四组69.5~79.5,第五组79.5~89.5,第六组89.5~100.5。

中考数学易错题专题复习统计与概率20

统计与概率易错点1:全面调查与抽样调查的适用范围易分不清楚.易错题1:下列调查:①了解某市中小学生的视力情况;②了解某市中学生课外阅读的情况;③了解某市百岁以上老人的健康情况;④了解某市老年人的生活条件情况.其中适合采用抽样调查的有……………………………………………………………………………()A.①②B.①②③C.①②④D.②③④错解:A正解:C赏析:对常采用抽样调查的一些情形判断不清是造成本题错解的主要原因.常采用抽样调查的情形有:①受客观条件限制,无法对所有个体进行全面调查,如调查某市中小学生的视力情况;②调查具有破坏性,不允许全面调查,如调查某批炮弹的杀伤半径;总体容量较大,个体分布较广,如某市青年在外创业的情况.同时,还应注意抽样调查的一些要求:一是抽取的样本要有代表性;二是抽取的样本数目不能太少.易错点2:对平均数、中位数与众数的概念理解不透彻,计算易出错.易错题2:某中学随机调查了15名学生,了解他们一周在校参加课外体育锻炼的时间,则这15名学生一周在校参加课外体育锻炼时间的中位数和众数分别是…………()A.6.5,7B.7,7C.6.5,6D.6,6错解:A正解:D赏析:造成出错的原因是对中位数与众数的概念理解不清.众数是指出现次数最多的数据而不是指次数,求中位数一定要把数据先按大小顺序排列,再取正中间的一个数据或正中间两个数据的平均数作为中位数.本题中,第15+12=8个数据即为中位数,∵3<8<3+7,∴第8个数据是6,即中位数为6;数据6出现的次数是7,次数最多,∴众数是6.易错点3:方差的概念及计算易出错.易错题3:甲、乙、丙三组各有7名成员,测得三组成员体重数据的平均数都是58,方差分别为2s甲=35,2s乙=24.5,2s丙=15.则数据波动最小的一组是_____________.错解:甲正解:丙赏析:对描述数据离散程度的特征数----方差理解出错,从而本题出现错解.一组数据的方差越大,这组数据的波动越大,方差越小,数据的波动越小.本题中,∵15<24.5<35,∴2s丙<2s乙<2s甲,故填丙.易错题4:我校八年级(1)组织了一次英语风采大赛,甲、乙两队各10人的比赛成绩如下表(10分制):(单位:分)(1)甲队成绩的众数是___________分,乙队成绩的中位数是_____________分. (2)请从平均数和方差两方面判断,谁的成绩更好些. 错解:(1)10,9;(2)∵1=10x 甲(7×2+8+9×2+10×5)=9(分), 1=10x 乙(7+8×2+9×3+10×4)=9(分),21=10s 甲[2×(7-9)2+(8-9)2+2×(9-9)2+5×(10-9)2]=1.4,21=10s 乙[(7-9)2+2×(8-9)2+3×(9-9)2+4×(10-9)2]=1.4,∴=x x 甲乙,22=s s 甲乙,∴从平均数和方差两方面判断,两人的成绩一样好.正解:(1)10,9;(2)∵1=10x 甲(7×2+8+9×2+10×5)=9(分), 1=10x 乙(7+8×2+9×3+10×4)=9(分),21=10s 甲[2×(7-9)2+(8-9)2+2×(9-9)2+5×(10-9)2]=1.4,21=10s 乙[(7-9)2+2×(8-9)2+3×(9-9)2+4×(10-9)2]=1,∴=x x 甲乙,22=s s 甲乙,∴从平均数和方差两方面判断,两人的成绩一样好.赏析:本题错误的原因是从乙的方差计算开始出错,从而导致结果判断不正确.一组数据的平均数计算公式是x =12nx x x n+++,方差的计算公式是s 2=222121()()()n x x x x x x n ⎡⎤-+-++-⎣⎦.这类问题通常先计算平均数,然后计算方差,再分别比较平均数和方差的大小,综合判断,得出结论.从计算平均数开始,每一步都要认真仔细,否则接下来的步骤就跟着出错.易错点4:两步及两步以上简单事件的概率求法;用树状图或列表的方法表示各种等可能的情况.易错题5:在﹣2,﹣1,1,2这四个数中,任选两个数的积作为k 的值,使反比例函数y =kx的图象在第一、三象限的概率是____________. 错解:12正解:13赏析:本题对概率的概念理解不透彻,误以为正负各两个数,概率就为12,从而出错.或画树状图如下:-2 -1 1-2 -1 2-2 1 2(2,-2) (2,-1) (2,1)(1,-2) (1,-1) (1,2) (-1,-2) (-1,1) (-1,2) 结果第2个数第1个数开始-2 --1 1 2(-2,-1) (-2,1) (-2,2)共有12个等可能情况,其中积为正的情况有4种,所以概率P =412=13. 易错点5:用概率判断游戏是否公平;复杂事件的概率求法. 易错题6:如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等. (1)现随机转动转盘一次,停止后,指针指向1的概率为_____________.(2)甲、乙两人利用这个转盘做游戏,若采用下列规则:随机转动转盘两次,停止后,指针各指向一个数字,若第一次数字大于第二次数字,则甲胜;否则,乙胜.你认为这个游戏规则对两人公平吗?请用列表或画树状图的方法说明理由.错解:(1)13(2)列表如下:所有情况共6种,第一次数字大于第二次数字、第一次数字小于第二次数字各三种.∴P (甲)=3162=,P (乙)=3162=,∵12=12,∴该游戏公平. 正解:(1)13(2)根据规则,将所有可能情况列表如下:结果第二次第一次开始1 2 31 2 3 1 2 3 1 2 3(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)所有等可能情况共9种,第一次数字大于第二次数字的情况有3种,第一次数字不大于第二次数字的情况有6种. ∴P (甲)=3193=,P (乙)=6293=,∵13=23,∴该游戏不公平. 赏析:本题错在第(2)小题中,对游戏规则的理解错误,从而造成本小题错解.游戏是否公平的问题实际上是概率是否相等的问题,所以准确求出有关的概率是解决此类问题的关键.易错点6:从图表中获取信息;统计与概率的综合应用.易错题7:为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A :实心球,B :立定跳远,C :跳绳,D :跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①、②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本次调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.图①图②A 10% C 40%D20%B___错解:(1)60÷(1-10%-20%-40%)=200(名);(2)本次调查中喜欢“立定跳远”的学生人数为:200-15-60-40=95(名),所占百分比为:95200×100%=47.5%, 两个统计图补充如下:图①图②A 10%C 40%D 20%B 47.5%共有25种情况,其中同性别学生有13种情况,∴刚好抽到同性别学生的概率P =25. 正解:(1)由题意,得15÷10%=150(名)或60÷40%=150(名)或30÷20%=150(名).答:在这项调查中,共调查了150名学生.(2)本次调查中喜欢“立定跳远”的学生人数为:150-15-60-40=45(名),所占百分比为:45150×100%=30%, 两个统计图补充如下:图①图②A 10%C 40%D 20%B 30%或画树状图如下:B 1A 3A 2A 1B 2 B 2 B 2 B 2A 1 A 2 A 3 B 1B 1 B 1 B 1 B 1A 1 A 2 A 3 B 2A 1A 2A 3B 2B 2B 1A 2A 1A 3 3 A 3 A 3A 1 A 2 B 1 B 2A 2 2 A 2 A 2A 1 A 3B 1 B 2A 1A 3B 1B 2B 2B 1A 3A 2B 2B 1A 3A 2结果第2个学生第1个学生开始A 1A 1 1 A 1 A 1A 2 A 3B 1 B 2共有20种情况,其中同性别学生有8种情况,∴刚好抽到同性别学生的概率P =820=25. 赏析:本题(1)中,对C 项目所占百分比获取了错误信息,导致出错,C 项目所占百分比应是40%,,这也是导致第(2)小题出错的原因.第(3)小题出错的主要原因是对所有等可能情况分析错误,第一次抽取的学生不能放回继续抽取.易错练1.希望中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查地点一组数据,如图是根据这组数据绘制的不完整的统计图,则下列说法中,不正确的是( )A.被调查的学生有200人B.被调查的学生中喜欢教师职业的有40人C.被调查的学生中喜欢其他职业的占40%D.扇形中,公务员部分所对应的圆心角为72°第1题图医生15%公务员20%军人10%其他教师他人务员生师2.一组数据6,5,2,x ,4的平均数是4,则这组数据的方差是_____________.3.下列事件是必然事件的是……………………………………………………………( ) A.有两边及一角对应相等的两个三角形全等B.方程x 2-x +1=0有两个不等实根C.面积之比为1︰4的两个相似三角形的周长之比也是1︰4D.圆的切线垂直于过切点的半径4.将长度为8cm 的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算为同一种截法,那么截成的三段木棍可构成三角形的概率是___________.5.在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动.有A 、B 两组卡片,每组各三张,A组卡片上分别写有0、2、3;B组卡片上分别写有﹣5、﹣1、1.每张卡片除正面写有不同数字外,其余均相同.甲从A组随机抽取一张记为x,乙从B组随机抽取一张记为y.(1)若甲抽出的数字是2,乙抽出的数字是﹣1,它们恰好是方程ax-y=0的解,求a的值;(2)求甲、乙随机抽取一次的数恰好是方程ax-y=5的解的概率.(请用树状图或列表法求解)参考答案3.D 解析:两边一角中,一角为夹角时全等,一角不是夹角时不全等,∴A是随机随机;∵△=(﹣1)2-4×1×1=﹣3<0,方程无实数根,∴B为不可能事件;面积之比为1︰41︰2,∴周长之比=相似比=1︰2,∴C是不可能事件;D是圆的切线性质定理,∴D是必然事件.4.15解析:∵将长度为8cm的木棍截成三段,每段长度均为整数厘米,共有5种情况:1,2,5;1,3,4;2,3,3;4,2,2;1,1,6.能构成三角形的只有一种情况:2,3,3.∴概率为15.5.解:(1)将x=2,y=﹣1代入方程得:2a+1=5,∴a=2;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- 1 - 一. 教学内容: 复习六 统计与概率

二. 教学目标: (1)从事收集、整理、描述和分析的活动,能计算较简单的统计数据. (2)通过丰富的实例,感受抽样的必要性,能指出总体、个体、样本,体会不同的抽样可能得到不同的结果. (3)会用扇形统计图、条形统计图、折线统计图表示数据. (4)在具体情境中理解并会计算加权平均数;根据具体问题,能选择合适的统计量表示数据的集中程度. (5)探索如何表示一组数据的离散程度,会计算极差和方差、标准差,并会用它们表示数据的离散程度. (6)通过实例,理解频数、频率的概念,了解频数分布的意义和作用,会列频数分布表,画频数分布直方图和频数折线图,并能解决简单的实际问题. (7)通过实例,体会用样本估计总体的思想,能用样本的平均数、方差来估计总体的平均数和方差. (8)根据统计结果作出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己的观点,并进行交流. (9)能根据问题查找有关资料,获得数据信息;对日常生活中的某些数据发表自己的看法. (10)认识到统计在社会生活及科学领域中的应用,并能解决一些简单的实际问题. (11)在具体情境中了解概率的意义,运用列举法(包括列表和画树状图)计算简单事件发生的概率. (12)通过实验,获得事件发生的频率;知道大量重复实验时频率可作为事件发生概率的估计值. (13)通过实例进一步丰富对概率的认识,并能解决一些实际问题. (14)认识到统计在社会生活及科学领域中的应用,并能解决一些简单的实际问题。

三. 教学重点与难点 1. 学会选择合适的调查方式 2. 会利用抽样调查的结果计算或估计总体 3. 了解平均数、中位数、众数的意义,会求一组数据的平均数、中位数、众数。 4. 了解必然事件与随机事件,并能确定它们发生机会的大小。 通过实例进一步丰富对概率和统计的认识,并能解决一些实际问题.

四. 课堂教学 (一)知识要点 知识点1、调查收集数据过程的一般步骤 调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展开调查、记录结果、得出结论.

知识点2、调查收集数据的方法 普查是通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.

知识点3、统计图 条形统计图、折线统计图、扇形统计图是三种最常用的统计图.这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.

知识点4、总体、个体、样本、样本容量 我们把所要考查的对象的全体叫做总体,把组成总体的每一个考查对象叫做个体.从总体中取出的一部分个体叫做总体的一个样本.样本中包含的个体的个数叫做样本容量.

知识点5、简单的随机抽样 用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样.

知识点6、频数、频率 在记录实验数据时,每个对象出现的次数称为频数.每个对象出现的次数与总次数的比值(或者百分比)称为频率.

知识点7、绘制频数分布直方图的步骤 ①计算最大值与最小值的差;②决定组距和组数;③决定分点;④画频数分布表;⑤画出频数分布直方图.

知识点8、平均数 在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数. - 2 -

知识点9、中位数 将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组数据的中位数.

知识点10、众数 在一组数据中,出现频数最多的数叫做这组数据的众数.

知识点11、加权平均数. 在一组数据中,各个数在总结果中所占的百分比称为这个数的权重,每个数乘以它相应的权重后所得的平均数叫做这组数据的加权平均数.

知识点12、极差 一组数据中的最大值减去最小值所得的差称为极差.

知识点13、方差: 我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果通常称为方差.

计算方差的公式:设一组数据是x,x,x,x,xn321是这组数据的平均数。则这组数据的方差是: 2n2322212)xx()xx()xx()xx(n1s

知识点14、标准差: 一组数据的方差的算术平方根,叫做这组数据的标准差. 用公式可表示为:

])xx()xx()xx[(n1s2n2221

知识点15、确定事件 那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件.那些在每一次实验中都一定不会发生的事件称为不可能事件.必然事件和不可能事件统称为确定事件.

知识点16、随机事件 无法预先确定在一次实验中会不会发生的事件称为不确定事件或随机事件.

知识点17、概率 表示一个事件发生的可能性大小的数,叫做该事件的概率.

知识点18、概率的理论计算方法有:①树状图法;②列表法. 【典型例题】 例1. 为了了解某区九年级7000名学生的体重情况,从中抽查了500名学生的体重,就这个问题来说,下面说法正确的是( ) A. 7000名学生是总体 B. 每个学生是个体 C. 500名学生是所抽取的一个样本 D. 样本容量为500 分析:这个问题主要考查学生对总体、个体、样本、样本容量概念的理解。此题学生容易把研究对象的载体(学生)当作研究对象(体重)。 解:D。

例2. 下面两幅统计图(如图1、图2),反映了某市甲、乙两所中学学生参加课外活动的情况。请你通过图中信息回答下面的问题。 - 3 -

甲、乙两校参加课外活动的学生人数统计图 (2001~2007年)

625 时间/年 600

500

2004年 2007年

人数(个) 1000 1500 2000

1105 2000

2001年 甲校 乙校 (图1)

⑴通过对图1的分析,写出一条你认为正确的结论; ⑵通过对图2的分析,写出一条你认为正确的结论; ⑶2007年甲、乙两所中学参加科技活动的学生人数共有多少? 分析:此题就是考查学生的读图、识图的能力。从统计图中处理数据的情况一般有以下几种:一、分析数据的大小情况;二、分析数据所占的比例;三、分析数据的增加、减少等趋势或波动情况。 解:⑴2001年至2007年甲校学生参加课外活动的人数比乙校增长得快; ⑵甲校学生参加文体活动的人数比参加科技活动的人数多;

⑶200038%110560%1423(人)。 答:2007年两所中学的学生参加科技活动的总人数是1423人。 说明:⑴本题是利用折线统计图和扇形统计图展示数据,折线统计图清楚地反映参加课外活动人数的变化情况,扇形统计图清楚地表示出参加课外活动人数占总人数的比例。 ⑵从折线统计图可获得2007年甲校参加课外活动人数为2000人,乙校为1105人,再根据扇形统计图参加各类活动人数的百分比即可算出参加各类活动的人数。这里着重考查了学生的读图能力。

例3. 连云港市实行中考改革,需要根据该市中学生体能的实际情况重新制定中考体育标准.为此,抽取了50名初中毕业的女学生进行“一分钟仰卧起坐”次数测试.测试的情况绘制成表格如下: 次数 6 12 15 18 20 25 27 30 32 35 36

人数 1 1 7 18 10 5 2 2 1 1 2 ⑴求这次抽样测试数据的平均数、众数和中位数; ⑵根据这一样本数据的特点,你认为该市中考女生“一分钟仰卧起坐”项目测试的合格标准应定为多少次较为合适?请简要说明理由; ⑶根据⑵中你认为合格的标准,试估计该市中考女生“一分钟仰卧起坐”项目测试的合格率是多少? 分析:本题是以统计初步知识在该市怎样定中考女生“一分钟仰卧起坐”项目测试的合格标准中的应用为背景,把制定体育成绩的某项合格指标转化为统计问题,求出了统计中的平均数、众数、中位数

解:⑴该组数据的平均数5251020181871511216(501 ,5.20)236135132230227 - 4 -

众数为18,中位数为18; ⑵该市中考女生一分钟仰卧起坐项目测试的合格标准应定为18次较为合适,因为众数及中位数均为18,且50人中达到18次的人数有41人,确定18次能保证大多少人达标; ⑶根据⑵的标准,估计该市中考女生一分钟仰卧起坐项目测试的合格率为82%。 说明:本题不仅有很强的现实性和很好的问题背景,而且联系学生的生活实际,易引起学生的解题兴趣,既可以有效地考查学生对统计量的计算,又将关注的重点转变为结合学生实际问题进行定量和定性分析,进而整理数据、分析数据、做出判断、预测、估计和决策,突出了题目的教育价值。

例4. 某校为了了解初一年级的学习状况,在这个年级抽取了50名学生,对数学学科进行测试,将所得成绩整理,分成五组,列表如下。试问:(1)成绩在90分以上的频率是_0.42______。 (2)成绩优秀的人数有_38______人(80分以上为优秀),占总人数的___76%_______ (3)及格的人数有__48___人,及格率是_96%____。 分 组 频 率 49.5~59.5 0.04 59.5~ 69.5 0.04 69.5~79.5 0.16 79.5~89.5 0.34 89.5~99.5

例5. 某商场4月份随机抽查了6天的营业额,结果分别如下(单位:万元):2.8、3.2、3.4、3.7、3.0、3.1,试估计该商场4月份的营业额大约是_____ 解:抽查的这6天的营业额相当于一个样本,由样本的6个数据可求出样本平均数,由此估计总体的平均数(4月份30天),然后用这个平均数乘以30,即得4月份的总营业额。 ∵x=1/6(2.8+3.2+3.4+3.7+3.0+3.1)=3.2 3.2×30=96(万元)

例6. 口袋中有15个球,其中白球x个,绿球2x个,其余为黑球。甲从袋中任意摸出一个球,若为绿球则获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则获胜。则当x=_3___时,游戏对甲乙双方公平。 解:略

例7. 某风景区对5个旅游景点的门票进行了调整,据统计调价前后各景点的游客人数基本不变,有关数据如下表所示: 景点 A B C D E 原价(元) 10 10 15 20 25 现价(元) 5 5 15 25 30 平均日人数(千人) 1 1 2 3 2 (1)该风景区称调价前后这5个景点门票的平均收费不变,平均日总收入持平,问风景区是怎样计算的? (2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%,问游客是怎样计算的? (3)你认为风景区和游客哪一个说法较能反映整体实际? 解:(1)风景区是这样计算的: (10+10+15+20+25)/5=16(元)。 调整后的平均价格 (5+5+15+25+30)/5=16(元) 调整前后的平均价格不变,平均日人数不变,因而平均日总收入持平。 (2)游客是这样计算的: 原平均日总收入10×1+10×1+15×2+20×3+25×2=160(千元), 现平均日总收入5×1+5×1+15×2+25×3+30×2=175(千元) 所以,平均日总收入增加了(175-160)/160≈9.4% (3)游客的说法较能反映整体实际。

相关文档
最新文档