人教版数学八年级上册第12章第3课-12.2三角形全等的判定(2) 测试(学生版).doc

合集下载

人教版-数学-八年级上册-12.2三角形全等的判定

人教版-数学-八年级上册-12.2三角形全等的判定

12.2三角形全等的判定1.(2014•益阳,第7题,4分)如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件是()(第1题图)A.A E=CF B.B E=FD C.B F=DE D.∠1=∠2考点:平行四边形的性质;全等三角形的判定.分析:利用平行四边形的性质以及全等三角形的判定分别分得出即可.解答:解:A、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;故选:A.点评:此题主要考查了平行四边形的性质以及全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题关键.2.(2014•新疆,第14题5分)如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为.论.解:∵Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC===5,∵DE垂直平分AC,垂足为O,∴OA=AC=,∠AOD=∠B=90°,∵AD∥BC,∴∠A=∠C,∴△AOD∽△CBA,∴=,即=,解得AD=.故答案为:.点评:本题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.3.(2014年云南省,第16题5分)如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,△DAB=△CBA,求证:AC=BD.考点:全等三角形的判定与性质.专题:证明题.分析:根据“SAS”可证明△ADB△△BAC,由全等三角形的性质即可证明AC=BD.解答:证明:在△ADB和△BAC中,,△△ADB△△BAC(SAS),△AC=BD.点评:本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.4.(2014•武汉,第19题6分)如图,AC和BD相交于点O,OA=OC,OB=OD.求证:DC∥AB.考点:全等三角形的判定与性质;平行线的判定专题:证明题.分析:根据边角边定理求证△ODC≌△OBA,可得∠C=∠A(或者∠D=∠B),即可证明DC∥AB.解答:证明:∵在△ODC和△OBA中,∵,∴△ODC≌△OBA(SAS),∴∠C=∠A(或者∠D=∠B)(全等三角形对应角相等),∴DC∥AB(内错角相等,两直线平行).点评:此题主要考查学生对全等三角形的判定与性质和平行线的判定的理解和掌握,解答此题的关键是利用边角边定理求证△ODC≌△OBA.5.(2014•邵阳,第21题8分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.考点:全等三角形的判定分析:(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.解答:解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).点评:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.(2014·云南昆明,第16题5分)已知:如图,点A、B、C、D在同一条直线上,AB=CD,AE∥CF,且AE=CF.求证:△E=△F考点:全等三角形的判定与性质.分析:首先根据AE∥CF,可得∠A=∠C,,结合AB=CD,AE=CF.可知证明出△ABE≌△CDF,即可得到∠E=∠F.解答:证明:∵AE∥CF,∴∠A=∠C,∵在△ABE和△CDF中,⎪⎩⎪⎨⎧=∠=∠=CFAECACDAB∴△ABE≌△CDF(SAS),∴∠E=∠F点评:此题主要考查了全等三角形的判定与性质的知识,解答本题的关键是熟练掌握判定定理以及平行线的性质,此题基础题,比较简单.7.(2014•湘潭,第20题)如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,BD=6.(1)求证:△EDF≌△CBF;(2)求∠EBC.质可得∠DBE=30°,继而可求得∠EBC的度数.(1)证明:由折叠的性质可得:DE=BC,∠E=∠C=90°,在△DEF和△BCF中,,∴△DEF≌△BCF(AAS);8.(2014年江苏南京,第27题)【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.(第3题图)【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC 和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A,则△ABC≌△DEF.考点:全等三角形的判定与性质分析:(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH 全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C 重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.解答:(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE 的延长线于H,∵∠B=∠E,且∠B、∠E都是钝角,∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.点评:本题考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.9.(2014•德州,第23题10分)问题背景:如图1:在四边形ABC中,AB=AD,△BAD=120°,△B=△ADC=90°.E,F分别是BC,CD 上的点.且△EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE△△ADG,再证明△AEF△△AGF,可得出结论,他的结论应是EF=BE+DF;探索延伸:如图2,若在四边形ABCD中,AB=AD,△B+△D=180°.E,F分别是BC,CD上的点,且△EAF=△BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.考点:全等三角形的判定与性质.分析:问题背景:根据全等三角形对应边相等解答;探索延伸:延长FD到G,使DG=BE,连接AG,根据同角的补角相等求出△B=△ADG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等可得AE=AG,△BAE=△DAG,再求出△EAF=△GAF,然后利用“边角边”证明△AEF 和△GAF全等,根据全等三角形对应边相等可得EF=GF,然后求解即可;实际应用:连接EF,延长AE、BF相交于点C,然后求出△EAF=△AOB,判断出符合探索延伸的条件,再根据探索延伸的结论解答即可.解解:问题背景:EF=BE+DF;答:探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,△△B+△ADC=180°,△ADC+△ADG=180°,△△B=△ADG,在△ABE和△ADG中,,△△ABE△△ADG(SAS),△AE=AG,△BAE=△DAG,△△EAF=△BAD,△△GAF=△DAG+△DAF=△BAE+△DAF=△BAD﹣△EAF=△EAF,△△EAF=△GAF,在△AEF和△GAF中,,△△AEF△△GAF(SAS),△EF=FG,△FG=DG+DF=BE+DF,△EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,△△AOB=30°+90°+(90°﹣70°)=140°,△EOF=70°,△△EAF=△AOB,又△OA=OB,△OAC+△OBC=(90°﹣30°)+(70°+50°)=180°,△符合探索延伸中的条件,△结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.点评:本题考查了全等三角形的判定与性质,读懂问题背景的求解思路,作辅助线构造出全等三角形并两次证明三角形全等是解题的关键,也是本题的难点.。

人教版八年级数学上册教学课件三角形全等的判定2

人教版八年级数学上册教学课件三角形全等的判定2

AB = CD
A EB
∴△ADE≌△CBF ( SSS )
② ∵ △ADE≌△CBF
∴ ∠A=∠C (
全等三角形 对应角相等 )
课堂小结
内容
有三边对应相等的两个三角形 全等(简写成 “SSS”)
谈谈本节课你有思哪路些分析收获以结现合有及图条形件存找,在隐证含准的条备件条困和件惑?
边边边 应 用
书写步骤
∴ ∠A=∠C (
)
B 有两个角对应相等的两个三角形
E
满足这六个条件可以保证△ABC ≌△DEF
有没有更简单的办法呢?
探索新知
思考 如果只满足这些 条件中的一部分,那么 能保证
△ABC ≌△DEF′吗?
互动探究
一个条件可以吗?
1. 有一条边相等的两个三角形 不一定全等 2. 有一个角相等的两个三角形 不一定全等
活,用智慧点亮人
生!
2、分别以A、B为圆心,4㎝和3㎝长为半径画弧,两弧交于点C;
为了庆祝国庆节,老师要求同学们回家制作三角形彩旗(如图),那么,老师应提供多少个数据了,能保证同学们制作出来的三角形彩旗全等呢?一定要知道所有的边长和所有的
真,让知识服务生 角度吗?
2、分别以A、B为圆心,4㎝和3㎝长为半径画弧,两弧交于点C; (简写为“边边边”或“SSS”)
情景问题
为了庆祝国庆节,老师要求同学们回家制 作三角形彩旗(如图),那么,老师应提 供多少个数据了,能保证同学们制作出来 的三角形彩旗全等呢?一定要知道所有的 边长和所有的角度吗?
新课导入
通过上节课的学习,大家知道:两个三角 形全等时,三条对应边相等,三组对应角相 等,那么判定两个三角形全等,是否一定需 要满足六个条件呢?如果只满足上述六个条 件中的一部分,是否也能保证两个三角形全 等呢?从这节课开始,我们来探究全等三角 形的判定.

人教版八年级数学上册第12章2三角形全等的判定

人教版八年级数学上册第12章2三角形全等的判定

知6-讲
特别提醒 1. 应 用 “ HL” 判 定 两 个 直 角 三 角 形 全 等 , 在
知6-讲
3. 判定两个三角形全等常用的思路方法
知6-讲
已知对应相 可选择的 等的元素 判定方法
需寻其邻
三角 角(SA) 形
SSS 或 SAS
SAS 或 ASA 或AAS
可证第三边对应相等或 证两边的夹角对应相等
可证已知角的另一边对 应相等或证已知边的另 一邻角对应相等或证已 知边的对角对应相等
知1-练
1-2.[中考·云南] 如图,C 是BD 的中点,AB=ED, AC=EC.求证:△ ABC ≌△ EDC.
证明:∵C 是 BD 的中点,∴BC=DC.
AB=ED, 在△ ABC 和△ EDC 中,AC=EC,
BC=DC,
∴△ABC≌△EDC(SSS).
知1-练
知识点 2 用尺规作一个角等于已知角
可证直角与已知锐角的夹边 对应相等或证已知锐角(或直 角)的对边对应相等
角 三
斜边(H)
HL 或AAS
可证一条直角边对应相等或 证一锐角对应相等
角 形
一直角边(L)
HL 或ASA 或AAS 或
SAS
可证斜边对应相等或证与已 知边相邻的锐角对应相等或 证已知边所对的锐角对应相 等或证另一直角边对应相等
证明:∵ AD=FB,
∴ AD+DB=FB+DB,
即AB=FD.
AC=FE,
在△ ABC 和△ FDE 中, AB=FD,
BC=DE,
∴△ ABC ≌△ FDE(SSS).
知1-练
知1-练
1-1. 如图,已知AB=CD,若根据“SSS”证得△ ABC ≌△ CDA,需要添加一个条件是_B__C_=__D__A_ .

人教版八年级数学上册 第十二章全等三角形 12.2三角形全等的判定(第三课时) 课后练习

人教版八年级数学上册 第十二章全等三角形 12.2三角形全等的判定(第三课时) 课后练习

人教版八年级数学上册第十二章全等三角形12.2三角形全等的判定(第三课时)课后练习一、单选题1.如图,某同学不小心把一块三角形玻璃打碎成三块,现在要到玻璃店配一块与原来完全相同的玻璃,最省事的方法是( )A.带①和②去B.只带②去C.只带③去D.都带去2.小冬不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1,2,3,4的四块),你认为将其中的哪一块带去,能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块3.下列条件中,不能判定两个直角三角形全等的是( )A.两个锐角对应相等B.一条直角边和一个锐角对应相等C.两条直角边对应相等D.一条直角边和一条斜边对应相等4.如图所示,∠1=∠2,∠3=∠4,若证得BD=CD,则所用的判定两三角形全等的依据是()A.角角角B.角边角C.边角边D.角角边5.如图:要测量河两岸相对的两点A、B的距离,先在AB 的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长,就得出AB的长,判定△EDC≌△ABC的理由是 ( )6.如图,已知AB∥CD∥AE=CF,则下列条件中不一定能使△ABE∥∥CDF的是()A.AB=CD B.BE∥DF C.∥B=∥D D.BE=DF7.下列条件中能作出唯一三角形的是( )A.AB=4cm,BC=3cm,AC=5cmB.AB=2cm,BC=6cm,AC=4cmC.∥A=∥B=∥C=60°D.∥A=30°,∥B=60°,∥C=90°8.如图,AD是△ABC的角平分线,过点D向AB∥AC两边作垂线,垂足分别为E∥F,那么下列结论中不一定正确的是()A.BD∥CD B.DE∥DF C.AE∥AF D.∠ADE∥∠ADF9.根据下面的条件,能画出唯一的△ABC的是( )A.AB=3,BC=2,∠C=60°B.AB=3,BC=4,∠A=90°C.∠B=90°,AC=4,BC=5D.∠A=45°,∠B=45°,∠C=90°10.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB于点E,若BC=7,则AE的长为()A.4B.5C.6D.7第II卷(非选择题)请点击修改第II卷的文字说明二、填空题11.如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,你所添加的条件是________(只添一个即12.如图所示,A 、B 在一水池放入两侧,若BE=DE ,∠B=∠D=90°,CD=10m ,则水池宽AB=_____m .13.如图,为测量B 点到河对面的目标A 之间的距离,他们在B 点同侧选择了一点C ,测得∠ABC ∥70°∥∠ACB ∥40°,然后在M 处立了标杆,使∠CBM ∥70°∥∠BCM ∥40°,那么只需要测量______才能测得A ∥B 之间的距离∥依据是:__________________________________________∥14.在△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E ,在BC 上,BE=BF ,连结AE ,EF 和CF ,此时,若∠CAE=30°,那么∠EFC=_______.15.如图,ABC △中,10AB =,7AC =,AD 平分BAC ∠,AE 是BC 边上的中线,过点C 作CG AD ⊥于F ,交AB 于G ,连接EF ,则线段EF 的长为__.三、解答题17.如图∥点A∥C∥B∥D在同一条直线上∥BE∥DF∥∠A=∠F∥AB=FD∥求证:AE=FC∥18.如图,在△ABC中,AD⊥BC,BE⊥AC,AD=BD,求证:BF=AC.19.如图,AB=AD,∠BAD=∠EAC,∠C=∠E,求证:AE=AC.20.如图,已知,在四边形ABCD中,E是AC上一点,∠DAC=∠BAC,∠DCA=∠BCA.求证:∠DEC=∠BEC.21.已知,如图,△ABC中,AB=AC,动点D、E、F在AB、BC、AC上移动,移动过程中始终保持BD=CE,∠DEF=∠B,请你分析是否存在始终与△BDE全等的三角形,并说明理由.22.如图,∠A∥∠B∥AE∥BE,点D在AC 边上,∠1∥∠2∥AE和BD 相交于点O∥求证:△AEC≌△BED∥23.如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE=DF ,∠A=∠D , (1)求证:AB=CD ;(2)若AB=CF ,∠B=30°,求∠D 的度数.【参考答案】1.C 2.B 3.A 4.D 5.D 6.D 7.A 8.A 9.B 10.D11.∠BAC =∠DAC (答案不唯一)12.1013.BM △ABC ≌△MBC ∥ASA∥,全等三角形的对应边相等;14.30°15.1.5.16.AD ⊥BD ,∠BAD =45°,∴AD =BD ,∵∠BFD =∠AFE ,∠AFE +∠CAD =90°,∠CAD +∠ACD =90°,∴∠BFD =∠ACD ,在△BDF 和△ACD 中,BFD ACD BDF ADC BD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDF ≌△ACD (AAS ),∴BF =AC .17.证明:∵BE∥DF,∴∠ABE=∠D,在△ABE 和△FDC 中,∠ABE=∠D,AB=FD ,∠A=∠F∴△ABE≌△FDC(ASA ),18.解:∵AD ⊥BC ,BE ⊥AC ,∴∠BDF=∠ADC=∠BEC=90°,∴∠DBF+∠C=90°,∠DAC+∠C=90°,∴∠DBF=∠DAC ,在△BDF 和△ADC 中,BDF ADC BD AD DBF DAC ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△BDF ≌△ADC (ASA ),∴BF=AC .19.解:∵∠BAD=∠EAC ,∴∠BAD+∠DAC=∠EAC+∠DAC ,即∠BAC=∠DAE ,在△ABC 和△ADE 中,∠BAC =∠DAE ,∠C =∠E ,AB =AD ,∴△ABC ≌△ADE (AAS ),∴AE=AC .20.解:在△ACD 和△ACB 中,∴△ACD ≌△ACB ,(ASA )∴BC=CD ,在△DCE 和△BCE 中,∴△DCE ≌△BCE (ASA ),∴∠DEC=∠BEC .21.解:存在始终与△BDE 全等的三角形,△CEF ≌△BDE ;理由如下: ∵∠CED=∠B+∠BDE ,∠DEF=∠B ,∴∠CEF=∠BDE ,∵AB=AC ,在△CEF和△BDE中,∴△CEF≌△BDE(ASA).22.∥AE和BD相交于点O∥∥∥AOD=∥BOE∥在△AOD和△BOE中,∥A=∥B∥∥∥BEO=∥2∥又∵∠1=∥2∥∥∥1=∥BEO∥∥∥AEC=∥BED∥在△AEC和△BED中,∥∥AEC∥∥BED∥ASA∥∥23.证明:(1)∵AB∥CD,∴∠B=∠C.在△ABE和△DCF中,∠A=∠D ∠C=∠B AE=DF,∴△ABE≌△DCF(AAS).∴AB=CD.解:(2)∵△ABE≌△CDF,∴AB=CD,∵AB=CF,∴CD=CF.∴△CDF是等腰三角形,∵∠C=∠B=30°,∴∠D=12×(180°−30°)=75°.。

2019_2020学年八年级数学上册第十二章全等三角形12.2三角形全等的判定同步练习(含解析)(新版)新人教版

2019_2020学年八年级数学上册第十二章全等三角形12.2三角形全等的判定同步练习(含解析)(新版)新人教版

第十二章 全等三角形第二节 三角形全等的判定一、单选题(共10小题)1.如图,已知12∠=∠,要说明ABD ACD ∆≅∆,还需从下列条件①ADB ADC ∠=∠,②B C ∠=∠,③DB DC =,④AB AC =中选一个,则正确的选法个数是( )A .1个B .2个C .3个D .4个2.如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D ,E ,BE ,CD 相交于点O ,OB =OC ,连接AO ,则图中一共有( )对全等三角形.A .2B .3C .4D .53.点D 、E 分别在级段AB 、AC 上,CD 与BE 相交于点O ,已知AB =AC ,添加以下哪一个条件不能判定△ABE≌△ACD ( )A .∠B=∠CB .∠BEA=∠CDAC .BE =CD D .CE =BD4.如图,已知点A 、D 、C 、F 在同一直线上,AB =DE ,AD =CF ,添加下列条件后,仍不能判断△ABC ≌△DEF 的是( )A .BC EF =B .A EDF ∠=∠C .//AB DED .BCA EDF ∠=∠5.根据下列图中所给定的条件,其中三角形全等的是( )A .①②B .②③C .①④D .①③6.如图,BE=CF ,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还要添加一个条件是( )A .AB=DCB .∠A=∠DC .∠B=∠CD .AE=BF7.如图,用直尺和圆规作射线OC ,使它平分∠AOB ,则△ODC ≌△OEC 的理由是( )A .SSSB .SASC .AASD .HL8.工人师傅常用角尺平分一个任意角,具体做法如下:如图,已知∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与点M ,N 重合,则过角尺顶点C 的射线OC 便是∠AOB 角平分线.在证明△MOC≌△NOC 时运用的判定定理是( )A .SSSB .SASC .ASAD .AAS9.如图,点D 、E 分别在线段AB 、AC 上,CD 与BE 相交于点O .若AB=AC ,则添加下列条件仍不能判定ABE ACD ∆≅∆的是( )A .BE CD =B .AD AE =C .BD CE = D .B C ∠=∠10.在下列条件下,不能判定ABC V ≌''(AB C V )A .'A A ∠=∠,''AB A B =,''BC B C = B .'A A ∠=∠,'C C ∠=∠,''AC A C =C .'B B ∠=∠,'C C ∠=∠,''AC A C =D .''BA B A =,''BC B C =,''AC A C =二、填空题(共5小题)11.(2019·湖南中考真题)如图,已知AD AE =,请你添加一个条件,使得ADC AEB △≌△,你添加的条件是_____.(不添加任何字母和辅助线)12.(2018·安徽朱仙庄矿中学初一期中)如图,已知∠BAC=∠DAE=90°,AB=AD ,要使△ABC≌△ADE,还需要添加的条件是______(只需添加一个条件即可)13.(2018·廉江市实验学校初二期中)如图,点D 、E 分别在线段AB 、AC 上,AE=AD,要使△ABE≌△ACD,则需添加的一个条件是____.14.(2018·四川中考真题)如图,已知AB=BC ,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是___.(只需写一个,不添加辅助线)15.(2019·武汉市育才中学初二期中)如图,四边形ABCD ,AB∥CD,∠ABC=∠BCD=90°,点E 为边BC 上一点,连接AE 、DE ,AE=DE ,AE⊥DE,若AB=1,CD=3,则线段BC=_____三、解答题(共3小题)16.(2019·湖北中考真题)如图,在ABC ∆中,D 是BC 边上的一点,AB DB =,BE 平分ABC ∠,交AC 边于点E ,连接DE .(1)求证:ABE DBE ∆≅∆;(2)若100A ∠=︒,50C ∠=︒,求AEB ∠的度数.17.(2019·湖北中考真题)如图,已知90C D ∠=∠=︒,BC 与AD 交于点E ,AC BD =,求证:AE BE =.18.(2019·湖南中考真题)已知,如图,AB =AE ,AB∥DE,∠ECB=70°,∠D=110°,求证:△ABC≌△EAD.第十二章 全等三角形(解析版)第二节 三角形全等的判定一、单选题(共10小题)1.如图,已知12∠=∠,要说明ABD ACD ∆≅∆,还需从下列条件①ADB ADC ∠=∠,②B C ∠=∠,③DB DC =,④AB AC =中选一个,则正确的选法个数是( )A .1个B .2个C .3个D .4个【答案】C 【解析】欲使△ABD≌△ACD,已知∠1=∠2,AD 公共,可根据全等三角形判定定理AAS 、SAS 、ASA 添加条件,逐一证明即可.【详解】解:∵∠1=∠2,AD 公共,①如添加∠ADB=∠ADC,利用ASA 即可证明△ABD≌△ACD;②如添加∠B=∠C,利用AAS 即可证明△ABD≌△ACD;③如添加DB=DC ,因为SSA ,不能证明△ABD≌△ACD,所以此选项不能作为添加的条件;④如添加AB=AC ,利用SAS 即可证明△ABD≌△ACD;故选:C .【点睛】此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE,CD相交于点O,OB=OC,连接AO,则图中一共有()对全等三角形.A.2 B.3 C.4 D.5【答案】C【解析】共有四对.分别为△ADO≌△AEO,△ADC≌△AEB,△ABO≌△ACO,△BOD≌△COE.做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.【详解】解:∵CD⊥AB,BE⊥AC,OB=OC,∴∠ADO=∠AEO=90°,∠DOB=∠EOC,∵BO=CO,∴△DOB≌△EOC;∴OD=OE,BD=CE;∵OA=OA,OD=OE,∠ADO=∠AEO=90°,∴△ADO≌△AEO;∴AD=AE,∠DAO=∠EAO;∵AB=AC,∠DAO=∠EAO,OA=OA,∴△ABO≌△ACO;∵AD=AE,AC=AB,∠BAE=∠CAD,∴△ADC≌△ABE(SSS).所以共有四对全等三角形.故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.点D、E分别在级段AB、AC上,CD与BE相交于点O,已知AB=AC,添加以下哪一个条件不能判定△ABE≌△ACD ()A .∠B=∠CB .∠BEA=∠CDAC .BE =CD D .CE =BD【答案】C 【解析】把选项代入,可知A 、B 、D 都符合全等三角形的判定,只有C 项不符合.【详解】添加A 选项中条件可用ASA 判定两个三角形全等;添加B 选项以后是AAS ,判定两个三角形全等;添加C 是SSA ,无法判定这两个三角形全等;添加D 因为AB=AC ,CE =BD ,所以AD=AE ,又因为∠A=∠A,AB=AC 所以,这两个三角形全等,SAS. 故选C .【点睛】本题考查全等三角形的判定,要掌握ASA ,SSS ,SAS ,AAS 是解题的关键.4.如图,已知点A 、D 、C 、F 在同一直线上,AB =DE ,AD =CF ,添加下列条件后,仍不能判断△ABC ≌△DEF 的是( )A .BC EF =B .A EDF ∠=∠C .//AB DED .BCA EDF ∠=∠【答案】D 【解析】首先根据等式的性质可得AC DF =,然后利用SSS 、SAS 、ASA 、AAS 进行分析即可.【详解】解:∵AD =CF ,∴AD +CD =CF +DC ,∴AC =DF ,A 、添加BC =EF 可利用SSS 定理判定△ABC ≌△DEF ,故此选项不合题意;B 、添加∠A =∠EDF 可利用SAS 定理判定△ABC ≌△DEF ,故此选项不合题意;C 、添加AB ∥DE 可证出∠A =∠EDC ,可利用SAS 定理判定△ABC ≌△DEF ,故此选项不合题意;D 、添加∠BCA =∠EDF 不能判定△ABC ≌△DEF ,故此选项符合题意;故选:D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.根据下列图中所给定的条件,其中三角形全等的是()A.①②B.②③C.①④D.①③【答案】C【解析】四个三角形均给出了两个边和一个角,根据三角形判定条件,即可正确确定答案.【详解】解:四个三角形均给出了两个边和一个角且分别为3,3.5和65。

人教版 八年级上册数学 12.2 全等三角形的判定 同步训练(含答案)

人教版 八年级上册数学 12.2 全等三角形的判定 同步训练(含答案)

人教版八年级数学12.2 全等三角形的判定同步训练一、选择题(本大题共10道小题)1. 如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能..判定△ABE≌△ACD()A. ∠B=∠CB. AD=AEC. BD=CED. BE=CD2. 如图,小强画了一个与已知△ABC全等的△DEF,他画图的步骤是:(1)画DE =AB;(2)在DE的同旁画∠HDE=∠A,∠GED=∠B,DH,EG相交于点F,小强画图的依据是()A.ASA B.SASC.SSS D.AAS3. 如图所示,已知AB∥DE,点B,E,C,F在同一直线上,AB=DE,BE=CF,∠B=32°,∠A=78°,则∠F等于()A.55°B.65°C.60°D.70°4. 如图,李颖同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最合理的办法是带哪块玻璃去()A.只带①B.只带②C.只带③D.带①和②5. 已知△ABC的六个元素,下列甲、乙、丙三个三角形中标出了某些元素,则与△ABC全等的三角形是()A.只有乙B.只有丙C.甲和乙D.乙和丙6. 如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠DB.∠ACB=∠DBCC.AC=DBD.AB=DC7. 在Rt△ABC和Rt△DEF中,∠C=∠F=90°,下列条件不能判定Rt△ABC≌Rt△DEF的是()A.AC=DF,∠B=∠E B.∠A=∠D,∠B=∠EC.AB=DE,AC=DF D.AB=DE,∠A=∠D8. 如图,AB⊥BC,BE⊥AC,垂足分别为B,E,∠1=∠2,AD=AB,则下列结论正确的是()A.∠1=∠EFDB.BE=ECC.BF=CDD.FD∥BC9. 如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=6,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE等于()A. 2B. 3C. 2D. 610. 现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,OA=a,AB=b.小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误二、填空题(本大题共7道小题)11. 如图,AB=DE,∠1=∠2,添加一个适当的条件,使△ABC≌△DEC,则需添加的条件是__________(不添加任何辅助线,填一个即可).12. 如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是________(只填一个即可).13. 如图K-10-10,CA=CD,AB=DE,BC=EC,AC与DE相交于点F,ED与AB相交于点G.若∠ACD=40°,则∠AGD=________°.14. 如图,在△ABC中,D,E分别是边AB,AC上的点,过点C作平行于AB 的直线交DE的延长线于点F.若DE=FE,AB=5,CF=3,则BD的长是________.15. 如图,若AB=AC,BD=CD,∠A=80°,∠BDC=120°,则∠B=________°.16. 如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F.若EF=5 cm,则AE =________cm.17. 如图,已知△ABC(AC>AB),DE=BC,以D,E为顶点作三角形,使所作的三角形与△ABC全等,则这样的三角形最多可以作出________个.三、解答题(本大题共4道小题)18. 如图,点B,C分别在∠MAN的边AM,AN上,点E,F在∠MAN内部的射线AD上,∠1,∠2分别是△ABE,△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE ≌△CAF.19. 在四边形ABCD 中,AB =AD .(1)如图①,若∠B =∠D =90°,E ,F 分别是边BC ,CD 上的点,且∠EAF =12∠BAD .请直接写出线段EF ,BE ,FD 之间的数量关系:____________.(2)如图②,若∠B +∠D =180°,E ,F 分别是边BC ,CD 上的点,且∠EAF =12∠BAD ,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由. (3)如图③,若∠B +∠ADC =180°,E ,F 分别是边BC ,CD 延长线上的点,且∠EAF =12∠BAD ,请直接写出EF ,BE ,FD 三者的数量关系.20. 如图①,点A ,B ,C ,D 在同一直线上,AB=CD ,作EC ⊥AD 于点C ,FB⊥AD 于点B ,且AE=DF . (1)求证:EF 平分线段BC ;(2)若将△BFD 沿AD 方向平移得到图②,其他条件不变,(1)中的结论是否仍成立?请说明理由.21. (1)如图①,在△ABC 中,∠BAC =90°,AB =CA ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为D ,E.求证:DE =BD +CE.(2)如图②,将(1)中的条件改为:在△ABC 中,AB =CA ,D ,A ,E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角,则结论DE =BD +CE 是否成立?若成立,请你给出证明;若不成立,请说明理由.人教版 八年级数学 12.2 全等三角形的判定同步训练-答案一、选择题(本大题共10道小题)1. 【答案】D【解析】A.当∠B =∠C 时,在△ABE 与△ACD 中,⎩⎨⎧∠A =∠AAB =AC ∠B =∠C,∴△ABE ≌△ACD (ASA);B.当AD =AE 时,在△ABE 与△ACD 中,⎩⎨⎧AB =AC∠A =∠A AE =AD,∴△ABE ≌△ACD (SAS);C.当BD =CE 时,∵AB =AC ,∴AD =AE ,在△ABE与△ACD 中,⎩⎨⎧AB =AC∠A =∠A AE =AD,∴△ABE ≌△ACD (SAS);D.当BE =CD 时,在△ABE与△ACD 中,有AB =AC ,BE =BD ,∠A =∠A ,只满足两边及一对角对应相等的两个三角形不一定全等.故选D.2. 【答案】A3. 【答案】D[解析] 因为AB∥DE,所以∠B=∠DEF.由条件BE=CF知BC=EF.结合条件AB=DE,可由“SAS”判定△ABC≌△DEF,所以∠F=∠ACB=180°-(∠A+∠B)=180°-(78°+32°)=70°.4. 【答案】C[解析] 由“ASA”的判定方法可知只带③去就可以配出一块和以前一样(全等)的三角形玻璃.5. 【答案】D6. 【答案】C[解析] A.∠A=∠D,∠ABC=∠DCB,BC=BC,符合“AAS”,即能推出△ABC≌△DCB,故本选项不符合题意;B.∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合“ASA”,即能推出△ABC ≌△DCB,故本选项不符合题意;C.∠ABC=∠DCB,AC=DB,BC=BC,不符合全等三角形的判定条件,即不能推出△ABC≌△DCB,故本选项符合题意;D.AB=DC,∠ABC=∠DCB,BC=CB,符合“SAS”,即能推出△ABC≌△DCB,故本选项不符合题意.故选C.7. 【答案】B[解析] 选项A,D均可由“AAS”判定Rt△ABC≌Rt△DEF,选项C 可由“HL”判定Rt△ABC≌Rt△DEF,只有选项B不能判定Rt△ABC≌Rt△DEF.8. 【答案】D[解析] 在△AFD和△AFB中,∴△AFD≌△AFB.∴∠ADF=∠ABF.∵AB⊥BC,BE⊥AC,∴∠BEC=∠ABC=90°.∴∠ABF+∠EBC=90°,∠C+∠EBC=90°. ∴∠ADF=∠ABF=∠C. ∴FD ∥BC.9. 【答案】B【解析】如解图,连接OC ,由已知条件易得∠A =∠OCE ,CO =AO ,∠DOE =∠COA ,∴∠DOE -∠COD =∠COA -∠COD ,即∠AOD =∠COE ,∴△AOD ≌△COE (ASA),∴AD =CE ,进而得CD +CE =CD +AD =AC=22AB =3,故选B.10. 【答案】A[解析] AB=b ,AB 是斜边,小惠作的斜边长是b 符合条件,而小雷作的是一条直角边长是b.故小惠的作法正确,小雷的作法错误.二、填空题(本大题共7道小题)11. 【答案】答案不唯一,如∠B =∠E12. 【答案】答案不唯一,如AB =DE[解析] ∵BF =CE ,∴BC =EF.在△ABC 和△DEF 中,⎩⎨⎧AB =DE ,∠B =∠E ,BC =EF ,∴△ABC ≌△DEF(SAS).13. 【答案】40[解析] 在△ABC 和△DEC 中,⎩⎨⎧CA =CD ,AB =DE ,BC =EC ,∴△ABC ≌△DEC(SSS). ∴∠A =∠D.又∵∠AFG =∠DFC , ∴∠AGD =∠ACD =40°.14. 【答案】2[解析] ∵CF ∥AB ,∴∠A =∠FCE.在△ADE 和△CFE 中,⎩⎨⎧∠A =∠FCE ,∠AED =∠CEF ,DE =FE ,∴△ADE ≌△CFE(AAS). ∴AD =CF =3.∴BD =AB -AD =5-3=2.15. 【答案】20[解析] 如图,过点D 作射线AF.在△BAD 和△CAD 中,⎩⎨⎧AB =AC ,AD =AD ,BD =CD ,∴△BAD ≌△CAD(SSS). ∴∠BAD =∠CAD ,∠B =∠C.∵∠BDF =∠B +∠BAD ,∠CDF =∠C +∠CAD , ∴∠BDF +∠CDF =∠B +∠BAD +∠C +∠CAD , 即∠BDC =∠B +∠C +∠BAC. ∵∠BAC =80°,∠BDC =120°, ∴∠B =∠C =20°.16. 【答案】3[解析] ∵∠ACB =90°,∴∠ECF +∠BCD =90°.∵CD ⊥AB ,∴∠BCD +∠B =90°. ∴∠ECF =∠B.在△ABC 和△FCE 中,⎩⎨⎧∠B =∠ECF ,BC =CE ,∠ACB =∠FEC ,∴△ABC ≌△FCE(ASA).∴AC =FE. ∵AE =AC -CE ,BC =2 cm ,EF =5 cm , ∴AE =5-2=3(cm).17. 【答案】4[解析] 能画4个,分别是:以点D 为圆心,AB 长为半径画圆;以点E 为圆心,AC 长为半径画圆,两圆相交于两点(DE 上下各一个),分别与点D ,E 连接后,可得到两个三角形.以点D 为圆心,AC 长为半径画圆;以点E 为圆心,AB 长为半径画圆,两圆相交于两点(DE 上下各一个),分别与点D ,E 连接后,可得到两个三角形.因此最多能画出4个三角形与△ABC 全等.如图.三、解答题(本大题共4道小题)18. 【答案】证明:∵∠1=∠2=∠BAC ,且∠1=∠BAE +∠ABE ,∠2=∠CAF +∠ACF ,∠BAC =∠BAE +∠CAF ,∴∠BAE =∠ACF ,∠ABE =∠CAF.在△ABE 和△CAF 中,⎩⎨⎧∠BAE =∠ACF ,AB =CA ,∠ABE =∠CAF ,∴△ABE ≌△CAF(ASA).19. 【答案】解:(1)EF =BE +FD(2)(1)中的结论EF =BE +FD 仍然成立.证明:如图,延长EB 到点G ,使BG =DF ,连接AG .∵∠ABC +∠D =180°,∠ABG +∠ABC =180°,∴∠ABG =∠D.在△ABG 与△ADF 中,⎩⎨⎧AB =AD ,∠ABG =∠D ,BG =DF , ∴△ABG ≌△ADF(SAS).∴AG =AF ,∠1=∠2.∴∠1+∠3=∠2+∠3=∠BAD -∠EAF.又∵∠EAF =12∠BAD ,∴∠1+∠3=12∠BAD =∠EAF ,即∠EAG =∠EAF.在△AEG 和△AEF 中,⎩⎨⎧AG =AF ,∠EAG =∠EAF ,AE =AE , ∴△AEG ≌△AEF.∴EG =EF.∵EG =BE +BG ,∴EF =BE +FD.(3)EF =BE -FD.20. 【答案】解:(1)证明:∵EC ⊥AD ,FB ⊥AD , ∴∠ACE=∠DBF=90°.∵AB=CD ,∴AB+BC=BC+CD , 即AC=DB.在Rt △ACE 和Rt △DBF 中, ∴Rt △ACE ≌Rt △DBF (HL).∴EC=FB. 在△CEG 和△BFG 中,∴△CEG ≌△BFG (AAS).∴CG=BG ,即EF 平分线段BC.(2)EF 平分线段BC 仍成立.理由:∵EC ⊥AD ,FB ⊥AD ,∴∠ACE=∠DBF=90°.∵AB=CD ,∴AB-BC=CD-BC ,即AC=DB.在Rt △ACE 和Rt △DBF 中, ∴Rt △ACE ≌Rt △DBF (HL).∴EC=FB.在△CEG 和△BFG 中,∴△CEG ≌△BFG (AAS).∴CG=BG ,即EF 平分线段BC.21. 【答案】解:(1)证明:∵BD ⊥直线m ,CE ⊥直线m , ∴∠BDA =∠AEC =90°.∴∠BAD +∠ABD =90°.∵∠BAC =90°,∴∠BAD +∠CAE =90°. ∴∠CAE =∠ABD.在△ADB 和△CEA 中,⎩⎨⎧∠ABD =∠CAE ,∠BDA =∠AEC ,AB =CA , ∴△ADB ≌△CEA(AAS).∴BD =AE ,AD =CE.∴DE =AE +AD =BD +CE.(2)成立.证明:∵∠BDA =∠BAC =α,∴∠DBA +∠BAD =∠BAD +∠EAC =180°-α. ∴∠DBA =∠EAC.在△ADB 和△CEA 中,⎩⎨⎧∠DBA =∠EAC ,∠BDA =∠AEC ,AB =CA ,∴△ADB≌△CEA(AAS).∴BD=AE,AD=CE.∴DE=AE+AD=BD+CE.。

12.2 三角形全等的判定(原卷版)

12.2 三角形全等的判定1.理解和掌握边边边、边角边的方法判断三角形全等;2.理解和掌握角边角和角角边的方法判断三角形全等;3.理解和掌握直角三角形的判定方法。

一、判定方法一:边边边(SSS )1.边边边:三边对应相等的两个三角形全等(可以简写成“边边边“或“SSS “)。

2.书写格式①先写出所要判定的两个三角形。

②列出条件:用大括号将两个三角形中相等的边分别写出。

③得出结论:两个三角形全等。

如下图,在△ABC 和 △A ′B ′C ′中,∵AB =A ′B ′,BC =B ′C ′,AC =A ′C ′,∴△ABC≅△A ′B ′C ′(SSS ).书写判定两个三角形全等的条件:在书写全等的过程中,等号左边表示同一个三角形的量,等号右边表示另一个三角形的量。

如上图,等号左边表示△ABC 的量,等号右边表示 △A ′B ′C ′的量。

3.作一个角等于已知角已知:∠AOB 。

求作: ∠A ′O ′B ′,使 ∠A ′O ′B ′=∠AOB .作法:如上图所示,①以点O 为圆心、任意长为半径画弧,分别交 OA ,OB 于点 C ,D 。

②画一条射线( O ′A ′,以点 O ′为圆心、OC 长为半径画弧,交( O ′A ′于点 C ′.③以点C ′为圆心、CD 长为半径画弧,与上一步中所画的弧交于点 D ′.④过点。

D ′画射线 O ′B ′,则 ∠A ′O ′B ′=∠AOB .题型一 利用SSS 直接证明三角形全等如图,已知AC DB =,要用“SSS ”判定ABC DCB @V V ,则只需添加一个适当的条件是_____.1.如图,已知AC DB =,要使得ABC DCB @V V ,根据“SSS ”的判定方法,需要再添加的一个条件是_______.2.如图,AB DC =,若要用“SSS ”证明ABC DCB △△≌,需要补充一个条件,这个条件是__________.题型二 全等三角形的性质与SSS 综合如图,点E 、点F 在BD 上,且AB CD =,BF DE =,AE CF =,求证:AB CD ∥.1.已知:如图,RPQ D 中,RP RQ =,M 为PQ 的中点.求证:RM 平分PRQ Ð.2.已知如图,四边形ABCD 中,AB BC =,AD CD =,求证:A C Ð=Ð.题型三 作一个角等于已知角如图:(1)在A Ð的内部利用尺规作CED A Ð=Ð(不写作法,保留作图痕迹)(2)判断直线DE AB 与的位置关系1.如图,已知Ðb 和线段a ,求作ABC V ,使B b Ð=Ð,2,AB a BC a==2.已知a Ð.求作CAB a Ð=Ð.(尺规作图,保留作图痕迹,不写作法)二、判定方法二:边角边(SAS )1.边角边:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边“或“SAS “)。

人教版数学八年级上册 第12章 12

12.2三角形全等的判定一.选择题1.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等2.如图,已知AC⊥BD,垂足为O,AO=CO,AB=CD,则可得到△AOB≌△COD,理由是()A.HL B.SAS C.ASA D.SSS3.如图,△ABC中,∠B=∠C=∠EDF=α,BD=CF,BE=CD,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°4.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.BE=CD C.BD=CE D.AD=AE5.在△ABC和△A'B'C'中,AB=A'B',∠B=∠B',补充条件后仍不一定能保证△ABC≌△A'B'C',则补充的这个条件是()A.BC=B'C'B.∠A=∠A'C.AC=A'C'D.∠C=∠C'6.如图,已知OA=OB,OC=OD,AD和BC相交于点E,则图中共有全等三角形的对数()A.2对B.3对C.4对D.5对7.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DAC D.∠B=∠D=90°8.如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,可以证明△EDC≌△ABC,得到ED=AB,因此测得ED的长就是AB的长(如图),判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.HL9.如图,已知AB=AC,添加下列条件仍不能使△ABD≌△ACD的是()A.∠B=∠C=90°B.AD平分∠BAC C.AD平分∠BDC D.BD=CD10.如图,在△ABC和△DEF中,给出以下六个条件中,以其中三个作为已知条件,不能判断△ABC和△DEF全等的是()①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.A.①⑤②B.①②③C.④⑥①D.②③④二.填空题11.根据下列已知条件,能够画出唯一△ABC的是(填写正确的序号).①AB=5,BC=4,∠A=60°;②AB=5,BC=6,AC=7;③AB=5,∠A=50°,∠B=60°;④∠A=40°,∠B=50°,∠C=90°.12.如图,已知CA=BD判定△ABD≌△DCA时,还需添加的条件是.13.如图所示,在△ABC中,D是BC边上的中点,∠B=∠C,请你添加一个条件,使DE =DF成立.你添加的条件是(不再添加辅助线和字母).14.如图,在△ABC中,E为边AC的中点,CN∥AB,过点E作直线交AB于点M,交CN 于点N.若BM=6cm,CN=5cm,则AB=cm.15.如图,方格纸中△DEF的三个顶点分别在小正方形的顶点上,像这样的三个顶点都在格点上的三角形叫格点三角形,则与△DEF全等的格点(顶点在每个小格的顶点上)三角形能画个.三.解答题16.如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠EGC=∠D.17.如图,△ADC中,DB是高,点E是DB上一点,AB=DB,EB=CB,M,N分别是AE,CD上的点,且AM=DN.(1)求证:△ABE≌△DBC.(2)探索BM和BN的关系,并证明你的结论.18.如图,已知点A、F、E、C在同一条直线上,AB∥CD,∠ABE=∠CDF,AF=CE,连结BC、AD.(1)请直接写出图中所有的全等三角形(不添加其它的线);(2)从(1)中的全等三角形中任选一组进行证明.19.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.参考答案与试题解析一.选择题1.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选:B.2.【解答】解:在Rt△AOB和Rt△COD中,,∴Rt△AOB≌Rt△COD(HL),则如图,已知AC⊥BD,垂足为O,AO=CO,AB=CD,则可得到△AOB≌△COD,理由是HL,故选:A.3.【解答】解:A、正确.∵∠A+∠B+∠C=180°,∠B=∠C=α,∴2α+∠A=180°.B、错误.不妨设,α+∠A=90°,∵2α+∠A=180°,∴α=90°,这个显然与已知矛盾,故结论不成立.C、错误.∵2α+∠A=180°,∴2α+∠A=90°不成立.D、错误.∵2α+∠A=180°,∴α+∠A=180°不成立.故选:A.4.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添AD=AE,利用SAS即可证明△ABE≌△ACD.故选:B.5.【解答】解:A、若添加BC=BˊCˊ,可利用SAS进行全等的判定,故本选项错误;B、若添加∠A=∠A',可利用ASA进行全等的判定,故本选项错误;C、若添加AC=A'C',不能进行全等的判定,故本选项正确;D、若添加∠C=∠Cˊ,可利用AAS进行全等的判定,故本选项错误;故选:C.6.【解答】解:在△AOD和△BOC中∴△AOD≌△BOC(SAS),∴∠A=∠B,∵OC=OD,OA=OB,∴AC=BD,在△ACE和△BDE中∴△ACE≌△BDE(AAS),∴AE=BE,在△AOE和△BOE中∴△AOE≌△BOE(SAS),∴∠COE=∠DOE,在△COE和△DOE中∴△COE≌△DOE(SAS),故全等的三角形有4对,故选:C.7.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.8.【解答】解:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选:B.9.【解答】解:A、符合HL定理,能推出△ABD≌△ACD,故本选项错误;B、符合SAS定理,能推出△ABD≌△ACD,故本选项错误;C、不符合全等三角形的判定定理,不能推出△ABD≌△ACD,故本选项正确;D、符合SSS定理,能推出△ABD≌△ACD,故本选项错误;故选:C.10.【解答】解:在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);∴A不符合题意;在△ABC和△DEF中,,∴△ABC≌△DEF(SSS);∴B不符合题意;在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴C不符合题意;在△ABC和△DEF中,D②③④不能判断△ABC和△DEF全等,故选:D.二.填空题(共5小题)11.【解答】解:①当两边及其中一边的对角确定时,此时是ASS,可知这个三角形是不确定的;②当三角形的三边确定时,由SSS可知这个三角形是确定的;③此时可知三角形的两角及其夹边确定,由ASA可知这个三角形是确定的;④根据∠A=40°,∠B=50°,∠C=90°不能画出唯一三角形;故答案为:②③.12.【解答】解:由题意知,CA=BD,AD=DA,①添加AB=DC时,利用全等三角形的判定定理SSS可以证得△ABD≌△DCA.②添加∠ADB=∠DAC时,利用全等三角形的判定定理SAS可以证得△ABD≌△DCA.故答案可以是:AB=DC(答案不唯一).13.【解答】解:答案不唯一,如BE=CF或AE=AF或∠BED=∠CFD或∠AED=∠AFD 或∠BDE=∠CDF等.①条件是BE=CF,在△BDE和△CDF中,∴△BED≌△CFD(SAS),∴DE=DF;②条件是AE=AF,∵∠B=∠C,∴AB=AC,∵AE=AF,∴BE=CF,由①可得结论DE=DF;③条件∠BED=∠CFD,在△BDE和△CDF中,∴△BED≌△CFD(AAS),∴DE=DF;④条件∠AED=∠AFD∵∠AED=∠AFD,∴∠BED=∠CFD,由③可得结论DE=DF;⑤条件∠BDE=∠CDF在△BDE和△CDF中,∴△BED≌△CFD(ASA),∴DE=DF;故答案为:答案不唯一,如BE=CF或AE=AF或∠BED=∠CFD或∠AED=∠AFD或∠BDE=∠CDF等.14.【解答】解:∵CN∥AB,∴∠NCE=∠MAE,又∵E是AC中点,∴AE=CE,而∠AEM=∠CEN,在△CNE和△AME中,,∴△CNE≌△AME(ASA),∴AM=CN,∴AB=AM+BM=CN+BM=5+6=11,故答案为:1115.【解答】解:如图示2×3排列的可找出全等的三角形,除去△DEF外有7个与△DEF 全等的三角形:△DAF,△BGQ,△CGQ,△NFH,△FHA,△CRG,△KWR,△CRK共8个,故答案为8.三.解答题(共4小题)16.【解答】证明:如图,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).∴∠A=∠D,∠B=∠DEF.∴AB∥DE,∴∠A=∠EGC,∴∠A=∠EGC=∠D.17.【解答】(1)证明:∵DB是高,∴∠ABE=∠DBC=90°.在△ABE和△DBC中,,∴△ABE≌△DBC.(2)解:BM=BN,MB⊥BN.证明如下:∵△ABE≌△DBC,∴∠BAM=∠BDN.在△ABM和△DBN中,∴△ABM≌△DBN(SAS).∴BM=BN,∠ABM=∠DBN.∴∠DBN+∠DBM=∠ABM+∠DBM=∠ABD=90°.∴MB⊥BN.18.【解答】解:(1)△ABE≌△CDF,△ABC≌△CDA,△BEC≌△DF A,(2)选△ABE≌△CDF进行证明,证明:∵AB∥CD,∴∠BAE=∠DCF,∵AF=CE,∴AF+EF=CE+EF,即AE=CF.在△ABE和△CDF中,∴△ABE≌△CDF(AAS).若选另两对证明如下:∵△ABE≌△CDF,∴AB=DC,∵AB∥CD,∴∠BAC=∠DCA,在△ABC和△CDA中∴△ABC≌△CDA(SAS).∴AD=CB,∠ACB=∠CAD,∵AF=CE,∴△AFD≌△CEB(SAS).19.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC和△CEB中,∴△ADC≌△CEB(AAS);(2)解:由题意得:AD=2×3=6cm,BE=7×2=14cm,∵△ADC≌△CEB,∴EC=AD=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.12.3角平分线的性质一.选择题1.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,若CD=4cm,则点D到AB的距离DE是()A.2cm B.3cm C.4cm D.5cm2.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D.若AD=4,则点D到BC的距离为()A.1B.C.D.43.在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=2,AB=4,则D 到BC的距离是()A.2B.3C.4D.54.如图,AD是△ABC的角平分线,AC=AB,BC=15,则BD的长为()A.5B.6C.9D.105.如图,已知在△ABC中,AC=6,BC=8,AB=10,AD平分∠CAB,则△ABD的面积为()A.14B.15C.16D.6.下列说法正确的是()A.同位角相等B.同一平面内的两条不重合的直线有相交、平行和垂直三种位置关系C.三角形的三条高线一定交于三角形内部同一点D.三角形三条角平分线的交点到三角形三边的距离相等7.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=4,AB=6,则AE +DE 等于( )A .3B .4C .5D .68.直线l 1、l 2、l 3表示三条相互交叉的公路,现要三条公路的内部建一个货物中转站,要求它到三条公路的距离相等,那么选择油库的位置有( )处.A .1B .2C .3D .49.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2BF .给出下列四个结论:①DE =DF ;②AC =4BF ;③DB =DC ;④AD ⊥BC ,其中正确的结论共有( )A .4个B .3个C .2个D .1个10.如图,在Rt △ABC 中,∠ACB =90°,∠BAC 的平分线交BC 于D .过C 点作CG ⊥AB 于G ,交AD 于E .过D 点作DF ⊥AB 于F .下列结论:①∠CED =∠CDE ;②∠ADF =2∠ECD ;③S △AEC :S △AEG =AC :AG ;④S △CED =S △DFB ;⑤CE =DF .其中正确结论的序号是( )A .①③④B .①②⑤C .③④⑤D .①③⑤二.填空题11.在△ABC中,∠BAC和∠ABC的平分线相交于P,若P到AB的距离为10,则它到边AC和BC的距离和为.12.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,若△ABC的面积为9,DE=2,AB=5,则AC长是.13.如图所示,已知O为∠A和∠C的平分线的交点,OE⊥AC于E.若OE=2,则O到AB与O到CD的距离之和=.14.如图,在Rt△ABC中,∠C=90°,BD是三角形的角平分线,交AC于点D,AD=3cm,AC=5cm,则点D到AB边的距离是cm.15.如图,∠B=∠D=90゜,根据角平分线性质填空:(1)若∠1=∠2,则=.(2)若∠3=∠4,则=.三.解答题16.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)17.如图,已知四边形ABCD中,∠C=∠D=90°,AE平分∠DAB,BE平分∠ABC,且E 在D上.(1)求∠AEB;(2)求证:DE=CE.18.如图,四边形ABCD中,∠B=∠C=90°,∠CED=35°,DE平分∠ADC.(1)求∠DAB的度数;(2)若E为BC中点,求∠EAB的度数.19.如图,在Rt△ABC中,∠C=90°,BC=5,∠A的平分线交BC于点E,EF⊥AB于点F,点F恰好是AB的一个三等分点(AF>BF).求BE的长.参考答案与试题解析一.选择题1.【解答】解:过D点作DE⊥AB于E,如图,∵∠ABC的平分线BD交AC于点D,DC⊥BC,DE⊥AB,∴DE=DC=4,即点D到AB的距离DE是4cm.故选:C.2.【解答】解:过D点作DH⊥BC于H,如图,∵BD平分∠ABC,DA⊥AB,DH⊥BC,∴DH=DA=4.故选:D.3.【解答】解:作DE⊥BC于H,如图,∵∠ABC的平分线BD交AC于点D,DA⊥AB,DH⊥BC,∴DH=DA=2,即D到BC的距离是2.故选:A.4.【解答】解:过D作DE⊥AC于E,DF⊥AB于F,∵AD是△ABC的角平分线,∴DF=DE,∴====,∵BC=15,∴BD=15×=9,故选:C.5.【解答】解:如图,作DP⊥AB于P.∵AC=6,BC=8,AB=10,∴AC2+BC2=AB2,∴∠ACB=90°,∵AD平分∠CAB,DC⊥AC,DP⊥AB,∴DC=DP,设DC=DP=x,∵S△ABC =S△ACD+S△ABD,∴ACBC=ACDC+ABDP,∴6×8=6x+10x,∴x=3,∴S△ABD=×AB×DP=×10×3=15.故选:B.6.【解答】解:A、两直线平行,同位角相等,故错误;B、同一平面内的两条不重合的直线有相交、平行两种位置关系,故错误;C、钝角三角形的三条高线的交点位于三角形的外部,故错误;D、三角形三条角平分线的交点到三角形三边的距离相等,正确,故选:D.7.【解答】解:∵BE平分∠ABC,DE⊥AB,∠ACB=90°,∴ED=EC,∴AE+DE=AE+EC=AC=4,故选:B.8.【解答】解:作直线l1、l2、l3所围成的内角平分线相交于点P,根据角平分线的性质可得到这点P到三条公路的距离分别相等.故选:A.9.【解答】解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故③④正确,在△CDE与△DBF中,,∴△CDE≌△DBF(ASA),∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故②错误.故选:B.10.【解答】解:∵∠ACB =90°,CG ⊥AB ,∴∠ACE +∠BCG =90°,∠B +∠BCG =90°,∴∠ACE =∠B .∵∠CED =∠CAE +∠ACE ,∠CDE =∠B +∠DAB ,AE 平分∠CAB , ∴∠CED =∠CDE ,①正确;∴CE =CD ,又AE 平分∠CAB ,∠ACB =90°,DF ⊥AB 于F ,∴CD =DF .∵E 到AC 与AG 的距离相等,∴S △AEC :S △AEG =AC :AG ,③正确;∵CE =CD ,CD =DF ,∴CE =DF ,⑤正确.无法证明∠ADF =2∠FDB 以及S △CED =S △DFB.故选:D .二.填空题(共5小题) 11.【解答】解:过PZ 作PD ⊥AB 于D ,PE ⊥BC 于E ,PF ⊥AC 于F , 则PD =10,∵∠BAC 和∠ABC 的平分线相交于P ,∴PF =PD =10,PE =PD =10,∴PE +PF =20,故答案为:20.12.【解答】解:过D 作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,∴DE=DF=2,∵S=AB×DE=×5×2=5,△ADB∵△ABC的面积为9,∴△ADC的面积为9﹣5=4,∴AC×DF=4,∴AC×2=4,∴AC=4故答案为:4.13.【解答】解:过点O作OM⊥AB于点M,交CD于N,则ON⊥CD.∵O为∠A和∠C的平分线的交点,OE⊥AC,∴OM=OE=2,ON=OE=2,∴O到AB与O到CD的距离之和=2+2=4.故答案为:4.14.【解答】解:如图,过点D作DE⊥AB于E,∵AD=3cm,AC=5cm,∴CD=AC﹣AD=5﹣3=2cm,∵∠C=90°,BD是三角形的角平分线,∴DE=CD=2cm,即点D到AB边的距离是2cm.故答案为:2.15.【解答】解:(1)∵∠B=∠D=90°,∴AB⊥BC,AD⊥DC,∵∠1=∠2,∴BC=CD,故答案为:BC,DC.(2)∵AB⊥BC,AD⊥DC,∵∠3=∠4,∴AB=AD,故答案为:AB,AD.三.解答题(共4小题)16.【解答】解:图象如图所示,∵∠EAC=∠ACB,∴AD∥CB,∵AD=BC,∠DAC=∠ACB,AC=CA,∴△ACD≌△CAB(SAS),∴∠ACD=∠CAB,∴AB∥CD.17.【解答】(1)解:∵AE平分∠DAB,BE平分∠ABC,∴∠BAE=DAB,∠ABE=ABC,∵AD∥BC,∴∠DAB+∠ABC=180°,∴∠EAB+∠ABE=90°,∴∠AEB=180°﹣(∠EAB+∠ABE)=90°;(2)延长AE、BC交于点M,∵AD∥BC∴∠DAE=∠CME,∵AE平分∠BAD,∴∠DAE=∠BAM,∴∠BAM=∠CME,∴AB=BM,∵∠AEB=90°,∴AE=EM,∵AD∥BC,∴△ADE∽△MCE,∴=,∴DE=CE.18.【解答】解:(1)∵∠C=90°,∠CED=35°,∴∠CDE=55°,∵DE平分∠ADC,∴∠ADC=2∠CDE=110°,∵∠B=90°,∴∠DAB=360°﹣90°﹣90°﹣110°=70°;(2)过E作EF⊥AD于F,∵DE平分∠ADC,∴CE=FE,∵E为BC中点,∴BE=CE=EF,∴AE平分∠DAB,∵∠DAB=70°,∴∠EAB=35°.19.【解答】解:∵AE是∠BAC的平分线,EC⊥AC,EF⊥AF,∴CE=EF,在Rt△ACE与Rt△AFE中,,∴Rt△ACE≌Rt△AFE(HL),∴AC=AF,∵点F是AB的一个三等分点,设BF=m,则AC=2m,AF=2m,AB=3m,∴AB2=BC2+AC2,∴(3m)2=52+(2m)2,∴m=,∴BF=,AB=3∵∠BFE=∠C=90°,∠B=∠B,∴△BEF∽△ABC,∴,即=,∴BE=3.。

三角形全等的判定(SAS)(第2课时)(课件)数学八年级上册同步教学课件 作业(人教版)

等吗?如何验证?
取A'B'=AB,在射线A'E
②这两个三角形全
上截取A'C'=AC;
等是满足哪三个条
件?
(1)画∠DA'E=∠A;
(3)连接B'C '.
知识要点
“边角边”判定方法
文字语言:两边和它们的夹角分别相等的两个
三角形全等
C
(简写成“边角边”或“SAS ”).
几何语言:
A
在△ABC 和△ DEF中,
=DF,则图中全等的三角形有 ( C )
A.1对
B.2对
C.3对
D.4对
C
中考链接
1.如图,已知AB=AD,AC=AE,∠BAE=∠DAC.
求证:∠C=∠E.
解:∵∠BAE=∠DAC,∴∠BAE–∠CAE=∠DAC–∠CAE,即
∠BAC=∠DAE,在△ABC和△ADE中,

=
∠ = ∠
需配一块同样的玻璃,为方便起见,只需带上碎

片_____即可.
32
6.如图,在△ABC中,BD=CE,BE=CF,若∠A=∠B=∠C=
D)
60°,则∠DEF的度数是(
A.75°
B.70°
C.65°
D.60°
33
7.用同种材料制成的金属框架如图所示,已知∠B=∠E,AB=DE,
BF=EC,其中△ABC的周长为24 cm,CF=3 cm,则制成整个金属
A
△ABD.这个实验说明了什么?
△ABC和△ABD满
足AB=AB ,AC=AD,
∠B=∠B,但△ABC
与△ABD不全等. B
C
D
画一画:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【本文由书林工作坊整理发布,谢谢你的关注!】
1

12.2三角形全等的判定(2)
一、选择题
1. 如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )
A.∠1=∠2 B.∠B=∠C C.∠D=∠E D.∠BAE=∠CAD

2. 能判定△ABC≌△A′B′C′的条件是()
A.AB=A′B′,AC=A′C′,∠C=∠C′
B. AB=A′B′,∠A=∠A′,BC=B′C′
C. AC=A′C′,∠A=∠A′,BC=B′C
D. AC=A′C′,∠C=∠C′,BC=B′C
3. 如图,AD=BC,要得到△ABD和△CDB全等,可以添加的条件是( )
A. AB∥CD B. AD∥BC C. ∠A=∠C D. ∠ABC=∠CDA

4.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一
组条件是( )
A.BC=EC,∠B=∠E B.BC=EC,AC=DC
C.BC=DC,∠A=∠D D.AC=DC,∠A=∠D
5.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有( )
A.1对 B.2对 C.3对 D.4对
6.在△ABC和CBA中,∠C=C,b-a=ab,b+a=ab,则这两个三角形()
A. 不一定全等 B.不全等
C. 全等,根据“ASA” D. 全等,根据“SAS”

7.如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是( )

第1题
第4题图 第3题图
【本文由书林工作坊整理发布,谢谢你的关注!】
2

A.AB=AC B.∠BAC=90° C.BD=AC D.∠B=45°
8.如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形
ABCD的周长为( )
A.22 B.24 C.26 D.28

二、填空题
9. 如图,已知BD=CD,要根据“SAS”判定△ABD≌△ACD,则还需添加的条件是.
10.如图,AC与BD相交于点O,若AO=BO,AC=BD,∠DBA=30°,∠DAB=50°,
则∠CBO=
度.

11.西如图,点B、F、C、E在同一条直线上,点A、D在直线BE的两侧,AB∥DE,BF=CE,请添加一个
适当的条件:,
使得AC=DF.
12.如图,已知ADAB,DACBAE,要使ABC△≌ADE△,可补充的条件是(写出一个即可)

13.(2005•天津)如图,OA=OB,OC=OD,∠O=60°,∠C=25°,则
∠BED=度.

第7题图 第8题图
第9题图第11题图第10题图
【本文由书林工作坊整理发布,谢谢你的关注!】
3

14. 如图,若AO=DO,只需补充就可以根据SAS判定△AOB≌△DOC.
15. 如图,已知△ABC,BA=BC,BD平分∠ABC,若∠C=40°,则∠ABE为
度.
16.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交
CD的延长线于点F,若EF=5cm,则
AE=cm.

17. 已知:如图,DC=EA,EC=BA,DC⊥AC, BA⊥AC,垂足分别是C、A,则
BE与DE的位置关系是 .

18.△ABC中,AB=6,AC=2,AD是BC边上的中线,则AD的取值范围是 .
三、解答题
19. 如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,
AF=DC.求证:BC∥EF.

A
C
E

B
0
D

第12题图第13题图第14题图

C E
D
B

A

第15题图第17题图第16题图
【本文由书林工作坊整理发布,谢谢你的关注!】
4

20.已知:如图,点A、B、C、D在同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.
求证:∠ACE=∠DBF.

21.如图CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.

22. 如图,AB=AC,点E、F分别是AB、AC的中点,求证:△AFB≌△AEC.
23.如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠
DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由。
【本文由书林工作坊整理发布,谢谢你的关注!】
5

相关文档
最新文档