蒸汽制冷原理
第一章蒸气压缩式制冷的热力学原理

R600a的P-h图
理论循环在T-s图和lnP-h图上表示
理论循环在T-s图(a)和lnp-h图(b)上的表示
二、蒸气压缩式制冷理论循环的热力计算
1.3 蒸气压缩式制冷理论循环压焓图上的表示
lgp
pk p0 3 3' 2' 2
根据确定的蒸发温度、 冷凝温度、压缩机的吸 气温度及液态制冷剂的 再冷度等已知条件,计 算以下各参数:
制冷系数与热力完善度比较
用ε值的大小来比较两台实际制冷机的循环经
济性时,必须是同类制冷机,并以相同热源条 件为前提才具有可比性。 用η作评价指标,使任意两台制冷机在循环的 热力学经济性方面具有可比性,无论它们是否
同类机,也无论它们的热源条件相同或是不同。
有温差传热的逆卡诺循环
q0 q0 ' c wc wc
v4 v4' x4 (v1 v4' ) 0.00158 0.138(0.25153 0.00158 ) 0.03605 m 3 / kg
用的膨胀功十分有限。
膨胀机的尺寸小,
因而摩擦损失相对较大。
2、蒸气压缩式制冷工作过程
干压缩代替了湿压缩: 压缩机吸气状态为干饱和或过热蒸汽。
节流阀代替了膨胀机
简化了设备,但损失了膨胀功,并造成 节流损失。
压缩制冷理论循环组成
压缩机:等熵压缩;
冷凝器:等压放热;
节流阀:绝热节流;
蒸发器:等压吸热。
' c
逆卡诺循环——热泵
用于供热,性能指标为供热系数。 供热系数µ:单位耗功量所获取的热量,
qk (qk q0 ) q0 1 W W
用于供热,供热量永远大于所消耗的功量。
第五章 蒸汽压缩式制冷循环

三、常用制冷剂的特性
1、水(R718)
2ห้องสมุดไป่ตู้氨(R717)
氨属于无机化合物制冷剂,具有良好的 热力学性能,单位质量制冷量大。沸点:33.4℃.R717有较强的溶水性,对钢铁不腐 蚀,但含水时会腐蚀铜及其合金(磷青铜除 外),属于微溶于润滑油的制冷剂。缺点是 毒性大,有强烈的刺激性气味,会燃烧、会 爆炸。
(1)R12 分子式:CCl2F2 沸点:-29.8℃,凝固点-
155℃ (2)R22 分子式:CHClF2 沸点:-40.8℃,凝固点-
160℃ (3)R134a分子式: C2H2F4 沸点:-29.8℃,
凝固点-155℃
四、关于CFCS的替代 1、使用替代制冷剂的原因
O3+Cl→ClO+O2 ClO+O→Cl+O2 2、替代制冷剂时必须考虑的因素 (1)制冷剂在大气中存在的寿命; (2)臭氧损耗潜能ODP; (3)在逆使用的用途中,变暖影响总单量 TEWI;
具有液体过冷的制冷循环
二、吸气过热的影响
1、定义:制冷剂蒸气的温度高于同一压力下 的饱和蒸气温度称为过热。两者之间的温 差称为过热度。
2、p-h图
3、“无效”过热:制冷剂蒸气过热吸收的热 量全部来自蒸发器外。在实际制冷装置中, 为了减少有害过热,一般在吸气管道上包 扎一层隔热材料。
4、“有效”过热:制冷剂蒸气过热吸收的热 量全部来自蒸发器内被冷却介质。
主要用于大型制冷装置中。
3、氟利昂
氟利昂制冷剂是应用最广泛的制冷剂。 它无色、无味、不燃烧、毒性小。含氯原子 的氟利昂与明火接触产生剧毒的光气 (COCl2)渗透性强,单位容积制冷量小。
锅炉制冷原理

锅炉制冷原理
锅炉制冷是利用蒸汽压缩制冷循环来达到制冷的目的。
具体原理如下:
1. 蒸汽压缩循环:锅炉制冷采用的是蒸汽压缩循环,类似于常见的冰箱制冷原理。
该循环完成制冷的过程主要包括蒸发、压缩、冷凝和膨胀四个过程。
2. 蒸发:在蒸发器中,制冷介质(一般是蒸发器内部装有的冷水)接触到蒸汽,通过吸热蒸发的方式将蒸汽的热量吸收掉,从而达到冷却的效果。
3. 压缩:冷却的蒸汽被压缩机吸入,通过增加压力和温度的方式,将蒸汽的温度提高。
4. 冷凝:经过压缩后的高温高压蒸汽经过冷凝器,通过散发热量的方式,使其冷却并变成液体状态。
5. 膨胀:液态制冷介质通过膨胀阀(节流阀)进入蒸发器,由于压力降低,液态制冷介质蒸发吸收了周围的热量,从而形成制冷效果。
通过循环反复进行蒸发、压缩、冷凝和膨胀四个过程,不断循环往复实现制冷目的。
在这个过程中,锅炉将大量的热量从蒸汽中抽取出来,从而形成冷却效果。
蒸汽压缩式制冷的原理和工况

蒸汽压缩式制冷的原理和工况
蒸汽压缩式制冷系统是由压缩机、冷凝器、节流装置、蒸发器等四个主要部分组成。
当压缩机在进行工作的时候,会对进入压缩机的制冷剂气体进行压缩,经过压缩之后,低压会变成高压的状况,而气体此时会因为压缩而温度提升,进入冷凝器内对压缩机排出的高温高压气态制冷剂进行冷却,使其放热。
在温度和压力之下,气态的制冷剂会变成高压业态制冷剂,放出来的热量会起到冷却的作用。
高压业态制冷剂进入节流膨胀阀进行节流膨胀,压力降低以保证冷凝器与蒸发器之间的压差,便于节流后的低压液态制冷剂在要求的低压下进人蒸发器。
低压液体从周围介质吸收热量后蒸发为气体,而这周围介质可以是空气、水或其他物质。
制冷剂蒸发吸热,呈低压气态后再进入压缩机内进行压缩,从而完成了一个制冷循环,如此连续进行不断的循环而达到制冷的目的。
蒸汽压缩式制冷具有多方面的特点,第一是制冷温度范围是比较大的,在零下150度的温度下都可以正常来使用。
第二单机的容量大,规格多,有多个容量,用户在具体挑选的时候,可以根据自身的需求来挑选,能满足个性化的需求。
第三中小容量的设备结构比较紧凑,能在空调、食品冷藏等领域当中使用。
在外界环境温度比较低的状况下,综合性能会变得不太理想,所以说可靠性并不是很高,成本也会随着增加不少。
设备运行需要使用专门的制冷剂,而有的制冷剂会对环境造成一定的污染。
蒸汽压缩式制冷的基本原理

第2讲 讲 蒸汽压缩式制冷的基本原理
一,热力学基本定律
热力学第一定律:能量守恒和转换定律 热力学第一定律: 热力学第二定律:能量贬值原理 热力学第二定律:
不可能把热从低温物体传向高温物体而不引起其它变化. 不可能把热从低温物体传向高温物体而不引起其它变化.
人工制冷: 低温物体
热量 外界补偿
T Tk Tk ' T0' T0
Tk
3 3'
2 2'
T0
4' 4
1' 1
0
b
a
s
图1-2 有传热温差的制冷循环
有传热温差的制冷循环的制冷系数小于 逆卡诺循环的制冷系数. 逆卡诺循环的制冷系数. 热力完善度: 热力完善度 : 工作于相同温度间的实
际制冷循环பைடு நூலகம்制冷系数与逆卡诺循环制冷系数的 比值. 比值. η = ε / εc 程度. 程度. ≤1
四,有传热温差的制冷循环
Tk' — 冷却介质的温度 T0' — 被冷却介质的温度 逆卡诺循环: 逆卡诺循环:1'-2'-3'-4'-1' Tk — 冷凝器中制冷剂的温度 T0 — 蒸发器中制冷剂的温度 有传热温差的循环: 有传热温差的循环:1-2-3-4-1 耗功量增加: 耗功量增加:阴影面积 制冷量减少: 制冷量减少:1-1'-4'-4-1
高温物体
二,理想循环
1. 逆卡诺循环 1-2 等熵压缩 T0→Tk 耗功w1 2-3 等温压缩 吸热qk=Tk(sa-sb) 3-4 等熵膨胀 Tk→T0 做功w2 4-1 等温膨胀 放热q0=T0(sa-sb)
两个恒温热源 两个等温过程 两个等熵过程
制冷技术 单级蒸气压缩式制冷循环

理论制冷循环与理想循环(逆卡诺循环)相比有两个特点
1.用膨胀阀(节流机构)代替膨胀机
2.干压缩代替湿压缩 汽液分离 蒸气过热
利:防止液滴进入压缩机气缸,产生液击、冲缸事故,损坏压缩机。 油裂解结碳
弊:造成压缩机排气温度升高,导致 轴承烧坏
1.蒸汽压缩式制冷循环的实现-四大部件的作用
逆卡诺循环实现的困难
1)压缩过程在湿蒸气区中进行的,危害性很大。( 什么是湿压缩,湿压缩的危害??)
2)膨胀机等熵膨胀不经济,不现实。因此,在实际 蒸气压缩式制冷循环中采用膨胀阀(也称节流阀 )代替膨胀机。
3)无温差的传热实际上是不可能的。因为冷凝器和 蒸发器不可能有无限大的传热面积。所以实际循 环只能使蒸发温度低于被冷却物体的温度,冷凝 温度高于冷却剂的温度。
1.85
2)已知R22的压力为0.1MPa,温度为10℃。求该状 态下R22的比焓、比熵和比体积。
2.1单级蒸汽压缩式制冷的理论循环 1.蒸汽压缩式制冷循环的实现-四大部件的作用; 2.压焓(lgp-h)图和温熵(T-S)图; 3.在特性图上表示制冷循环; 4.理论制冷循环计算。
计算题
有一逆卡诺循环,其被冷却物体(冷源)的温度恒 定为5℃,热源温度为40℃,求其制冷系数。
有一理想制冷循环,被冷却物体(冷源)的温度恒 定为5℃,环境介质(热源)的温度为25℃,两个传 热过程的传热温差均为5℃,试问: a) 逆卡诺循环的制冷系数为多少? b) 当考虑传热温差时,制冷系数又是多少?
计算题
两台制冷机的冷热源温度同为T0=260K,Tk=300K ,其制冷系数为E1=5.0,E2=4.0,试问哪台制冷机 的经济性好?若两台制冷机的冷热源温度不同:分 别为T01=260K,Tk1=300K, T02=240K, Tk2=300K,试问哪台制冷机的经济性好?
蒸汽喷射式制冷的原理图
五、制冷的分类
按照制冷所得到得低温范围,制冷技术划分为以下四个领域 普通制冷 120K以上 深度制冷 120K~20K 低温制冷 20K~0.3K 超低温制冷 0.3K以下 本课程主要讲的是普通制冷。
六、本课程的主要内容
1、研究获得低温的方法和有关机理以及与此相关的制冷循环,并
3、研究实现制冷循环所需要的各种机械和技术设备,包括他们的 工作原理、结构分析、性能分析,以及制冷装置的流程、系统 配套设计。
半导体制冷原理
因为帕尔贴效应和西伯克效应产生的强烈程度取决于这两种材料 的导热性和导电性,纯金属材料的导热性和导电性都好,所以 其帕尔贴效应和西伯克效应都很弱,而半导体材料可以产生强 烈的帕尔贴效应和西伯克效应。 空穴型(P型) 材料: 电子型(N型)
涡流管制冷
工作原理:涡流管制冷与蒸汽压缩式制冷,吸收式制冷的制冷
特点:(1)由于管内气流之间之间的传导 和对流情况复杂,故对冷、热端温度值得 定量地理论计算困难; (2)效率较低,气流噪音大 (3)结构简单、维护方便、启动快、使 用灵活。适用于有高压气源或可以廉价获得 高压气体的场合
气体膨胀制冷
原理:气体膨胀,温度降低来实现制冷 系统组成:主要由制冷换热器、压缩机、冷却器以及膨胀机四部 分组成 工作过程:等压吸热、等熵压缩、等压放热、等熵膨胀四个过程 组成。 制冷工质:空气、二氧化碳、氮气等 多用于飞机空调(制冷剂为空气)
用锅炉产生高温高压的工作蒸汽将其送入喷嘴膨胀并以高速流动流速可达1000ms以上于是在喷嘴出口处造成很低的压力由于吸入室和蒸发器相连所以蒸发器中的压力也会很低低温低压的部分水吸热汽化将未汽化的水温度降低这部分低温水用来制冷蒸发器中产生的制冷剂水蒸气和工作蒸汽在喷嘴出口处混合一起进入冷凝器被外部的冷却水冷却而变成液态水这些冷凝水再经冷凝器流出分两路一路经节流降压后进蒸发器继续蒸发制冷另一路经泵升压后回锅炉重新生产工作蒸汽特点
蒸汽压缩式制冷技术的原理及应用
蒸汽压缩式制冷技术的原理及应用1. 引言蒸汽压缩式制冷技术是一种常见且广泛应用于空调、冷柜和汽车空调等领域的制冷技术。
本文将介绍蒸汽压缩式制冷技术的原理和应用。
2. 蒸汽压缩式制冷技术的原理蒸汽压缩式制冷技术基于蒸发和冷凝过程,利用压缩机将低压低温的蒸汽压缩成高压高温的蒸汽。
具体原理如下:2.1 蒸发过程蒸汽压缩式制冷技术中的蒸发过程是制冷循环的第一步。
在蒸发器中,低压低温的制冷剂吸收外部热量,从而蒸发成为低压蒸汽。
2.2 压缩过程经过蒸发过程产生的低压蒸汽被压缩机吸入,通过压缩机的工作,使蒸汽的压力和温度升高。
这个过程通常伴随着能量的输入。
2.3 冷凝过程高压高温的蒸汽进入冷凝器,通过与外部环境接触,释放热量并冷凝成高压液体制冷剂。
2.4 膨胀过程高压液体制冷剂通过膨胀阀降压,变成低压低温的制冷剂,循环回到蒸发器中进行下一轮制冷循环。
3. 蒸汽压缩式制冷技术的应用3.1 空调蒸汽压缩式制冷技术是家用和商用空调系统中常用的制冷技术。
空调系统通过蒸汽压缩循环来降低室内温度,提供舒适的环境。
3.2 冷藏冷冻蒸汽压缩式制冷技术被广泛应用于冷柜、冷库和冷冻车等冷藏冷冻设备中。
利用蒸汽压缩循环,可控制冷藏环境的温度,确保食品和药品等易腐败物品的质量和安全性。
3.3 汽车空调蒸汽压缩式制冷技术也被广泛应用于汽车空调系统中。
通过使汽车内部空气经过冷却和除湿过程,提供舒适的驾驶环境。
3.4 工业应用蒸汽压缩式制冷技术在许多工业领域也有应用。
例如,电子设备生产中的温度控制、制药行业中的冷凝设备和冷却塔、石化行业的冷却器等。
4. 结论蒸汽压缩式制冷技术通过压缩、蒸发、冷凝和膨胀等过程,实现了制冷循环。
该技术被广泛应用于空调、冷藏冷冻和汽车空调等领域,为我们的生活和工作提供了便利。
在今后的发展中,随着节能减排需求的增加,蒸汽压缩式制冷技术也会进一步优化和改进,以提高能效和节约能源。
蒸汽压缩式制冷的热力学原理
• 4.压缩机的理论功率Pth • 单位理论耗功为
• 5.理论制冷系数εth
上一页
返回
第四节 液体过冷、蒸汽过热及回热循环
• 一、液体过冷循环
• 液体过冷是指制冷剂液体的温度低于冷凝温度的状态.两者温度之差 称为过冷度,用Δt-l表示.具有液体过冷的循环就称为液体过冷循环.图 1-6为液体过冷循环的压焓图.图中1-2-3-4-1是基本理论循环, 而1-2-3-3′-4′-4-1是有过冷的循环,其中3-3′为制冷剂液体的 过冷过程.
上一页
返回
第三节 单级蒸汽压缩式制冷理论循环 的热力计算
• 热力计算的目的就是要算出理论循环的性能指标,为实际循环计算和 选择制冷设备提供原始数据.
• 1.单位质量制冷量q0 和单位容积制冷量qv • 单位质量制冷量q0 是指在一次循环中,1k-制冷剂在蒸发器中从被冷
却介质所吸收的热量,即1k-制冷剂在蒸发器中完成一次循环所制取 的冷量,又可称为单位制冷量.即
• 蒸汽压缩式制冷的理论循环由两个定压过程组成,一个是绝热过程;另 一个是绝热节流过程.理论循环与逆卡诺循环相比较,有以下特点:
• (1)用膨胀阀代替膨胀机. • (2)用干压缩代替湿压缩. • (3)传热过程为等压过程,且传热过程有温差. • 蒸汽压缩式制冷的理论循环由压缩机、冷凝器、膨胀阀和蒸发器组成
制冷原理—蒸汽压缩式制冷的理论循环和实际循环
一、制冷剂压焓图(P-V图)
制冷系统中循环流动的工作介质叫制冷剂(又称制
冷工质),它在系统的各个部件间循环流动以实现能
量的转换和传递,达到制冷机向高温热源放热;从
低温热源吸热,实现制冷的目的。
一、制冷剂压焓图(P-V图)
以特定制冷剂的焓值为横坐标,以压
力为纵坐标绘制成的线图成为该制冷剂的
具有蒸汽过热的循环称为蒸汽过热循环。
有效过热:过热吸收热量来自被冷却介质,
产生有用的制冷效果。
有害过热:过热吸收热量来自被冷却介质以外,无制冷效果。
1、有害过热分析:
(1)单位制冷量不变,单位压缩功增加
(2)单位冷凝负荷增大
(3)进入压缩机的制冷剂比容增大
(4)压缩机的排气温度升高
(1)蒸发器面积大于设计所需面积(有效过热)
压焓图。为了缩小图的尺寸,并使低压区
内的线条交点清楚,所以纵坐标使用压力
的对数值LgP绘制,因此压--焓图又称
LgP-E图。
一、制冷剂压焓图(P-V图)
一点(临界点)
两线(饱和液体线;干饱和蒸气线)
三区(过冷区;湿蒸气区;过热气区)
五状态(未饱和液体;饱和液体;湿饱
和蒸气;干饱和蒸气; 过热蒸气)
在循环制冷计算中,将制冷剂饱和液
体的温度降低就变为过冷液体。
气液两相区:介于饱和液体线与饱和
气体线之间的区域为。
过热蒸气区:干饱和蒸气线右边区域。
饱和液体线
干饱和蒸气线
饱和液体线
(压力)
未饱和液体
过热蒸气
焓
六参数:
➢等压线p — 水平线
➢等焓线 h— 垂直线
➢等干度线 x
2、蒸气压缩制冷循环的P-h图,试指出进行各热力过程相应设备的名
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蒸汽制冷原理
蒸汽制冷是一种利用蒸汽的物理性质实现制冷的技术。
其原理基于热
力学第二定律,即热量不可能自行从低温物体传递到高温物体,必须
通过外界做功才能实现。
蒸汽制冷系统由四个基本部分组成:压缩机、冷凝器、膨胀阀和蒸发器。
首先,压缩机将低温低压的蒸汽吸入,通过内部机械工作将其压缩成
高温高压的蒸汽。
这一过程需要消耗大量的电能或其他形式的能量输入。
接着,高温高压的蒸汽进入冷凝器,在这里与外界环境进行热交换并
冷却下来。
在这个过程中,蒸汽会释放出大量的热量,并且逐渐变成
液态水。
然后,液态水通过膨胀阀进入到低温低压区域,此时它会迅速膨胀成
为雾状水滴,并吸收周围环境中的热量。
这一过程被称为“节流过程”,因为液态水在经过阀门时会减速并且减压,从而导致其温度和
压力的降低。
最后,雾状水滴进入蒸发器,在这里与外界环境进行热交换,并且将
其周围的热量吸收进来。
这一过程会导致水滴逐渐蒸发成为蒸汽,并
且吸收大量的热量,从而实现了制冷效果。
制冷后的蒸汽再次被吸入
到压缩机中,循环再生。
总体来说,蒸汽制冷利用了物质在不同温度和压力下的相态变化特性,通过外部能量输入和内部机械工作实现了对物体温度的调控和控制。
虽然在某些情况下,蒸汽制冷可能不如其他技术如空气制冷或者制冷
剂循环系统那么高效或者经济,但是在某些特定领域如高温环境下、
需要大规模制冷等方面仍然具有一定优势。