初一上册数学重难点
初一上册数学 难题

初一上册数学的难题涉及以下几个方面:
1. 代数部分:
•解一元一次方程组,例如:求解两个未知数的线性方程组。
•简单的一次不等式的解法及其在实际问题中的应用。
示例题目:已知方程组2x + 3y = 7 和4x - y = 5,求解x 和y 的值。
2. 几何部分:
•计算平面图形的周长和面积,如矩形、三角形、平行四边形等,并可能涉及到复杂组合图形的面积计算。
•探究直角三角形的勾股定理及其应用。
示例题目:一个直角三角形的两条直角边分别为3cm和4cm,求斜边长度以及该三角形的面积。
3. 数论初步:
•最大公约数与最小公倍数的计算方法,如辗转相除法(欧几里得算法)。
•整除性判断和带余除法定理。
示例题目:求180和288的最大公约数和最小公倍数。
4. 应用题:
•时间、速度、路程问题,包括相遇问题和追及问题。
•工作效率问题,比如甲乙两人合作完成一项工作需要的时间计算。
示例题目:一辆车以每小时60公里的速度从A地出发前往B地,
若另一辆车以每小时40公里的速度同时从B地出发前往A地,两车相向而行,问经过多长时间两车相遇?
以上是一些初一上册数学中可能遇到的难题类型,具体题目难度会根据教材版本和地区教育要求有所不同。
对于学生来说,掌握好基础知识并加强逻辑思维训练是解决这类问题的关键。
初一数学上册必考知识点及重难点

初一数学上册必考知识
点及重难点
Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】
初一数学上册必考知识点及重难点第一章有理数
1.正数和负数
2.有理数
3.有理数的加减
4.有理数的乘除
5.有理数的乘方
重点:数轴、相反数、绝对值、有理数计算、科学计数法、有效数字
难点:绝对值
易错点:绝对值、有理数计算
中考必考:科学计数法、相反数(选择题)
第二章整式的加减
1.整式
2.整式的加减
重点:单项式与多项式的概念及系数和次数的确定、同类项、整式加减
难点:单项式与多项式的系数和次数的确定、合并同类项易错点:合并同类项、计算失误、整数次数的确定
中考必考:同类项、整数系数次数的确定、整式加减
第三章一元一次方程
1.从算式到方程
2.解一元一次方程----合并同类项与移项
3.解一元一次方程----去括号去分母
4.实际问题与一元一次方程
重点:一元一次方程(定义、解法、应用)
难点:一元一次方程的解法(步骤)
易错点:去分母时,不含有分母项易漏乘、解应用题时,不知道如何找等量关系
第四章图形认识实步
1.多姿多彩的图形
2.直线、射线、线段
3.角
4.课题实习----设计制作长方形形状的包装纸盒
重点:直线、射线、线段、角的认识、中点和角平分线的相关计算、余角和补角,方位角等
难点:中点和角平分线的相关计算、余角和补角的应用易错点:等量关系不会转化、审题不清。
【期末复习】初一七年级上册数学期末考试重难点:一元一次方程的11种题型和动点旋转问题

一元一次方程常考的11种题型用方程解决实际问题的步骤:审:理解并找出实际问题中的等量关系; 设:用代数式表示实际问题中的基础数据; 列:找到所列代数式中的等量关系,以此为依据列出方程; 解:求解; 验:考虑求出的解是否具有实际意义; 答:实际问题的答案. 常见题型 1. 配套问题和工程问题【配套问题解题关键】配套问题的物品之间具有一定的数量关系,依次作为列方程的依据. 【工程问题解题关键】常把总工作量看做 1,并利用“工作量=人均效率× 人数×时间”的关系考虑问题1.20 个工人生产螺栓和螺母,已知一个工人天生产 3 个螺栓或 4 个螺母,且一个螺栓配 2 个螺母,如何分配工人生产螺栓和螺母?如果设生产螺栓的工人数为 x 个,根据题意可列方程为:_____.【答案】2×3x=4(20﹣x)【分析】设安排 x 名工人生产螺栓,由题意可得需安排(20﹣x)名工人生产螺母;因为一个螺栓配 2 个螺母,所以由题意可得2×3x=4(20﹣x).【详解】解:设安排 x 名工人生产螺栓,则需安排(20﹣x)名工人生产螺母,根据题意,得:2×3x=4(20﹣x),故答案是:2×3x=4(20﹣x).【名师点睛】本题考查列一元一次方程,解题的关键是读懂题意,掌握列一元一次方程的方法常见题型 2 销售盈亏问题销售金额=售价×数量利润=商品售价-商品进价利润率=(利润÷商品进价)×100% 现售价 = 标价×折扣售价= 进价×(1+利润率) 7.某商品按成本增加 20%定出价格,由于库存积压,将该商品按定价九折出售,那么出售该商品最终是______(填“盈利”或“亏损”),利润率或亏损率为______.【答案】盈利8%【分析】设成本为 a 元,按成本增加 20%定出价格,求出定价,再根据按定价的 90%出售,求出售价,最后根据售价-进价=利润,列式计算即可.【详解】解:设成本为 a 元,根据题意可得:(1+20%)a•90%-a=0.08a,即出售该商品最终是盈利,利润率为 8%.故答案是:盈利,8%.【名师点睛】本题考查了一元一次方程的应用,解题的关键是理清数量之间的关系,求出每件商品的售价.常见题型 3 比赛积分问题比赛总场数=胜场数+负场数+平场数比赛总积分=胜场积分+负场积分+平场积分 11.甲、乙两队开展足球对抗赛,规定每队胜一场得 3 分,平一场得 1 分,负一场得 0 分.若甲队胜场是平场的 2 倍,平场比负场多一场,共得了 21 分,则甲队胜了______场,平了______场,负了______场.常见题型 4 方案选择问题 13.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满 100 元,返购物券 50 元,此购物券在本商场通用,且用购物券购买商品不再返券,也不得找零. 小明只购物买了单价别为 60 元,80 元和 120 元的物品各一件,使用购物券后,他的实际花费为_________ 元. 【答案】200 元或 210 元【详解】①若先买单价为 120 元的物品,赠送一张 50 元购物券,再去买单价为 60 元和 80 元的物品,实际花费为:120+60+80-50=210 元;②若先买 60 元和 80 元的物品,赠送一张 50 元购物券,再去买 120 元的物品,实际花费为:60+80+120-50=210 元;③若先买 60 元和 120 元的物品,赠送一张 50 元购物券,再去买 80 元的物品,实际花费为:60+120+80-50=210 元;④若先买 80 元和120 元的物品,赠送两张 50 元购物券,再去买 60 元的物品,此时购物券可抵扣 60 元,实际花费为:120+80=200 元;故答案为:200 元或 210 元.【名师点睛】此题考查的是分类讨论的数学思想常见题型 5 顺逆流问题船在顺水中的速度=船在静水中的速度+水流速度船在逆水中的速度=船在静水中的速度—水流速度船顺水的行程=船逆水的行程 17.(·广州市期中)某轮船顺水航行 3 小时,逆水航行 2 小时,已知轮船在静水中的速度为 a 千米/小时,水流速度为 y 千米/小时,则轮船共航行___________千米.【答案】5a+y【分析】根据路程=速度×时间,再根据顺水速度=静水速度+水的流速,逆水速度=静水速度-水的流速,列出代数式,即可得出答案.【详解】解:由题意得:本船共航行:3(a+y)+2(a-y)=5a+y故答案为 5a+y.【名师点睛】本题考查了列代数式,解题的关键是掌握好顺水速度=静水速度+水的流速,逆水速度=静水速度-水的流速,从而列出代数式进行计算.常见题型 6 数字问题一个两位数,十位数字是 a,个位数字是 b,那么这个数可表示为 10a+b 一个三位数,百位数字是 x, 十位数字是 y,个位数字是 z,那么这个数可表示为100x+10y+z20.(·哈尔滨市期末)一个两位数,个位数字与十位数字的和是 9,如果将个位数字与十位数字对调后所得的新数比原数大 9,则原来的两位数是____。
初一上册数学《正数和负数》教案(精选10篇)

初一上册数学《正数和负数》教案(精选10篇)初一上册数学《正数和负数》教案 1一、内容和内容解析1、内容正数和负数的意义。
2、内容解析引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要。
本课内容是本章后续的有理数的相关概念及运算的基础。
通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量。
在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负。
基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量。
二、目标和目标解析1、教学目标(1)体会引入负数的必要性;(2)了解负数的意义,会用正数、负数表示具有相反意义的量。
2、目标解析(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义。
在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量。
三、教学问题诊断分析学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限。
在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难。
这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致。
突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量。
本节课的教学难点为:用正数、负数表示指定方向变化的量。
四、教学过程设计1、创设情境,引入新知教师展示教科书图1。
洛阳市七年级数学上册第一章有理数重难点归纳

洛阳市七年级数学上册第一章有理数重难点归纳单选题1、中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A.10℃B.0℃C.-10 ℃D.-20℃答案:C分析:零上温度记为正,则零下温度就记为负,则可得出结论.解:若零上10°C记作+10°C,则零下10°C可记作:−10°C.故选:C.小提示:此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2、下列说法正确的个数是()的倒数是2022.①-2022的相反数是2022;②-2022的绝对值是2022;③12022A.3B.2C.1D.0答案:A分析:根据相反数、绝对值、倒数的定义逐个判断即可.①-2022的相反数是2022,故此说法正确;②-2022的绝对值是2022,故此说法正确;的倒数是2022,故此说法正确;③12022正确的个数共3个;故选:A.小提示:本题考查相反数、绝对值、倒数的含义,只有符号相反的两个数叫做互为相反数,数轴上一个数所对应的点与原点的距离叫做该数的绝对值,乘积为1的两个数互为倒数,熟知定义是解题的关键.3、某市冬季中的一天,中午12时的气温是−3℃,经过6小时气温下降了7℃,那么当天18时的气温是()A.10℃B.−10℃C.4℃D.−4℃答案:B分析:根据有理数减法计算−3−7=−10℃即可.解: ∵中午12时的气温是−3℃,经过6小时气温下降了7℃,∴当天18时的气温是−3−7=−10℃.故选B .小提示:本题考查有理数的减法,掌握有理数的减法法则是解题关键.4、规定:(→2)表示向右移动2,记作+2,则(←5)表示向左移动5,记作( )A .+5B .-5C .15D .-15答案:B分析:根据题意,在表示相反意义的量中,规定其中一个为正,则另一个为负,即可得出答案.解:因为(→2)表示向右移动2,记作+2,∴则(←5)表示向左移动5,记作-5;故选B小提示:本题考查正负数的概念,解题的关键在于理解相反意义的量.5、计算1−2+3−4+5−6+7−8+⋅⋅⋅+2017−2018的结果是( )A .-1009B .-2018C .0D .-1答案:A分析:利用加法的结合律将原式整理成(1−2)+(3−4)+⋅⋅⋅+(2017−2018)即可求解.解:1−2+3−4+5−6+7−8+⋅⋅⋅+2017−2018,=(1−2)+(3−4)+(5−6)+(7−8)+⋅⋅⋅+(2017−2018),=(−1)+(−1)+(−1)+(−1)+⋅⋅⋅+(−1),=−1009,故选:A .小提示:本题考查了有理数的加减法,解题的关键是掌握相应的运算法则.6、如图所示的运算程序中,若开始输入的x 值为36,我们发现第1次输出的结果为18,第2次输出的结果为9,……则第2022次输出的结果为( )A.3B.6C.9D.18答案:B分析:根据设计的程序进行计算可以发现其中的规律,遵循规律即可求出第2022次输出的结果.解:通过程序可以发现第1次输出的结果为18,第2次输出的结果为9,第3次输出的结果为12,第4次输出的结果为6,第5次输出的结果为3,第6次输出的结果为6,第7次输出的结果为3,第8次输出的结果为6,∴从第4次输出开始,当是偶数次输出时结果为6,奇数次输出时结果为3,∴第2022次输出的结果为6,故选:B.小提示:本题考查在程序流程图中有理数的计算,解题的关键是发现其中的规律,利用规律进行解答.,-1,0中,最小的数是()7、在有理数1,12C.-1D.0A.1B.12答案:C分析:根据负数小于0,0小于正数即可得出最小的数.,-1,0这四个数中只有-1是负数,解:1,12所以最小的数是-1,故选:C.小提示:本题考查了有理数的大小比较.理解0大于任何负数,小于任何正数是解题关键.8、若a是最大的负整数,b是相反数等于它本身的数,c的绝对值是1,则a+b﹣c=()A.﹣1或0B.0或﹣2C.﹣2D.﹣1答案:B分析:根据题意a是最大的负整数,a是-1;b=0;c的绝对值是1,c=±1。
初中数学初一数学上册《数轴》教案、教学设计

一、教学目标
(一)知识与技能
1.理解数轴的概念,掌握数轴的三要素(原点、正方向、单位长度),并能在数轴上表示各种数。
2.能够利用数轴比较数的大小,进行加减运算,并解决相关的实际问题。
3.通过数轴的学习,培养学生的数感,提高他们运用数学工具解决问题的能力。
(二)过程与方法
6.预习下一节课内容:数轴上的乘法和除法运算。思考如何利用数轴解决乘除运算问题。
作业要求:
1.作业需独立完成,要求书写工整、步骤清晰。
2.家长签字确认,加强对学生学习情况的了解和监督。
3.提交作业时,请同学们认真检查,确保答案正确。
4.遇到问题,及时与同学、老师交流,共同解决问题,提高自己的数学能力。
4.提醒学生课后复习,巩固所学知识,并预习下一节课的内容。
五、作业布置
为了巩固本节课所学知识,培养学生的自主学习和思考能力,特布置以下作业:
1.请同学们绘制一条数轴,并在数轴上表示出以下数:-3、2、0、5、-1。要求准确标注原点、正方向和单位长度。
2.利用数轴比较以下数的大小:-2、3、-5、1、4。请同学们用自己的语言说明比较方法,并解释为什么。
(三)学生小组讨论
1.将学生分成小组,每组讨论以下问题:
a.如何在数轴上表示正数、负数和0?
b.数轴上数的大小比较规则是什么?
c.数轴上的加减运算该如何进行?
2.学生讨论过程中,教师巡回指导,解答学生的疑问。
3.各小组汇报讨论成果,教师点评并总结。
(四)课堂练习
1.设计数轴相关的练习题,包括填空题、选择题和解答题。
7.课后作业:布置数轴相关的练习题,巩固所学知识,提高学生的运用能力。
初一上册数学教案模板(十篇)
初一上册数学教案模板(十篇)初一上册数学教案模板一正数和负数一、教学目的(一)知识点目标:1.了解正数和负数是怎样产生的。
2.知道什么是正数和负数。
3.理解数0表示的量的意义。
(二)能力训练目标:1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。
2.会用正、负数表示具有相反意义的量。
(三)情感与价值观要求:通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:知道什么是正数和负数,理解数0表示的量的意义。
教学难点:理解负数,数0表示的量的意义。
教学方法:师生互动与教师讲解相结合。
教具准备:地图册(中国地形图)。
二、教学过程引入新课:1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?内容:老师说出指令:向前两步,向后两步;向前一步,向后三步;向前两步,向后一步;向前四步,向后两步。
如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。
讲授新课:1.自然数的产生、分数的产生。
2.章头图。
问题见教材。
让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。
3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。
根据需要有时在正数前面也加上“十”(正号)表示正数。
举例说明:3、2、0.5、等是正数(也可加上“十”)-3、-2、-0.5、-等是负数。
4、数0既不是正,也不是负数,0是正数和负数的分界。
0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。
5、让学生举例说明正、负数在实际中的应用。
展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地某银行的存折,说出你知道的信息。
初一数学上册难题精选
初一数学上册难题精选初一数学上册有理数运算和一元一次方程相关难题精选。
一、有理数运算难题。
(一)有理数混合运算的技巧。
在有理数混合运算中,有很多小技巧可以帮助我们又快又准地算出答案。
比如说,先算乘方,再算乘除,最后算加减。
如果有括号,就要先算括号里面的。
举例:计算(-2)^3 (-3)^2 + 5×(-1)先算乘方:(-2)^3 = -8,(-3)^2 = 9。
原式就变成了-8 9 + 5×(-1)。
再算乘法:5×(-1)= -5。
最后算加减:-8 9 5 = -22。
(二)简便运算方法。
有时候,我们可以用一些简便方法来计算有理数运算,这样能节省不少时间。
像乘法分配律a×(b + c)=a× b + a× c就经常能派上用场。
举例:计算(-4)×((1)/(2)-(1)/(3)+(1)/(4))我们可以根据乘法分配律来算:(-4)×(1)/(2)-(-4)×(1)/(3)+(-4)×(1)/(4)=-2 + (4)/(3)-1=-(2)/(3)-1=-(5)/(3)二、一元一次方程难题。
(一)一元一次方程的解法要点。
解一元一次方程的关键步骤就是移项、合并同类项和系数化为1。
移项的时候要注意变号。
举例:解方程3x + 5 = 2x 1移项,把2x移到左边变成-2x,5移到右边变成-5,得到:3x 2x = -1 5合并同类项:x = -6(二)实际问题中的一元一次方程。
一元一次方程在生活中有很多实际应用。
比如说行程问题、工程问题。
行程问题举例:甲、乙两人相距100米,甲的速度是6米/秒,乙的速度是4米/秒。
两人同时相向而行,经过多少秒两人相遇?设经过x秒两人相遇。
甲走的路程就是6x米,乙走的路程就是4x米。
两人走的路程之和就是两人最初相距的100米,所以可以列出方程:6x + 4x = 100合并同类项:10x = 100系数化为1:x = 10也就是经过10秒两人相遇。
初中数学初一数学上册《代数式》教案、教学设计
5.定期进行课堂小结,引导学生总结所学知识,形成知识体系。
(三)情感态度与价值观
1.增强学生对数学学科的兴趣,激发他们学习数学的积极性。
2.培养学生勇于探究、善于思考的学习态度,增强克服困难的信心。
3.通过代数式的学习,让学生体会到数学的简洁美和逻辑美,提高审美能力。
5.定期进行评价与反馈:
a.通过课堂提问、课后作业、阶段测试等方式,了解学生的学习进度,发现存在的问题。
b.根据评价结果,及时调整教学策略,给予学生有针对性的指导。
c.鼓励学生进行自我评价,培养他们的自主学习能力。
四、教学内容与过程
(一)导入新课
1.教学活动设计:通过一个简单的数学故事引入新课,例如“小明的年龄问题”。讲述小明比小红大3岁,今年小红的年龄是x岁,那么小明今年几岁?通过这个问题,让学生感受到字母在数学表达中的便利性,从而引出代数式的概念。
初中数学初一数学上册《代数式》教案、教学设计
一、教学目标
(一)知识与技能
1.理解代数式的概念,能够识别和书写基本的代数式。
2.学会使用字母表示数,理解字母在代数式中的含义,并能进行简单的代数式变换。
3.掌握代数式的性质,如交换律、结合律等,能够运用这些性质简化代数式。
4.能够求解简单的一元一次方程,理解等式的性质,并掌握方程的解法。
3.一元一次方程的解法:这是本章的核心内容,学生需要理解等式的性质,并能够灵活运用这些性质求解方程。
(二)教学设想
1.创设情境,激发兴趣:在教学代数式概念时,可以通过生活中的实例,如购物时计算总价、距离和速度的关系等,让学生感受到代数式的实际意义,从而激发他们的学习兴趣。
初一数学上册教案【最新8篇】
初一数学上册教案【最新8篇】初一数学教案篇一教学目标1.使学生正确理解数轴的意义,掌握数轴的三要素;2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;3.使学生初步理解数形结合的思想方法.教学重点和难点重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.难点:正确理解有理数与数轴上点的对应关系.课堂教学过程设计一、从学生原有认知结构提出问题1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?2.用“射线”能不能表示有理数?为什么?3.�下面我从:教材的分析、教法与学法及教学手段、教学过程、板书设计四部分来说这一节课,其中,教学过程分为:创设情境导入新课、新课讲解、小结作业三部分;整个过程是先由实际问题引入新课,让学生自然走入文本。
合作交流去感受知识获取的过程,并且运用所学的知识解决相关的问题。
教材分析1、教材地位与作用。
就本节课而言,着重阐述了两个方面,一是因式分解的概念,二是与整式乘法的互逆关系。
它是继整式乘法的基础上来讨论因式分解概念,继而,通过探究与整式乘法的关系,来寻求因式分解的原理。
这一思想实质贯穿后继学习的各种因式分解方法。
通过本节课的学习,不仅使学生掌握因式分解的概念和原理,而且又为后面学习因式分解作好了充分的准备。
因此,它起到了承上启下作用。
2、教学目标。
根据单项式这一节课的内容,对于掌握各种单项式的系数和次数方法,乃至整个代数教学中的地位和作用,我制定了以下教学目标:(一)知识目标:1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
(二)能力目标:3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
(三)情感目标:1、通过参与对单项式概念的探究活动,提高学习数学的兴趣。
2、培养学生积极主动参与的意识,使学生形成自主学习、合作学习的良好的学习习惯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一上册数学重难点
一、整数的概念和运算
初一上册数学主要涉及到整数的概念和运算,这是一个重要的基础知识点。
在
整数的学习中,有几个重点和难点需要特别注意:
1. 整数的定义
整数是由正整数、负整数和0组成的集合。
整数的定义包括了正整数、负整数
和0的概念,而且整数之间满足加法和乘法运算封闭性。
学生需要理解整数的定义,并能够熟练地判断一个数是正整数、负整数还是0。
2. 整数的加减法运算
在整数的加法和减法运算中,有几个需要重点关注的地方:
•同号相加减:同号的整数相加,结果仍然是同号的整数;同号的整数相减,结果也是同号的整数。
这个规律对于初学者来说可能不太容易理解,需要通过具体的例子和图示进行解释和理解。
•异号相加减:异号的整数相加,结果的符号取决于绝对值大的整数。
当绝对值大的整数的符号和结果的符号相同,结果取该符号;当绝对值大的整数的符号和结果的符号相反,结果取绝对值大的整数的符号。
这个规律也需要通过具体例子进行解释和练习。
3. 整数的乘法和除法运算
在整数的乘法和除法运算中,有几个需要注意的点:
•乘法的符号规律:同号相乘得正,异号相乘得负。
这个规律需要通过实际的计算来体会和理解。
•除法的符号规律:正数除以正数得正数,负数除以负数得正数,正数除以负数得负数,负数除以正数得负数。
初学者可能容易混淆或忽略这个规律,需要通过大量的练习来巩固。
二、多项式的概念和运算
初一上册数学还包括了多项式的学习。
在多项式的学习中,有几个重点和难点
需要注意:
1. 多项式的定义和组成
多项式是由一系列的单项式通过加法或减法连接而成的代数表达式。
通过多项
式的定义,学生需要理解单项式的概念,并能够正确识别多项式的项数、次数以及各个系数的含义。
2. 多项式的加减法运算
在多项式的加法和减法运算中,以下几个点需要重点关注:
•同类项的合并:多项式中具有相同字母和相同指数的项,可以合并为一项。
这个点需要通过大量的练习来加深理解和掌握。
•多项式的加法和减法运算是类似的,只是在减法运算中需要注意减去一个多项式时,要先将其每一项的符号取相反数。
这个规律需要通过特定例子进行讲解和练习。
3. 多项式的乘法运算
多项式的乘法运算是比较复杂的,需要掌握以下几个关键点:
•乘法法则:多项式乘积中,每一个单项式的指数是对应因式的指数之和。
这个法则需要通过大量的计算和例题进行练习。
•多项式的整理:乘法运算后,要将多项式按照指数递减的顺序整理。
这个要求需要学生掌握一定的整理和排序技巧。
三、平面图形的认识和计算
初一上册数学还涉及到平面图形的认识和计算。
在学习平面图形时,有几个重
点和难点需要特别注意:
1. 三角形的性质和判定
三角形是初中数学中最重要的平面图形之一,学生需要掌握以下几个关键点:•三角形的分类:根据三边的长短和角的大小,将三角形分为等边三角形、等腰三角形和一般三角形。
学生需要掌握它们的定义和特点,并能够准确判断一个三角形的类型。
•三角形的判定:通过给定的条件,能够准确判断一个三角形是否存在,以及判断三角形的性质。
2. 四边形的性质和判定
四边形是由四条线段所围成的平面图形,学生需要掌握以下几个关键点:•方形、矩形、正方形和菱形的定义和性质,以及它们之间的关系。
•平行四边形的定义和性质,以及它们的判定条件。
3. 面积的计算
在计算平面图形的面积时,有几个常见的图形需要重点掌握:
•三角形的面积计算公式:通过底和高的乘积除以2,能够准确计算三角形的面积。
•矩形和正方形的面积计算公式:通过长和宽的乘积,能够准确计算矩形和正方形的面积。
•平行四边形的面积计算公式:通过底和高的乘积,能够准确计算平行四边形的面积。
以上是初一上册数学中的一些重难点知识点,希望学生能够认真学习,多做练习,提高数学水平。