北师大版五年级(下册)数学知识要点归纳总结
北师大版小学数学五年级(下册)知识点整理上课讲义

北师大版小学数学五年级(下册)知识点第一单元:《分数乘法》1、分数乘整数的意义:分数乘整数的意义同整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2、求一个数的几分之几是多少用乘法计算。
如:甲数是20,乙数是甲的,乙数是多少? 20×= 16 答:乙数是163、分数乘整数的计算方法:分母不变,分子和整数相乘的积作分子。
能约分的要约成最简分数。
计算时,可以先约分再计算。
4、理解打折的含义。
例如:九折,是指现价是原价的十分之九。
5、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的可以先约分。
计算结果要求约成最简分数。
6、比较分数相乘的积与每一个乘数的大小。
乘数乘以小于1的数,积小于乘数;乘数乘以等于1的数,积等于乘数;乘数乘以大于1的数,积大于乘数;真分数相乘积小于任何一个乘数;真分数与假分数相乘积大于真分数小于假分数。
长方体和正方体露在外面的面的面积 = 露在外面的面的面积×每个面的面积正方体的拼组:每拼组一次就少2个黏合面的面积。
长方体的切割:每切割一次就多2个切割面的面积。
1、体积:物体所占空间的大小叫作物体的体积。
(从外部测量)容积:容器所能容纳物体的体积叫做容器的容积。
(从内部测量)注意:①同一个容器,体积大于容积;当容器壁很薄时,容积近等于体积。
如果容器壁忽略不计时,容积等于体积。
②几个物体拼在一起时,它们的体积不发生改变(它们占空间的大小没有发生变化)2、常用的体积单位有:立方厘米cm³、立方分米dm³、立方米m³。
棱长是1厘米的正方体体积是1立方厘米,记作1cm³。
如半个大拇指的体积大约是1立方厘米。
棱长是1分米的正方体体积是1立方分米,记作1dm³。
如粉笔盒的体积你大约是1立方分米。
棱长是1米的正方体体积是1立方米,记作1m³。
如1张讲台桌的体积大约是1立方厘米。
3、常用的容积单位有:毫升ml、升L①手指头、苹果、火柴盒体积较小,可用3厘米作单位分米作单位②西瓜、粉笔盒体积稍大,可以用3③矿泉水瓶、墨水瓶可以用毫升作单位④热水瓶等较大盛液体容器、冰箱可用升作单位⑤我们饮用的自来水、集装箱用“立方米”作单位。
北师大版五年级下册单元知识点归纳总结

北师大版五年级下册单元知识点归纳总结五年级下册共包含七个单元,包括《数学游戏》,《动物园历险记》,《环保小卫士》,《文化之旅》,《星球大战》,《发明创造》和《身体调节机制》,下面将对每个单元的知识点进行归纳总结。
一、数学游戏该单元主要介绍了一些数学游戏,包括数独、九宫格、连线游戏、填字游戏等。
这些游戏能够提高学生的逻辑思维和数学计算能力,并且增强了学生对数学的兴趣。
其中,九宫格可以培养学生的数学感知能力,填字游戏可以提高学生的拼写能力,数独可以增强学生的逻辑推理能力,连线游戏可以锻炼学生的观察力和集中力等。
学生可以通过玩这些游戏,在娱乐中学习。
二、动物园历险记该单元主要介绍了动物的分类和特征,让学生了解各种动物的生活习性和生存环境,并通过参观动物园学习如何保护动物。
在此过程中,学生需要了解哺乳动物、鸟类、爬行动物和两栖动物等的分类特征,以及它们的外形、习性等,同时还需要了解动物园的环境保护和动物保护法规等。
三、环保小卫士该单元介绍了环保意识和环境保护的知识,学生需要了解环境污染的危害,认识到环保的重要性,并学习如何保护环境。
同时,学生还需要了解垃圾分类、水资源保护、能源节约等方面的知识。
四、文化之旅该单元介绍了中国的一些传统文化,使学生了解中国悠久的文化和历史,包括春节习俗、舞龙舞狮、汉字的发展和演变等。
学生可以通过了解这些传统文化,增强自身的文化认知和身份认同感。
五、星球大战该单元介绍了太空探索和宇宙科学知识,让学生了解太空科学的基本知识,包括星星、黑洞、行星等的特征和形成原因。
学生还需要了解人类对太空的探索和未来发展的前景等。
六、发明创造该单元介绍了一些发明创造的故事和成果,让学生了解科技创新和发明的重要性。
学生可以通过多种途径了解这些故事和成果,通过学习和探究这些历史和现实中的发明,启发和培养自身的创新精神和实践能力。
七、身体调节机制该单元介绍了身体调节机制和健康知识,让学生了解人体的调节机制和功能,以及不同环境下人体的应对方式。
五年级下册数学知识点归纳总结

北师大五年级下册数学知识点总结第一单元:《分数加减法》一、分数的意义1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
二、分数与除法的关系,真分数和假分数1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。
2、真分数和假分数:①分子比分母小的分数叫做真分数,真分数小于1。
②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。
③由整数部分和分数部分组成的分数叫做带分数。
2、假分数与带分数的互化:①把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。
②把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
三、分数的基本质分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
2、分数的大小比较:①同分母分数,分子大的分数就大,分子小的分数就小;②同分子分数,分母大的分数反而小,分母小的分数反而大。
③异分母分数,先化成同分母分数(分数单位相同),再进行比较。
(依据分数的基本性质进行变化)四、约分(最简分数)1、最简分数:分子和分母只有公因数1的分数叫做最简分数。
2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
(并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。
五、分数和小数的互化:1.小数化分数:(1)小数表示的就是十分之几,百分之几,千分之几…….的数,所以可以直接写成分母10,100,1000 ……的分数,再化简。
(2)小数化分数,原来有几位小数,就在1后面写几个0作分母,把原来的小数去掉小数点作分子;化成分数后,能约分的要约成最简分数。
2. 分数化小数:(1)分母是10,100,1000……的分数可以直接写成小数。
北师大版小学五年级数学下册全册知识点归纳

北师大版小学五年级数学下册全册知识点归纳第一单元《分数加减法》补充知识点:整数加减法运算定律在分数加减法中同样适用,见下图:4、把分数化成小数的方法:通常是利用分数与除法的关系,用分子除以分母来得到。
注意:对于某些分数也可以将它化为分母是10、100、1000之类的分数,然后再直接写成小数形式。
例如:5、常见分数和小数的互化:第二单元《长方体(一)》第一类,中间四连方,两侧各一个,共六种:第二类,中间三连方,两侧各有一、二个,共三种:第四类,两排各三个,只有一种:例如:如图,4个棱长都是10厘米的正方体堆放在墙角处,露在外面的面积是多少?第三单元《分数乘法》约分的最好先约分。
3、打折的含义,例如:九折,是指现价是原价的。
容积单位:升(L) 毫升(ml)补充知识点:冰箱的容积用“升”作单位;我们饮用的自来水用“立方米”作单位。
单位换算:(相邻单位之间的进率为1000)(小单位化成大单位要除以进率,大单位化成小单位要乘以进率。
可以概括为:小化大除一下,大化小乘一下)1米3=1000分米31分米3=1000厘米31升=1000毫升 1升=1分米31毫升=1厘米3单名数与复名数之间的互化:单名数:由一个数和一个单位名称组成的名数叫做单名数。
分数除以整数的计算方法:分数除以整数(0除外)等于乘这个整数的倒数。
4、整数除以分数等于乘这个分数的倒数。
5、除以一个数(零除外)等于乘这个数的倒数。
的孵化期为x天,则:未知的,所以用鸭的孵化期除以它对应的分率,即:①以学校为观测点,丁丁家的位置是西偏北45°,距离学校1800米。
②以学校为观测点,青青家的位置是东偏北26°,距离学校1500米。
第七单元《用方程解决问题》1、列方程解应用题的步骤:(1)找到题中的等量关系式(2)解设所求量为x(3)根据等量关系式列出相应的方程(4)解答方程,注意计算结果不带单位。
(5)检验做答。
2、在有多个未知数量的应用题中,通常应将1倍数设为x,举例如下:例:爸爸的年龄是儿子年龄的4倍,父子俩年龄之和为40,求父亲和儿子的年龄各是多少岁?解:首先根据题意找出等量关系式:爸爸年龄+儿子年龄=40因为儿子年龄是1倍数,所以:设儿子年龄为x岁,那么爸爸年龄就是4x,代入等量关系式得:爸爸年龄为:4x=4×8=32(岁)答:爸爸的年龄为32岁,儿子的年龄为8岁。
北师大版五年级数学下册知识整理

北师大版五年级数学下册知识整理一、数与代数(一)分数加、减、乘、除法以及四则混合运算。
1、分数加、减法知识点。
把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
同分母分数相加减,分母不变,只把分子相加减。
○1、异分母分数相加减:要先通分,化成相同的分母,再加减,计算结果能约分的要约分。
○2、分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。
○3、分数加减混和运算的运算顺序和整数加减混和运算的运算顺序相同。
在计算过程中,整数的运算律对分数同样适用。
○4、计算异分母分数混合运算主要有两种方法,一是将所有的分数实行通分,再实行计算,二是先根据需要实行部分通分。
根据算式特点来选择方法。
2、分数乘、除法知识点。
○1、理解分数乘整数的意义。
分数乘整数的意义同整数乘法的意义相同,就是求几个相同加数的和的简便运算。
○2、分数乘整数的计算方法。
分母不变,分子和整数相乘的积作分子。
能约分的要约成最简分数。
○3、计算时,能够先约分在计算。
○4理解打折的含义。
例如:九折,是指现价是原价的十分之九原价=现价÷折扣折扣=现价÷原价○5、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的能够先约分。
计算结果要求是最简分数。
○6、比较分数相乘的积与每一个乘数的大小。
真分数相乘积小于任何一个乘数;真分数与假分数相乘积大于真分数小于假分数。
○7、倒数的意义。
如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。
倒数是对两个数来说的,并不是孤立存有的。
○8、求倒数的方法。
把这个数的分子和分母调换位置。
注:1的倒数仍是1;0没有倒数。
0没有倒数,是因为在分数中,0不能做分母。
○9、分数除以整数的意义及计算方法。
分数除以整数,就是求这个数的几分之几是多少。
分数除以整数(0除外)等于乘这个数的倒数。
10、一个数除以分数的意义和基本算理。
(完整版)新北师大版五年级数学下册第一单元知识点

(完整版)新北师大版五年级数学下册第一单元知识点一、数与数的比较1. 数的比较- 通过观察数的大小,使用大于、小于、等于的符号进行比较。
- 例如:3 __<__ 5,7 __>__ 4,2 __=__ 2。
2. 比的概念- 比是一种关系,用来描述两个数的大小关系。
- 比的表达方式:a 比 b 大,记作 a > b;a 比 b 小,记作 a <b;a 和 b 相等,记作 a = b。
二、数与数的加减1. 加法- 两个数相加,得出它们的和。
- 加法的性质:交换律、结合律、零的性质。
- 例如:5 + 4 = 9,3 + 0 = 3。
2. 减法- 一个数减去另一个数,得到它们的差。
- 减法的性质:减去一个数与加上这个数得到的结果相等。
- 例如:7 - 2 = 5,8 - 0 = 8。
3. 顺数与逆序数- 顺数:从一个数开始,按照一定顺序依次数下去。
- 逆序数:从一个数开始,按照一定顺序从大到小数下去。
- 例如:顺数:1, 2, 3, 4, 5;逆序数:5, 4, 3, 2, 1。
三、数与数的倍数1. 倍数的概念- 一个数是另一个数的倍数,即被这个数整除。
- 例如:3 是 9 的倍数,9 可以被 3 整除。
2. 判断倍数的方法- 一个数是否是另一个数的倍数,可以通过判断能否整除。
- 若一个数能被另一个数整除,则前者是后者的倍数。
- 例如:4 是 12 的倍数,因为 12 ÷ 4 = 3。
四、数与数的因数1. 因数的概念- 一个数可以被其他数整除,那些能整除它的数就是它的因数。
- 例如:12 的因数有 1、2、3、4、6、12。
2. 求因数的方法- 能被一个数整除的数就是这个数的因数。
- 若要找一个数的因数,可以从小到大尝试所有的数,看能否整除。
- 例如:求15 的因数,可以从1 开始尝试,看是否能整除15。
以上是新北师大版五年级数学下册第一单元的知识点。
希望对你的学习有所帮助!。
五年级下册数学知识点归纳总结
北师大五年级下册数学知识点总结第一单元:《分数加减法》一、分数的意义1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
二、分数与除法的关系,真分数和假分数1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。
2、真分数和假分数:①分子比分母小的分数叫做真分数,真分数小于1。
②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。
③由整数部分和分数部分组成的分数叫做带分数。
2、假分数与带分数的互化:①把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。
②把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
三、分数的基本质分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
2、分数的大小比较:①同分母分数,分子大的分数就大,分子小的分数就小;②同分子分数,分母大的分数反而小,分母小的分数反而大。
③异分母分数,先化成同分母分数(分数单位相同),再进行比较。
(依据分数的基本性质进行变化)四、约分(最简分数)1、最简分数:分子和分母只有公因数1的分数叫做最简分数。
2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
(并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。
五、分数和小数的互化:1.小数化分数:(1)小数表示的就是十分之几,百分之几,千分之几…….的数,所以可以直接写成分母10,100,1000 ……的分数,再化简。
(2)小数化分数,原来有几位小数,就在1后面写几个0作分母,把原来的小数去掉小数点作分子;化成分数后,能约分的要约成最简分数。
2. 分数化小数:(1)分母是10,100,1000……的分数可以直接写成小数。
新北师大版五年级下册数学知识点整理
新北师大版五年级下册数学知识点整理新北师大版五年级下册数学知识点整理一、文章类型及主题本文将对五年级下册数学知识点进行整理,重点针对新北师大版教材中的内容,涵盖基础概念、算术运算、几何图形及立体图形等方面。
二、教材背景及目的新北师大版五年级下册数学教材旨在培养学生的数学素养,提高他们的数学应用能力。
通过对基础概念、算术运算、几何图形及立体图形等知识的讲解,帮助学生建立良好的数学基础,为未来的学习做好准备。
三、知识点整理1、基础概念:整数、小数、分数、百分数、因数、倍数、质数、合数等基本概念及相互关系。
2、算术运算:加减乘除四则运算,包括括号及混合运算。
3、几何图形:平面图形(长方形、正方形、三角形、平行四边形等)及周长计算;圆形及圆周率的应用;多边形及内角和计算。
4、立体图形:长方体、正方体、圆柱、圆锥等立体图形的特征、表面积及体积计算。
四、知识点应用及实例1、基础概念:理解因数、倍数等概念,通过实例说明其应用,如因数分解、最小公倍数等。
2、算术运算:掌握四则运算方法,能够进行复杂混合运算,理解应用题中的数量关系。
3、几何图形:掌握各种平面图形的周长计算方法,能够计算圆的周长及面积,了解多边形的内角和计算方法。
4、立体图形:理解立体图形的特征,能够计算长方体、正方体、圆柱、圆锥等立体图形的表面积和体积,能够解决相关实际问题。
五、知识点总结通过对新北师大版五年级下册数学教材的整理,我们可以发现该教材注重基础知识的掌握和应用能力的培养。
通过对基础概念、算术运算、几何图形及立体图形等知识的学习,学生可以建立良好的数学基础,提高解决实际问题的能力。
在未来的学习中,学生应该继续加强这些方面的学习,不断提高自己的数学素养。
六、思考与拓展在掌握五年级下册数学知识点的基础上,学生可以进一步思考和拓展相关知识。
例如,可以研究更多类型的几何图形,探索其性质和计算方法;可以深入了解立体图形的几何特征,为未来的学习打下更坚实的基础;还可以通过实际问题,提高自己的数学应用能力。
北师大版五年级数学下册知识点总结
北师大版五年级数学下册知识点总结TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-北师大版五年级数学下册概念与公式整理版一、分数乘法、分数除法1. 分数乘法的意义:求几个相同分数的和的简便运算2. 分数除法的意义:已知两个乘数的积和其中一个乘数,求另一个乘数的运算。
如:25÷5= 已知两个乘数(因数)的积是25,其中的一个因数是5,求另一因数是多少3. 分数乘法的运算法则:1)分数与整数相乘:分子和整数相乘,分母不变;2)分数与分数相乘:分子与分子相乘,分母与分母相乘,能约分的可以先约分。
4. 分数除法的运算法则:1)一个数除以一个整数(0除外)等于这个数乘以这个整数的倒数;2)一个数除以一个分数等于这个数乘以这个分数的倒数;3)除以一个数(0除外)等于乘这个数的倒数;4)当除数<1时,商大于被除数;(商就是得数)5)当除数=1时,商等于被除数;6)当除数>1时,商小于被除数。
5. 分数除法的意义:如果两个数的乘积是1,那么这两个数叫做互为倒数,其中一个数叫做另一个数的倒数。
6. 注意:1的倒数是1,而0没有倒数。
7. 分数乘整数的意义:与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
如:12×5表示求5个12的和是多少,或者表示12的5倍是多少。
8. 一个数乘分数的意义:就是求这个数的几分之几是多少。
如:4×13表示求4的13是多少。
3×13表示3的13是多少。
9. 分数乘、除法的实际问题1)求一个数的几分之几是多少,用乘法。
2)已知一个数的几分之几是多少,求这个数,用除法,也可以用解方程。
10. 原价×折扣=现价;现价÷原价=折扣;现价÷折扣=原价。
11. 找单位“1”的方法:①总数量是单位“1”;例如:小红看完整本书的12,那么单位“1”是整本书的页码。
春季北师大版数学五年级下册各单元知识点整理与复习(详细)(最新整理)
北师大版数学五年级下册各单元知识点整理与复习第一单元:《分数加减法》1.1折纸(异分母分数加减法)知识点:1、同分母分数加减法:分母不变,分子相加减2、异分母分数加减法:先通分,将分母不同的分数化成分母相同的分数,就可以相加减了。
3、通分的方法:找出两个分母的最小公倍数,作为通分用的分母,然后分母扩大了多少倍,分子也扩大多少倍。
4、计算结果要约分,约成最简分数(分子、分母的公因数只有1)典型例题:例1 1223+=5163-= 例2 小林画画用了时,写毛笔字比画画少用时,小林写毛笔字用了3416多少小时?1.2星期日的安排(分数混合运算)知识点 :1、分数加减混合运算顺序与整数和小数的加减混合运算顺序相同2、整数加法交换律和结合律在分数加法中同样适用典型例题:例1: 237959-+68871515+- 848172517+-15166--1.3分数王国与小数王国(小数与分数互化)知识点:1、小数化成分数方法:根据分数的意义,原来有几位小数,就在1后面写几个0作分母,将原小数去掉小数点后作分子,最后约成最简分数2、分数化成小数的方法:根据分数与除法的关系,直接用分子除以分母典型例题:例1 比较2.4和的大小124(1)把分数化成小数来比较: (2)把小数化成分数来比较: 例2 一节数学课时,老师讲解用了时,学生动手用了时,其2314112余时间学生做作业,学生做作业用了多少时?例3 小明10分钟打字125个,小刚3分钟打字37个,谁打字快?例4 霞石小学进行数学竞赛,设一、二、三等奖若干名,获一、二等奖的人数占获奖总人数的,获二、三等奖的人数占获奖总人数的23,获二等奖的人数占获奖总人数的几分之几35第二单元:《长方体(一)》2.1长方体的认识知识点:1、认识长方体、正方体,了解各部分的名称。
(1)表面平平的部分称为面;两面相交便形成了一条棱;而三条棱又交于一点,这个点叫作顶点。
(2)左面的面叫左面,右面的面叫右面,上面的面叫上面,下面的面叫下面(或叫底面),前面的面叫前面,后面的面叫后面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版五年级(下册)数学知识要点归纳第一单元分数加减法一、分数的意义1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
二、分数与除法的关系,真分数和假分数1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。
2、真分数和假分数:①分子比分母小的分数叫做真分数,真分数小于1。
②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。
③由整数部分和分数部分组成的分数叫做带分数。
3、假分数与带分数的互化:①把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。
②把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
三、分数的基本质分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
四、分数的大小比较①同分母分数,分子大的分数就大,分子小的分数就小;②同分子分数,分母大的分数反而小,分母小的分数反而大。
③异分母分数,先化成同分母分数(分数单位相同),再进行比较。
(依据分数的基本性质进行变化)五、约分(最简分数)1、最简分数:分子和分母只有公因数1的分数叫做最简分数。
2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
(并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。
六、分数和小数的互化:1、小数化分数:将小数化成分母是10、100、1000…的分数,能约分的要约分。
具体是:看有几位小数,就在1后边写几个0做分母,把小数点去掉的部分做分子,能约分的要约分。
2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。
(一般保留三位小数。
)如果分母只含有2或5的质因数,这个分数能化成有限小数。
如果含有2或5以外的质因数,这个分数就不能化成有限小数。
3、分数和小数比较大小:一般把分数变成小数后比较更简便。
七、分数的加法和减法1、分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。
2、分数加减混和运算的运算顺序和整数加减混和运算的运算顺序相同。
在计算过程,整数的运算律对分数同样适用。
3、同分母分数加、减法:同分母分数相加、减,分母不变,只把分子相加减,计算的结果,能约分的要约成最简分数。
4、异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。
根据算式特点来选择方法。
2第二单元长方体(一)1、认识长方体、正方体,了解各部分的名称。
(1) 表面平平的部分称为面;两面相交便形成了一条棱;而三条棱又交于一点,这个点叫作顶点。
(2) 左面的面叫左面,右面的面叫右面,上面的面叫上面,下面的面叫下面(或叫底面),前面的面叫前面,后面的面叫后面。
(3) 长方体有12条棱,这12条棱中有4条长、4条宽和4条高。
正方体的12条棱的长度都相等。
(4)正方体是特殊的长方体。
因为正方体可以看成是长、宽、高都相等的长方体。
(5)长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4长方体的宽=棱长总和÷4-长-高长方体的长=棱长总和÷4-宽-高长方体的高=棱长总和÷4-宽-长正方体的棱长总和=棱长×12正方体的棱长=棱长总和÷122、展开与折叠 (正方体展开共11种)第一类:1—4—1 型 6个第二类:2—3—1 型3个第三类:2—2—2 型(楼梯形)1个第四类:3-3 型1个注意:(1)田字型与凹字型的全错。
(2)正方体展开至少和最多都只剪开7条棱。
3、长方体的表面积(1)表面积的意义:是指六个面的面积之和。
(3)长方体的表面积=长×宽×2+长×高×2+宽×高×2=(长×宽+长×高+宽×高)×2(4)正方体的表面积=棱长×棱长×64、露在外面的面(1)在观察中,通过不同的观察策略进行观察。
如:一种是看每个纸箱露在外面的面,再加到一起;另一种是分别从正面、上面、侧面进行不同角度的观察,看每个角度都能看到多少个面,再加到一起。
例如:如图,4个棱长都是10厘米的正方体堆放在墙角处,露在外面的面积是多少?解:首先应找出有多少个面露在外面:如果用法一的方法来找:3+1+2+3=9(个);如果用法二的方法来找:从上面看有3个面,从右侧面看有2个面,从正面看有4个面,共有3+2+4=9(个)。
因为每个面都是面积相等的正方形,所以露在外面的面积=10×10×9=900(厘米2)答:露在外面的面积一共是900平方厘米。
(2)发现并找出堆放的正方体的个数与露在外面的面的面数的变化规律。
(3)求露在外面的面的面积=棱长×棱长×露在外面的面的个数。
3第三单元分数乘法分数乘法(一)知识点:(1)理解分数乘整数的意义:分数乘整数意义同整数乘法意义相同,就是求几个相同加数的和的简便运算。
(2)分数乘整数的计算方法:分母不变,分子和整数相乘的积作分子。
能约分的要约成最简分数。
(3)计算时,应该先约分再计算。
分数乘法(二)知识点:(1) 整数乘分数的意义:求一个数的几分之几是多少。
(2) 理解打折的含义。
例如:九折,是指现价是原价的十分之九。
补充知识点:① 打几折就是指现价是原价的百分之几,例如八五折,是指现价是原价的百分之八十五。
现价=原价×折扣原价=现价÷折扣折扣=现价÷原价②买一赠一打几折:出一个的钱拿两个货品,即1除以2等于零点五,五折买三赠一打几折:出三个的钱拿四个货品,即3除以4等于零点七五,七五折分数乘法(三)知识点:1、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的可以先约分。
(结果是最简分数。
)2、比较分数相乘的积与每一个乘数的大小:① 真分数相乘积小于任何一个乘数;② 真分数与假分数相乘积大于真分数小于假分数。
③ 乘数乘以<1的数,积<乘数;乘数乘以=1的数,积=乘数;乘数乘以>1的数,积>乘数;3、求一个数的几分之几是多少,用乘法。
(即已知整体和部分量相对应的分率,求部分量,用乘法)4、倒数(1)如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。
倒数是对两个数来说的,并不是孤立存在的。
(2)当互为倒数的两个数分别作为长方形的长和宽时,长方形的面积是1。
(3)1的倒数仍是1;0没有倒数。
0没有倒数,是因为0不能作除数。
(4)求一个数的倒数的方法:把这个数的分子、分母调换位置;其中整数可以看成分母是1的分数。
4第四单元长方体(二)一、体积与容积概念体积:物体所占空间的大小叫作物体的体积。
(从外部测量)容积:容器所能容纳入体的体积叫做物体的容积。
(从内部测量)注意:①同一个容器,体积大于容积;当容器壁很薄时,容积近等于体积。
如果容器壁忽略不计时,容积等于体积。
②几个物体拼在一起时,它们的体积不发生改变(它们占空间的大小没有发生变化)二、体积单位1、认识体积、容积单位常用的体积单位:立方米(m³)、立方分米(dm³)、立方厘米(cm³)常用的容积单位:升、毫升,1升=1立方分米、1毫升=1立方厘米2、感受1立方米、1立方分米、1立方厘米以及1升、1毫升的实际意义:① 手指头、苹果、火柴盒体积较小,可用cm³作单位② 西瓜、粉笔盒体积稍大,可以用dm³作单位③ 矿泉水瓶、墨水瓶可以用毫升作单位④热水瓶等较大盛液体容器、冰箱可以用升作单位⑤我们饮用的自来水用“立方米”作单位三、长方体的体积1、长方体、正方体体积的计算方法①长方体的体积=长×宽×高,长用a表示,宽用b表示,高用h表示,体积用V表示,体积可表示为V=abh②正方体的体积=棱长×棱长×棱长,如果棱长用a表示,体积可表示为V=a³=a×a×a长方体(正方体)的体积=底面积×高V=Sh补充知识点:长方体的体积=横截面面积×长2、能利用长方体(正方体)的体积及其他两个条件求出问题。
如:长方体的高=体积÷长÷宽长=体积÷高÷宽宽=体积÷高÷长注意:计算体积时,单位一定要统一;表面积与体积表示的意义不一样,单位不同,无法比较大小。
四、体积单位的换算认识体积、容积单位。
常用的体积单位有:立方厘米(cm³)、立方分米(dm³)、立方米(m³)。
常用的容积单位有:升(L)、毫升(m L)知识点:1、体积、容积单位之间的进率:相邻体积、容积单位间进为10001米³=1000分米³ 1分米³=1000厘米³1升=1分米³ 1毫升=1厘米³1升=1000毫升2、体积、容积单位之间的换算方法:体积、容积单位之间的换算,由高级单位化成低级单位乘进率,由低级单位化成高级单位除以进率五、有趣的测量1、不规则物体体积的测量方法:一般都是把不规则物体的体积转化成可通过测量计算的水的体积(注意液面是“升高了”还是“升高到”)注意:在测量体积较小的不规则物体的体积时,要先测量出一定数量物体的体积,再算出一个物体的体积2、不规则物体体积的计算方法:现在液体体积减去原来液体体积第五单元分数除法一、分数除法(一)分数除以整数的意义及计算方法。
分数除以整数,就是求这个数的几分之几是多少。
分数除以整数(0除外)等于乘这个数的倒数。
二、分数除法(二)1、一个数除以分数的意义和基本算理:一个数除以分数的意义与整数除法的意义相同;一个数除以分数等于乘这个数的倒数。
2、一个数除以分数的计算方法:除以一个数(0除外)等于乘这个数的倒数。
3、比较商与被除数的大小。
除数小于1,商大于被除数;除数等于1。
商等于被除数;除数大于1,商小于被除数。
三、分数除法(三)1、列方程“求一个数的几分之几是多少”的方法:(1)解方程法:设未知数,这里的单位“1”未知,所以设单位“1”为x,再根据分数乘法的意义列出等量关系式解这个方程。
(2)算术方法:用部分量除以它所占整体的几分之几(对应量÷对应分率=标准量)2、判断单位“1”:①一般来说,某个数的几分之几,“某个数”就是单位“1”②数比谁多几分之几或少几分之几,“比”字后面的数量就是单位“1”③谁是谁的几分之几,“是”字后面的数量就是单位“1”四、倒数1、理解倒数的意义:如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。