生物脱氮技术

合集下载

简述生物脱氮的流程

简述生物脱氮的流程

简述生物脱氮的流程生物脱氮是指植物或微生物在施肥的情况下,利用大气中的氮气元素组成氮化物,植物或微生物将氮转换成细胞膜可以使用的氮��子,从而满足营养和生长需求。

生物脱氮是一个复杂的化学反应过程,它以复杂的氮氧化物为对象,如氨(NH3)、尿素(NH2-CO-NH2)等,分为两个阶段——氧化脱氮和还原还原脱氮。

一、氧化脱氮是氮的氧化过程,是由微生物和植物共同完成的脱氮过程。

微生物通过氧化还原反应将氮氧化物Wi(包括氨、亚硝酸盐等)转化为硝酸盐(如硝酸钾),植物或微生物再将硝酸盐进一步氧化成硝酸根(NO3-),硝酸根可直接进入植物体内,植物将作为氮源参与生长代谢,因此这种脱氮又被称为生物性氧化脱氮。

通常,微生物都需要存在氧以及水溶性有机物、NO2和NO3,这样可以促进NH3的氧化脱氮,也是氮的源。

微生物利用NH3光合作用,将NH3转化成亚硝酸盐,即将二价氮进行氧化,从而完成氧化脱氮。

二、另外一种脱氮机制是还原脱氮,还原脱氮也叫生物脱氮,指的是植物或微生物通过还原反应将氧化过的硝酸根转化成能够被植物体内直接利用的氨(NH3),或者将硝酸根进一步还原成能经过吸收传递给植物体内氨质能组份的尿素(NH2-CO-NH2),从而满足植物们的营养和生长需求。

可以指出,在微生物进行氧化反应的过程中,也会发生还原反应,其中涉及到微生物所释放的特性碱(如还原酶、NADH等物质),能够通过半乳糖等反应物的中介而完成硝酸根的还原,也就是还原脱氮的过程。

总的而言,生物脱氮是一个复杂而又重要的回收循环过程,维护着微生物、植物和大气中氮的稳定,它为土壤肥力及我们生活中生态平衡提供了良好状态。

只有认识并正确运用生物脱氮这一重要环境变迁过程,才能使植物保持良好的生长状态,实现多种的环境保护措施,最终实现永续发展。

《2024年城市污水处理新型生物脱氮除磷技术研究进展》范文

《2024年城市污水处理新型生物脱氮除磷技术研究进展》范文

《城市污水处理新型生物脱氮除磷技术研究进展》篇一一、引言随着城市化进程的加快,城市污水处理成为环境保护领域亟待解决的问题。

传统的污水处理方法虽然能够满足基本需求,但面对日益增长的城市人口和日益复杂的污水成分,传统的处理技术已经难以满足当前的环保要求。

因此,新型生物脱氮除磷技术的研究与进步对于改善水质、保护生态环境具有十分重要的意义。

本文旨在梳理近年来城市污水处理中新型生物脱氮除磷技术的研究进展。

二、生物脱氮技术研究(一)发展概况生物脱氮技术主要通过微生物的作用,将污水中的氮素转化为无害的氮气排放到大气中。

近年来,研究者们通过优化反应器设计、改进微生物菌群以及调控环境因素等手段,推动了生物脱氮技术的进步。

(二)技术分类目前,生物脱氮技术主要包括厌氧-好氧(A/O)工艺、同步硝化反硝化(SND)技术、短程硝化反硝化等。

这些技术通过不同的反应过程和微生物活动,实现了高效脱氮的效果。

(三)研究进展随着研究的深入,新型生物脱氮技术如微氧脱氮技术、基于膜生物反应器的脱氮技术等逐渐崭露头角。

这些技术不仅提高了脱氮效率,还降低了能耗和运行成本。

三、生物除磷技术研究(一)发展概况生物除磷技术主要通过微生物的代谢活动,将污水中的磷素去除或转化为易于回收的形态。

近年来,随着对微生物除磷机制的了解加深,除磷技术的效率也得到了显著提高。

(二)技术分类常见的生物除磷技术包括聚磷菌(PAOs)除磷工艺、厌氧-好氧(A/O)结合除磷等。

这些技术通过调控微生物的生长环境和代谢过程,实现了对污水中磷的高效去除。

(三)研究进展新型的生物除磷技术如基于微藻的除磷技术、电化学辅助生物除磷技术等逐渐成为研究热点。

这些技术不仅提高了除磷效率,还为后续的磷资源回收提供了可能。

四、新型生物脱氮除磷技术的优势与挑战(一)优势新型生物脱氮除磷技术相比传统技术,具有更高的处理效率、更低的能耗和运行成本。

同时,这些技术还能够实现对氮、磷等营养元素的回收利用,具有良好的经济和环境效益。

《2024年城市污水处理新型生物脱氮除磷技术研究进展》范文

《2024年城市污水处理新型生物脱氮除磷技术研究进展》范文

《城市污水处理新型生物脱氮除磷技术研究进展》篇一一、引言随着城市化进程的加速,城市污水处理问题日益突出。

在众多的污水处理技术中,生物脱氮除磷技术因其高效、经济、环保等优点而备受关注。

本文旨在探讨城市污水处理中新型生物脱氮除磷技术的研究进展,分析其技术特点、应用现状及未来发展趋势。

二、生物脱氮除磷技术概述生物脱氮除磷技术是一种利用微生物的新陈代谢活动,通过生物膜法或活性污泥法等工艺,将污水中的氮、磷等营养物质去除的技术。

该技术具有处理效率高、运行成本低、污泥产量少等优点,是当前城市污水处理领域的研究热点。

三、新型生物脱氮技术研究进展(一)A2/O工艺及其改进型技术A2/O(厌氧-缺氧-好氧)工艺是一种典型的生物脱氮技术。

近年来,研究者们针对A2/O工艺的不足,开发了多种改进型技术,如MBBR(移动床生物膜反应器)、SBR(序批式活性污泥法)等。

这些技术通过优化反应器结构、调整运行参数等手段,提高了脱氮效率,降低了能耗。

(二)新型厌氧氨氧化技术厌氧氨氧化技术是一种利用厌氧氨氧化菌将氨氮转化为氮气的生物脱氮技术。

近年来,研究者们通过优化反应条件、提高菌种活性等手段,推动了厌氧氨氧化技术的发展。

该技术具有脱氮效率高、能耗低等优点,是未来生物脱氮技术的重要发展方向。

四、新型生物除磷技术研究进展(一)PAOs(聚磷菌)强化除磷技术PAOs强化除磷技术是一种利用聚磷菌在厌氧-好氧条件下实现高效除磷的技术。

近年来,研究者们通过优化反应条件、提高聚磷菌活性等手段,提高了PAOs强化除磷技术的除磷效率。

该技术具有除磷效果好、污泥产量少等优点。

(二)化学与生物联合除磷技术化学与生物联合除磷技术是一种结合化学沉淀与生物吸附的除磷技术。

该技术通过投加化学药剂与生物反应相结合的方式,实现高效除磷。

近年来,研究者们针对不同水质条件,优化了药剂种类和投加量,提高了除磷效果。

五、新型生物脱氮除磷技术应用及发展趋势(一)应用现状新型生物脱氮除磷技术在城市污水处理中已得到广泛应用。

生物脱氮原理

生物脱氮原理

生物脱氮原理
生物脱氮是植物利用自身的生理代谢过程转化氮元素的过程,它是植物营养合成和化学合成的一部分,也是植物生长和繁殖所必需的重要组成部分。

氮是植物生长、发育和繁殖的重要营养元素,植物体内的氮元素主要来源于土壤中的氮化物,植物可以从土壤中吸收、利用氮化物,用于合成蛋白质、淀粉、植物激素等生物物质,从而促进自身的生长发育。

但是,植物体内的氮元素是有限的,当植物的氮元素利用完毕,植物就无法生长发育,因此,植物体内的氮元素含量必须通过生物脱氮的方式,以保证植物的正常生长发育,才能获得氮元素的补充。

生物脱氮是通过植物体内的体外氨基酸代谢过程,将有机氨基酸或氨基酸转化为无机氮,从而获得氮元素的一种过程。

植物体内氨基酸代谢过程,主要有三个步骤:氨基酸氧化、氨基酸转移及氨基酸氧化后的转化。

氨基酸氧化过程是指氨基酸在植物体内被氧化为氮气,而氨基酸转移过程则是指氨基酸在植物体内转移为其他物质,如乙酰辅酶A、乙酰胆碱、乙酰腺苷等,最后,氨基酸氧化后的转化过程,即把氨基酸氧化后的物质转化为氮气,脱离植物体,从而获得氮元素。

生物脱氮是植物营养合成和化学合成的重要组成部分,它是植物生
长发育、繁殖的重要依据,也是土壤氮素循环的重要组成部分。

因此,借助生物脱氮的方法,可以为植物提供更为丰富的氮元素,从而改善植物的生长和发育,提高其生长效率,促进植物的繁殖,有助于植物的正常发育,也有助于土壤氮素的循环,是植物生长和繁殖的重要保障。

工艺方法——生物脱氮除磷技术

工艺方法——生物脱氮除磷技术

工艺方法——生物脱氮除磷技术工艺简介一、传统生物脱氮除磷技术1、传统生物脱氮原理污水经二级生化处理,在好氧条件下去除以BOD5为主的碳源污染物的同时,在氨化细菌的参与下完成脱氨基作用,并在硝化和亚硝化细菌的参与下完成硝化作用;在厌氧或缺氧条件下经反硝化细菌的参与完成反硝化作用。

2、传统生物除磷原理在厌氧条件下,聚磷菌体内的ATP进行水解,放出H3PO4和能量形成ADP;在好氧条件下,聚磷菌有氧呼吸,不断地放出能量,聚磷菌在透膜酶的催化作用下利用能量、通过主动运输从外部摄取H3PO4,其中一部分与ADP结合形成ATP,另一部分合成聚磷酸盐(PHB)储存在细胞内,实现过量吸磷。

通过排除剩余污泥或侧流富集厌氧上清液将磷从系统内排除,在生物除磷过程中,碳源微生物也得到分解。

3、常用工艺及升级改造具有代表性的常用工艺有A/O工艺、A2/O工艺、UCT工艺、SBR 工艺、Bardenpho工艺、生物转盘工艺等,这些工艺都是通过调节工况,利用各阶段的优势菌群,尽可能的消除各影响因素间的干扰,以达到适应各阶段菌群生长条件,实现水处理效果。

近年来随着研究的深入,对常用工艺有了一些改进,目前应用最广泛、水厂升级改造难度较低的是分段进水工艺。

与传统A/O工艺、A2/O工艺、UCT工艺等相比,分段进水工艺可以充分利用碳源并能较好的维持好氧、厌氧(或缺氧)环境,具有脱氮除磷效率高、无需内循环、污泥浓度高、污泥龄长等优点。

分段进水工艺适用于对A/O工艺、A2/O工艺、UCT工艺等的升级改造,通过将生化反应池分隔并使进水按一定比例分段进入各段反应池,以充分利用碳源,解决目前污水处理厂普遍存在的碳源不足和剩余污泥量过大的问题。

分段进水工艺虽然对提高出水水质有较好的效果,但该工艺并不能提高处理能力,当水厂处于超负荷运行时,分段进水改造也不能达到良好的处理效果。

二、新型生物脱氮除磷技术近年来,科学研究发现,生物脱氮除磷过程中出现了超出传统生物脱氮除磷理论的现象,据此提出了一些新的脱氮除磷工艺,如:短程硝化反硝化工艺、同步硝化反硝化工艺、厌氧氨氧化工艺、反硝化除磷工艺。

短程硝化反硝化生物脱氮技术概述短程硝化反硝化脱氮工艺

短程硝化反硝化生物脱氮技术概述短程硝化反硝化脱氮工艺

短程硝化反硝化生物脱氮技术概述短程硝化反硝化脱氮工艺随着水体受到氮素污染越来越严重,废水脱氮日益受到人们的重视。

其中生物脱氮技术将有机氮和氨氮通过硝化反硝化过程去除具有无可比拟的发展前景。

其中传统的生物脱氮技术认为要完全去除水中的氨态氮就必须要经过完整的硝化与反硝化过程,即以硝酸盐作为硝化的终点和反硝化的起点,这主要是基于要防止对环境危害较大的亚硝酸盐的积累以及对好氧硝化菌和兼性厌氧反硝化菌不能在同一个反应器里同时大量存在的认识导致的。

而现在的大量研究表明,好氧硝化菌和兼性厌氧反硝化菌是可以在同一个反应器里共同起作用的。

因为在整体和每一单元填料表面所附着的生物膜上都存在基质和溶解氧的浓度梯度分布,这就为各种生态类型的微生物在生物膜内不同部位占据优势生态位提供了条件。

由于短程硝化反硝化脱氮比传统的脱氮技术具有很多的优点,因此引起了国内外研究者的广泛关注,对影响短程硝化反硝化的因素以及实现和维持短程硝化反硝化的工艺控制进行了大量的研究。

1.传统硝化反硝化脱氮机理1.1 硝化反应硝化反应是由一类自养耗氧微生物完成的,包括两个步骤:第一步为亚硝化过程,是由亚硝酸菌将氨氮转化为亚硝酸盐;第二步为硝化过程,由硝酸菌将亚硝酸盐进一步氧化为硝酸盐,亚硝酸菌和硝酸菌统称为硝化菌,都利用无机碳化合物如CO32-、HCO3-和CO2作为碳源,从NH3、NH4+或NO2-的氧化反应中获取能量。

亚硝酸菌和硝酸菌的特性大致相似,但前者的世代期较短,生长率较快,因此较能适应冲击负荷和不利的环境条件,当硝酸菌受到抑制时,有可能出现NO2-积累的情况。

1.2反硝化反应反硝化反应是由一群异养性微生物完成的生物化学过程,它的主要过程是在缺氧的条件下,将硝化过程中产生的亚硝酸盐和硝酸盐还原成气态氮。

反硝化细菌多数是兼性细菌,有分子态氧存在时,反硝化氧化分解有机物,利用分子氧作为最终电子受体。

在无分子态氧条件下,反硝化菌利用硝酸盐和亚硝酸盐中的N5+和N3-作为电子受体,O2-作为受氢体生成H2O和OH-碱度,有机物则作为碳源和电子供体提供能量,并得到氧化稳定。

污水生物脱氮除磷原理及工艺


一般用Al2(SO4)3,聚氯化铝(PAC)和铝酸钠(NaAlO2) 2)铁盐除磷:FePO4 、 Fe(OH)3
一般用FeCl2、FeSO4 或 FeCl3 、Fe2(SO4)3
3)石灰混凝除磷:
2 5Ca 2 4OH 3HPO4 Ca5 (OH )(PO4 ) 3 3H 2O
二、生物除磷过程的影响因素
①溶解氧: l厌氧池内:绝对的厌氧,即使是NO3-等也不允许存在; l好氧池内:充足的溶解氧。 ②污泥龄: l剩余污泥对脱磷效果有很大影响,泥龄短的系统产生的剩余
污泥多,可以取得较好的除磷效果;
l 有报道称:污泥龄为 30d ,除磷率为 40%;污泥龄为 17d,
除磷率为50%;而污泥龄为5d时,除磷率高达87%。
一、巴颠甫(Bardenpho)同步脱氮除磷工艺
工艺特点: 各项反应都反复进行两次以上,各反应单元都有其首要 功能,同时又兼有二、三项辅助功能; 脱氮除磷的效果良好。 工艺复杂,反应器单元多,运行繁琐,成本高
二、A—A—O(A2/O)同步脱氮除磷工艺
工艺特点: l工艺流程比较简单;总的水力停留时间短 l厌氧、缺氧、好氧交替运行,不利于丝状菌生长,污泥膨胀 较少发生; l无需投药,两个A段只需轻缓搅拌, 只有O段供氧, 运行费用低。
3
2
2 反硝化反应的影响因素
• 碳源:
①废水中有机物,若BOD5/TKN>3~5时,即可; ②外加碳源,多为甲醇; ③内源呼吸碳源—细菌体内的原生物质及其贮存 的有机物。 • 适宜pH:6.5~7.5; • 溶解氧应控制在0.5mg/l以下;
• 适宜温度:20~40C
生物脱氮的基本原理
二、Phostrip除磷工艺——生物除磷和化学除磷相结合

废水脱氮除磷工艺

废水脱氮除磷工艺
废水脱氮除磷工艺是一种用于处理含有高浓度氮和磷的废水的技术,旨在减少这些有害污染物的排放,以满足环保标准。

以下是常见的废水脱氮除磷工艺:
1.生物脱氮除磷工艺:
生物脱氮(BNR):生物脱氮是通过在废水处理系统中引入一些特定的微生物,将废水中的氮转化为氮气的过程。

这通常包括硝化和反硝化两个阶段,其中氨氮首先被氧化成亚硝酸盐,然后转化为氮气。

生物除磷(BPR):生物除磷是通过引入能够吸附磷的微生物,将废水中的磷物质吸附并沉淀出来的过程。

2.化学脱氮除磷工艺:
化学沉淀:添加化学药剂,如氧化铁、氧化铝等,与废水中的磷形成沉淀物,从而实现除磷的效果。

这一过程通常被称为磷酸盐的化学沉淀。

硝化-脱硝:使用化学方法将废水中的氨氮氧化成硝酸盐,然后再还原成氮气。

3.物理化学脱氮除磷工艺:
生物物理化学一体化工艺:将生物处理、物理处理和化学处理结合在一起,以提高脱氮除磷效果。

膜分离技术:利用膜过滤技术,如超滤、反渗透等,从废水中去除氮和磷。

4.湿地处理:
人工湿地:利用植物和微生物的协同作用,通过湿地过程去除废水中的氮和磷。

自然湿地模拟:模仿自然湿地的生态系统,利用湿地中的植物和微生物去除废水中的有机和无机污染物。

4.3生物脱氮除磷技术


NO3-一类的化合态氧也不允许存在,但在聚磷菌吸氧的好氧反
应器内却应保持充足的氧 (2)污泥龄 生物除磷主要是通过排除剩余污泥而去除磷的,因此剩 余活泥多少将对脱磷效果产生影响,一般污泥龄短的系统产 生的剩余污泥量较多,可以取得较高的除磷效果。有报导称 :当污泥龄为30d时,除磷率为40%,污泥龄为17d时,除磷 率为50%,而当污泥龄降至5d时,除磷率高达87%。
(3) 后置缺氧-好氧生物脱氮工艺
可以补充外来碳源,也可以利用活性污泥的 内源呼吸提供电子供体还原硝酸盐,反硝化速率 仅是前置缺氧反硝化速率的1/3-1/8,需较长停留 时间。
进水 二沉池 出水
好氧/ 硝化
缺氧
回流污泥 污泥
二、生物除磷工艺
1.概述 来源:人体排泄物以及合成洗涤剂、牲畜饲养场 及含磷工业废水 危害:促进藻类等浮游生物的繁殖,破坏水体耗 氧和复氧平衡;水质恶化,危害水资源。 包括:有机磷(磷酸甘油酸、磷肌酸)和无机磷( 磷酸盐,聚合磷酸盐) 去除方法: 常规活性污泥法的微生物同化和吸附; 生物强化除磷; 投加化学药剂除磷。
二、生物除磷工艺
72年开创,生物除磷和化学 曝气池:含磷污水进入,还有由除 沉淀池(I):泥水分离, 4.生物除磷工艺 磷池回流的已经释放磷但含有聚磷 除磷相结合,除磷效果好. 含磷污泥沉淀,已除磷的 (2)弗斯特利普除磷工艺(Phostrip): 菌的污泥。使聚磷菌过量摄取磷, 上清液作为处理水排放。 去除有机物(BOD和COD), 可能还 有一定的硝化作用。
聚磷分解形成的无机磷释放回污水中—厌氧释磷。
好氧环境:进入好氧状态后,聚磷菌将贮存于体
内的PHB进行好氧分解并释放出大量能量供聚磷菌增
殖等生理活动,部分供其主动吸收污水中的磷酸盐,

《2024年污水生物脱氮除磷工艺的现状与发展》范文

《污水生物脱氮除磷工艺的现状与发展》篇一一、引言随着城市化进程的加速和工业的迅猛发展,大量生活污水和工业废水被排放到水环境中,造成了严重的环境问题。

为了有效减少污水对环境的危害,人们研发了多种污水处理技术。

其中,污水生物脱氮除磷工艺因具有较好的处理效果和较低的运行成本,得到了广泛的应用。

本文将就污水生物脱氮除磷工艺的现状及其发展进行详细探讨。

二、污水生物脱氮除磷工艺的现状1. 工艺概述污水生物脱氮除磷工艺是一种基于微生物作用,利用活性污泥法等生物处理技术,将污水中的氮、磷等营养元素去除的工艺。

该工艺主要利用微生物的代谢作用,将污水中的氮、磷转化为无害物质,从而达到净化水质的目的。

2. 国内外应用现状目前,国内外广泛应用的污水生物脱氮除磷工艺主要包括A/O法、A2/O法、氧化沟法等。

这些工艺在我国污水处理领域得到了广泛应用,特别是在城市污水处理厂和工业废水处理中。

此外,一些新型的生物脱氮除磷技术,如MBR(膜生物反应器)技术、超声波强化生物脱氮除磷技术等也在逐步推广应用。

三、工艺运行机制与原理污水生物脱氮除磷工艺主要依靠活性污泥中的微生物完成。

在反应过程中,微生物通过吸附、吸收、代谢等作用,将污水中的氮、磷等营养元素转化为无害物质。

具体来说,脱氮过程主要通过氨化、硝化和反硝化等步骤实现;除磷过程则主要通过聚磷菌的过量摄磷和释磷实现。

四、工艺发展及挑战1. 技术发展随着科技的不断进步,污水生物脱氮除磷工艺也在不断发展和完善。

新型的生物反应器、高效的微生物菌剂、智能化的控制系统等技术手段的应用,使得污水处理效率得到了显著提高。

同时,一些新型的污水处理理念和技术,如低碳、低能耗、资源化等也得到了广泛关注。

2. 面临的挑战尽管污水生物脱氮除磷工艺取得了显著的成果,但仍面临一些挑战。

如:如何进一步提高处理效率、降低运行成本;如何解决污泥处理与处置问题;如何应对复杂多变的水质等。

此外,一些新兴污染物(如微塑料、新型有机污染物等)也对传统污水处理技术提出了新的挑战。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

污水中的氮一般以有机氮、氨氮、亚硝酸盐氰和硝酸盐氮四种形式存在。生活污水中
氮的主要存在形态是有机氮和氨氮。通常采用的二级生化处理技术对氮的去除率是比较低
的,一般将有机氮化合转化为氨氮,却不能有效地去除氮。污水脱氮,从原理看,可以分
为物理法、化学法和生物法三大类。由于生物脱氮一般能够满足有关方面对污水净化的要
求,而且价格低廉,产生的二次污染物较易处理,因此生物脱氮方法是当前最活跃的研究
与投资开发领域。
一、生物脱氮技术
生物脱氮技术主要是利用污水中某些细菌的生物氧化与还原作用实现的。生物脱氮工
艺从碳源的来源分,可分为外碳源工艺和内碳源工艺;从硝化和反硝化过程在工艺流程中
的位置来分,可分为传统工艺和前置反硝化工艺;按照细菌的存在状态不同,可以分为活
性污泥法和生物膜法生物脱氮工艺。前者的硝化菌、反硝化菌等微生物处于悬浮态,而后
者的各种微生物却附着在生物膜上。
1.活性污泥法
活性污泥法是一种历史悠久、目前应用最广泛的生物脱氮技术,它有许多种形忒。
(1)活性污泥法传统流程这是一种传统的三级生物脱氮工艺,即有机物的氧化、硝化

和反硝化作用分别在不同的构筑物中完成,如下图所示:
由于有机物去除、氨氧化和硝酸盐还原依次进行,彼此之间相对独立,并分别设置污
泥沉淀及回流系统,系统运行的灵活性比较强,有机物降解菌、硝化菌和反硝化菌的生长
环境均较佳,因而反应速度快,脱氮效果也比较好。但是,三级活性污泥法的流程长、构
筑物多、附属设备多,因此基建费用高、管理难度大。此外,为了保持硝化所需的稳定pH
值, 往往两要向硝化池加碱,为了保证反硝化阶段有足够的电子受体,需要外加甲醇等碳
源,为了除去尾水中剩余的有毒物质甲醇,又必须增设后曝气池,所以运行费用也很高。
可以看出,这种工艺的确具有很大的局限性。
如果将有机物去除和硝化放在同一个反应器中进行,而将反硝化作用放在另一个反应
器中进行,则可以将三级生物脱氮系统简化为两级生物脱氮系统。如下图:
与三级生物脱氮流程相比,两级生物脱氮流程的基建费用和占地面积均有所降低,但
是仍然需要外加甲醇和碱源。
(2)前置反硝化生物脱氮系统又称缺氧-好氧活性污泥脱氮系统、A/0生物脱氮流程、
改良LudMck-Euinger工艺等。前置反硝化是目前使用比较广泛的一种脱氮工艺(分建式缺
氧好氧活性污泥脱氮系统如下图:)。

除分建式系统外,本工艺还可以建成合建式装置,即将缺氧和好氧环境放在-个构筑
物内,中间以挡板隔开,挡板下端与池内壁之间以一定的缝隙相通,如下图所示:

采用合建式装置,对于现有推流式曝气池的改造来说更加方便。
与传统的生物脱氰流程相比较,该流程具有如下优势。
①由于构筑物数量减少,因而流程得以简化,占地面积减少,且缺氧段消耗原污水中
的部分有机物,能够降低好氧段的有机物污泥负荷,不仅容易使硝化菌取得竞争优势,而
且降低了曝气充氧的电耗,因而基建费用和运行费用均比较低。
②将缺氧段放在好氧段前边,可以起到生物选择器的作用,有利于防止污泥膨胀,改
善活性污泥的沉降性能。
③反硝化过程能够充分利用原污水中有机物和内源代谢产物作为电子受体,既可以减
少或取消外加碳源,从面省去后曝气池,提高处理水水质,又可以保证较高的碳比,有利
于反硝化的充分进行。
④由于存在内循环,缺氧反硝化产生的碱度能够补偿硝化反应所造成的pH值下降,
大大降低了碱投加量。
前置反硝化生物脱氮系统也有自己的不足之处。一是处理出水中含有一定浓度的硝酸
盐,可能污染受纳水体。第二,由于内回流比限制本工艺的脱氮率一般为70%~80%, 很难
达到90%。而且,该工艺对运行管理人员的素质要求比较高。例如,如果系统运行不当,
沉淀池内将发生反硝化反应,造成污泥上浮,使处理水恶化。
(3)氧化沟工艺从工艺、流态和构造方面看,氧化沟也非常适合于生物脱氮。
①氧化沟的污泥龄通常很长,一般可达15~30d,非常适合于世代时间长、增值缓慢的
硝化菌存活与繁殖。
②氧化沟往往做成总长达几十米甚至上百米的环行构筑物。由于循环次数多达72次
其至360次,混合液沿沟道方向近似于完全混合式。然而由于工艺状况不同,混合液中溶
解氧的浓度在不同位置也存在很大差异:在曝气器的附近非常容易出现DO比较高的富氧
区,而在远离曝气装置的地方,容易出现DO比较低的缺氧区,使硝化和反硝化能够在同一
装置中順利进行,从而达到生物脱氮的目的。
据报道,Carrousel氧化沟、交替工作氧化沟、二次沉淀池交替运行氧化沟、Orbal
型氧化沟、曝气-沉淀一体化氧化沟和刺渠型一体化氧化沟等均可以用于脱氮,其脱氮效率
可以达到60%-90%,例如,Carrousel氧化沟的脱氮率为90%, Orbal型氧化沟的总氮去除
率也以达到85%~90%。
氧化沟工艺构造简单,运行稳定,易于管理维护,出水水质好,基建费用和处理成本
均较低,对原水水质水量的变化也有很强的适应性,是一种非常有竞争力的生物脱氮技
术。
2.生物膜法
生物膜法是与活性污泥法并列的一种污水处理技术。由于生物污泥的生物固体平均停
留时间与污水的水力停留时间无关,世代时间比较长、比增殖速度较小的硝化菌和亚硝化
菌都能够很好的繁殖和增殖,因此各种生物膜处理工艺都具有一定的硝化功能,采用适当
的运行方式,还能够达到反硝化脱氮的要求。而且,与活性污泥法相比,生物膜法还具有
下列优点。

①微生物浓度高,处理效率高。据实测,如果折算成曝气池的MLVSS,珥以达到 40〜
60g/L,远远高于活性污泥处理系统。
② 污泥龄长,产泥量少。由于生物膜上存在的食物链较因此产泥量少,剩余污泥的
处理量仅为活性污泥法的一半左右。在生物转盘上还可以生长世代时间较长的硝化菌,因
此如果得当,除有效去除有机物外,还能够具有硝化和反硝化脱氮的作用,其工艺流程如
下图:
该工艺的脱氮原理是:由于降解有机物的好氧氧化菌的生长繁殖优先于硝化菌与亚硝

化菌,因此,在前两级转盘上去除有机物的能力较强,而后两级能够产生比较充分的硝化
反应,形成硝酸盐氮和亚硝酸盐氮。由于转盘低速旋转的传质作用.这些硝态氮随污水进人
处于厌氧状态的淹没式转盘时,与外加甲醇充分接触,进行反硝化脱氮反应。而残留下来
的甲醇再经过好氧生物转盘的处理后得到去除。

相关文档
最新文档