新型生物脱氮工艺
生物脱氮机理、ao工艺脱氮解释

生物脱氮机理、AO工艺脱氮过程解释生物脱氮的基本原理是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过反硝化作用转化为亚硝态氮、硝态氮,即将NH3转化为NO2--N和NO3--N。
在缺氧条件下通过反硝化作用,以硝酸盐氮为电子受体,以有机物为电子供体进行厌氧呼吸,并有外加碳源提供能量,将硝氮转化为氮气,即,将NO2--N(经反亚硝化)和NO3--N(经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。
水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的。
由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件:硝化阶段:足够的溶解氧(DO)值在2mg/L以上,合适的温度,最好20℃,不低于10℃,足够长的污泥泥龄,合适的pH条件。
反硝化阶段:硝酸盐的存在,缺氧条件(DO)值在0.5mg/L左右,充足的碳源(能源),合适的pH条件。
通过上述原理,可组成缺氧与好氧池,即所谓A/O系统。
AO工艺法也叫厌氧-好氧工艺法,A(Anacrobic)是厌氧段,用与脱氮除磷;O(Oxic)是好氧段,用于除水中的有机物。
A/O法生物去除氨氮原理:污水中的氨氮,在充氧的条件下(O段),被硝化菌硝化为硝态氮,大量硝态氮回流至A段,在缺氧条件下,通过兼性厌氧反硝化菌作用,以污水中有机物作为电子供体,硝态氮作为电子受体,使硝态氮波还原为无污染的氮气,逸入大气从而达到最终脱氮的自的。
硝化反应:NH4++2O2→NO3-+2H++H2O反硝化反应:6NO3-+5CH3OH(有机物)→5CO2↑+7H2O+6OH-+3N2↑如图,A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。
在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,提高污水的可生化性,提高氧的效率;在缺氧段异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。
生化脱氮工艺

生化脱氮工艺1、全程硝化反硝化全程硝化反硝化是目前应用最广时间最久的一种生物法,是在各种微生物作用下,经过硝化、反硝化等一系列反应将废水中的氨氮转化为氮气,从而达到废水治理的目的。
全程硝化反硝化法去除氨氮需要经过两个阶段:硝化反应:硝化反应由好氧自养型微生物完成,在有氧状态下,利用无机氮为氮源将NH 「化成NO-然后再氧化成NO B的过程。
硝化过程可以分成两个阶段。
第一阶段是由亚硝化菌将氨氮转化为亚硝酸盐(NO2),第二阶段由硝化菌将亚硝酸盐转化为硝酸盐(NO3)0反硝化反应:反硝化反应是在缺氧状态下,反硝化菌将亚硝酸盐氮、硝酸盐氮还原成气态氮(N2)的过程。
反硝化菌为异养型微生物,多属于兼性细菌,在缺氧状态时,利用硝酸盐中的氧作为电子受体,以有机物(污水中的BOD成分)作为电子供体,提供能量并被氧化稳定。
全程硝化反硝化工程应用中主要有AO、A20>氧化沟等,是生物脱氮工业中应用较为成熟的方法。
全程硝化反硝化法具有效果稳定、操作简单、不产生二次污染、成本较低等优点。
该法也存在一些弊端,如当废水中C/N比值较低时必须补充碳源,对温度要求相对严格,低温时效率低,占地面积大,需氧量大,有些有害物质如重金属离子等对微生物有压制作用,需在进行生物法之前去除,此外,废水中,氨氮浓度过高对硝化过程也产生抑制作用,所以在处理高浓度氨氮废水前应进行预处理,使氨氮废水浓度小于500mg∕L传统生物法适用于处理含有有机物的低浓度氨氮废水,如生活污水、化工废水等。
2、同步硝化反硝化(SND)当硝化与反硝化在同一个反应器中同事进行时,称为同时消化反硝化(SND)。
废水中的溶解氧受扩散速度限制在微生物絮体或者生物膜上的微环境区域产生溶解氧梯度,使微生物絮体或生物膜的外表面溶解氧梯度,利于好氧硝化菌和氨化菌的生长繁殖,越深入絮体或膜内部,溶解氧浓度越低,产生缺氧区,反硝化菌占优势,从而形成同时消化反硝化过程。
影响同时消化反硝化的因素有PH值、温度、碱度、有机碳源、溶解氧及污泥龄等。
生物脱氮处理的工艺

生物脱氮处理的工艺生物脱氮是一种利用生物体代谢活动将氮污染物转化为无害物质的处理技术。
生物脱氮工艺主要包括生物脱氮污泥活性攪拌反应器法、生物脱氮填料法、生物脱氮滤池法、自然界吸附法等。
生物脱氮污泥活性攪拌反应器法是一种常见的生物脱氮工艺。
该工艺通过在反应器中加入脱氮污泥活性污泥来实现脱氮反应。
首先,废水中的氨氮经过生物脱氮反应器中的生物膜的吸附作用,被氨氧化细菌菌膜上的氨氧化酶催化氧化为亚硝酸氮。
然后,亚硝酸氮进一步被反硝化细菌利用有机物作为反硝化基质,将亚硝酸氮还原生成氮气释放到大气中。
生物脱氮填料法是另一种生物脱氮工艺。
该工艺通过在反应器中填充脱氮填料,如生物脱氮球体、生物脱氮网等,形成生物脱氮反应器。
废水通过填料层时,填料表面的微生物与废水中的氨氮进行吸附作用,将氨氮氧化为亚硝酸氮。
随后,亚硝酸氮进一步通过反硝化细菌利用有机物质进行反硝化反应,最终转化为氮气释放。
生物脱氮滤池法是一种利用滤池来进行生物脱氮的工艺。
该工艺通过在滤池内填充脱氮滤材,如生物脱氮砂、生物脱氮填料等,形成生物脱氮滤池。
废水通过滤池时,滤材表面的生物脱氮菌群与废水中的氨氮发生吸附作用,将氨氮氧化为亚硝酸氮。
然后,亚硝酸氮在滤材内通过反硝化细菌利用有机物质进行反硝化反应,最终转化为氮气释放。
自然界吸附法是一种较为简单的生物脱氮工艺。
该工艺利用自然界中存在的生物质,如湿地植物、藻类等,吸附废水中的氨氮。
湿地植物的根系和藻类表面的微生物通过吸附作用,将废水中的氨氮氧化为亚硝酸氮。
亚硝酸氮在湿地植物和藻类的根系中通过反硝化作用进一步还原为氮气释放到大气中。
综上所述,生物脱氮工艺包括生物脱氮污泥活性攪拌反应器法、生物脱氮填料法、生物脱氮滤池法和自然界吸附法等。
这些工艺利用特定的微生物和反应条件,将废水中的氨氮转化为无害物质,以达到脱氮处理的目的。
随着环境保护意识的提高和技术的不断发展,生物脱氮工艺在氮污染处理中具有广阔的应用前景。
生物脱氮工艺

生物脱氮工艺随着人类社会的不断发展,环境问题越来越引人关注。
其中,氮污染是一个严重的问题。
氮是生物体内必需的元素,但过量的氮却会对环境造成巨大的负担。
氮污染主要来自于农业、工业和城市污水处理等领域。
针对氮污染问题,科学家们研发了各种方法,其中生物脱氮工艺是一种环保、高效的氮污染治理方法。
一、生物脱氮的基本原理生物脱氮是利用微生物将废水中的氮转化为无害的氮气的过程。
该工艺的基本原理是:将含氮废水通过生物反应器,在一定的条件下,利用氨氧化细菌将氨氮转化为亚硝酸盐,再利用硝化细菌将亚硝酸盐转化为硝酸盐,最后通过反硝化细菌将硝酸盐还原为氮气,从而达到脱氮的目的。
二、生物脱氮工艺的优点1、环保:生物脱氮工艺不需要添加任何化学药剂,不会产生二次污染,对环境没有负面影响。
2、高效:生物脱氮工艺可以达到较高的脱氮效率,对氮污染治理效果显著。
3、经济:生物脱氮工艺不需要大量投入,运行成本低,对于农业、工业和城市污水处理等领域都具有实用性。
三、生物脱氮工艺的应用领域1、城市污水处理:城市污水中含有大量的氮,如果不进行处理,会对周围环境和水体造成严重的污染。
生物脱氮工艺可以有效地降低污水中的氮含量,达到国家排放标准。
2、农业:农业是氮污染的主要来源之一。
生物脱氮工艺可以应用于农业废水的处理,减少氮肥的使用量,达到节约能源和环保的目的。
3、工业:工业废水中含有大量的氮,如果不进行处理,会对周围环境和水体造成严重的污染。
生物脱氮工艺可以应用于工业废水的处理,降低氮污染的程度。
四、生物脱氮工艺的发展趋势目前,生物脱氮工艺已经成为氮污染治理的主要手段之一。
随着科技的不断进步和人们对环境问题的重视,生物脱氮工艺也在不断发展和完善。
未来,生物脱氮工艺将会更加智能化、高效化和精准化,为氮污染治理提供更加优秀的解决方案。
总之,生物脱氮工艺是一种环保、高效、经济的氮污染治理方法,已经在城市污水处理、农业和工业废水处理等领域得到广泛应用。
新型生物脱氮技术

半硝化反应器的出水(含有NH4+和NO2-)作为厌氧氨氧化反应器的进水。在厌氧氨 氧化反应器内发生厌氧反应,有95%的氮转变成 N2,另外,还有少量的NO3-随出水 排出。
半硝化-厌氧氨氧化工艺适合处理高浓度NH4+-N废水和有机碳含量低的高NH4+-N浓 度工业废水。出水NH4+-N 可达到6.7mg/L、TN为24mg/L。
新型生物脱氮技术
环境生物技术
新型生物脱氮技术
一、传统生物脱氮简介
1、脱氮原理 2、传统脱氮工艺
二、新型生物脱氮技术
1、半硝化工艺(SHARON) 2、厌氧氨氧化工艺(ANAMMOX) 3、半硝化-厌氧氨氧化工艺( SHARON –ANAMMOX) 4、生物膜内自养脱氮工艺 ( CANON) 5、总结
有机氮通过酶和微生物作 用下释放氨的过程
微生物将氨氧化成亚硝酸盐, 硝态氮在反硝化细菌作用下还原 进一步氧化成硝酸盐 成氮气
微生物
细菌 霉菌 异养微生物:芽孢 杆菌、节杆菌、木 霉、曲霉、青霉等
亚硝化菌 硝化菌 以HCO3-为碳源,自 养;硝化反应消耗碱 度,pH下降;耗氧 4.2g/g( NH4+- NO3-)。 O2作为电子供体。
4、臭氧湿式氧化 一种处理含氨氮废水比较有效的技术。碱性条件下,通过O3的湿式氧化过程产 生一些氧化能力很强的OH自由基,氧化水中氨氮。 可作为含有机物又含无机污染物废水的预处理; 也可作为废水深度处理后处理进一步降解废水中污染物。
5、生物电极脱氮技术 生物法和电化学结合起来的一种处理硝酸态氮污染水的生物电极法。 污水中的硝酸态氮在生物和电化学双重作用下降解,而微电流又可以刺激微生 物代谢活动。 把脱氮菌作为生物膜固定在一炭为材料的电极上,称为固定化微生物电极。 通过电极间通电产+ 2 H2O
厌氧氨氧化(ANAMMOX)工艺介绍

Canon工艺是2002年首先由荷兰Delft 工业大学提出 的新型工艺生物脱氮工艺。在Canon工艺中亚硝酸 细菌把氨氧化成亚硝酸盐厌氧氨氧化菌则把氨和亚 硝酸盐转化成氮气。整个脱氮过程在亚硝酸菌和厌 氧氨氧化菌的协作下完成。亚硝酸菌的基质是氨和 氧气厌氧氨氧化细菌的基质是氨和亚硝酸盐在没有 外源亚硝酸盐的情况下厌氧氨氧化菌有赖于亚硝酸 菌提供基质。由于厌氧氨氧化菌和亚硝酸菌都是自 养型细菌因此Canon工艺无需外源有机物能够在完 全无机的条件下进行。 环境中的NH3-N与DO是决 定CANON工艺的两个关键因素目前该工艺在世界 上也处于研究阶段并没有真正得到工程应用。
林琳等研究了亚硝态氮、硝态氮、羟氨对 厌氧氨氧化的影响,得出氨和硝态氮,转 化比例为1.085氨和亚硝态氮的转化比例为 0.897在培养液中加人羟氨加速了厌氧氨氧 化反应的进行。杨洋等15研究了温度、pH 值和有机物对厌氧氨氧化污泥活性的影响 研究表明最佳温度为3035℃。温度和氨氧 化速率的关系可用修正的Arrhenius描述。 最佳pH值为7.09.0pH值和氨氧化速率的关 系可用双底物双抑制。
ANAMMOX转化过程是自然氮循环的一条 巧妙的捷径。结合亚硝酸反应, ANAMMOX细菌将铵氨(NH4+)直接转化为 气。帕克环保与代尔夫特技术大学(荷兰) 密切合作,开发了该工艺的工业应用。 2002年夏天第一个ANAMMOX工业装置在 荷兰启动。目前有四个ANAMMOX工业装 置在运行。
很高的总去除率 二氧化碳产生量比传统硝化/反硝化工艺减 少90% 减少50%的空间需求 动力消耗比传统硝化/反硝化工艺减少60% 不消耗甲醇 剩余污泥产量极少
该工艺的核心是应用硝酸菌和亚硝酸菌的 不同生长速率即高温30-35℃下亚硝酸菌的 生长速率明显噶偶硝酸菌的生长速率这一 固有特性控制系统水力停留时间与反应温 度。从而使硝酸菌被淘汰形成反应器中亚 硝酸菌的积累使氨氧化控制在亚硝化阶段。 该工艺反应温度高微生物增殖快。好养停 留时间短微生物活性高而Ks值也高进出水 浓度无相关性使得进水浓度越高去除率越 高。
缺氧好氧生物脱氮工艺

缺氧好氧生物脱氮工艺全文共四篇示例,供读者参考第一篇示例:缺氧好氧生物脱氮工艺是一种通过在缺氧和好氧环境下结合运用不同类型微生物来去除废水中的氮元素的工艺。
这种工艺结合了缺氧条件下厌氧氨氧化和好氧颗粒活性污泥(PLA)程序脱氮技术,能有效地减少氮排放。
氮是废水中的一种重要污染物,主要来源于生活污水、工业废水和农业排放。
氮的过量排放会导致水体富营养化,引起藻类过度生长,造成水体缺氧、腐败和富营养化等问题,对水生生物和水质造成严重危害。
对氮元素的减排成为环保领域的一个重要课题。
缺氧好氧生物脱氮工艺通过结合好氧和缺氧条件下的微生物活动来实现氮的有效去除。
在缺氧条件下,厌氧氨氧化过程中,氨氮首先通过厌氧氨氧化细菌氧化为亚硝态氮,然后在好氧条件下,颗粒活性污泥(PLA)通过水解和硝化反应将亚硝态氮进一步氧化成硝态氮,最终通过硝化反应将硝态氮还原为气态氮气,实现氮的去除。
缺氧好氧生物脱氮工艺具有许多优点。
该工艺采用了厌氧氨氧化和PLA程序相结合的方式,有效地提高了氮去除效率。
该工艺采用生物方法去除氮元素,减少了化学药剂的使用,降低了运行成本。
该工艺对过硝化、挥发性有机物和pH等参数的变化具有一定的稳定性,适用于不同的水质条件。
缺氧好氧生物脱氮工艺还可以较好地应用于氮和磷同时去除的工艺中。
由于生物脱氮工艺对磷的需氧量较小,可通过调控好氧和缺氧条件下的微生物活动,实现氮和磷的同时去除,提高了废水处理的综合效益。
需要指出的是,缺氧好氧生物脱氮工艺在实际应用中还存在一些问题。
对于废水中氮的去除效率受到温度、pH值、C/N比和氧气供应等多种因素的影响,需要合理的调控和控制。
该工艺在处理高氨氮废水时可能会产生硫酸盐、硝酸盐和硫化氢等有害产物,需要进行后续处理。
第二篇示例:缺氧好氧生物脱氮工艺是一种利用生物自然功能进行废水处理的技术,通过调控缺氧和好氧环境下微生物的代谢过程,实现废水中氮的去除。
该工艺具有环保、经济、高效等优点,受到了广泛关注和应用。
一种新型生物脱氮工艺——SHARON-ANAMMOX组合工艺

通过计算与分析,我们可以知道,与传统的生物 脱氮工艺相比,SHARON 工艺至少具有下述优点: !可节省反硝化过程所需要的外加碳源,即 NO2反硝化比 NO3- 反硝化可节省 40% 的碳源;"因为 只需要将氨氮氧化到亚硝酸盐,可减少 25% 左右的 供气量,降低能耗。
目前第一个生产规模的 SHARON 工艺已经于 1998 年初在荷兰鹿特丹的 Dok1aven 废水处理厂建 成并投入运行[8],该 SHARON 反应器进水氨氮浓 度为 1 g / L,进水氨氮的总量为 1 200 kg / c,氨氮的 去除率为 85% 。据 Logemann 等人[14]报道,在荷兰 还有两家应用 SHARON 工艺的污水处理厂正在建 设之中。 2 ANAMMOX 工艺
在同一个反应器内,先在有氧条件下,利用氨氧化细
菌将氨氧化生成 NO2- ;然后在缺氧条件下,以有机 物为电子供体,将亚硝酸盐反硝化,生成氮气。其反
应式如式(l),式(2)所示。该工艺实际上是一种短 程生物脱氮工艺[l0]。
NH4+ + l . 5O2!NO2- + 2H + + H2 O NO2- + 3[H]+ H + !0 . 5N2 + 2H2 O
还有人认为,游离氨对从 NO2- - N 到 NO3- - N 的硝化过程具有明显的抑制作用[16],随着 pH 的升 高,反应器内游离氨的浓度增大,硝化反应受到的抑 制作用加大,有可能造成 NO2- - N 的积累。但是, Turk 等人[17]的研究也表明,硝化菌对于游离氨的 抑制作用具有较强的适应性,一旦运行时间较长,游 离氨对硝化细菌的抑制就会减弱,而导致 NO2- - N 积累的不稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新型生物脱氮工艺摘要介绍六种新型生物脱氮工艺的基本原理和研究现状。
随后介绍新型生物脱氮工艺的原理和特征及工艺的发展前景。
关键词SHARON工艺;ANAMMOX工艺;SHARON-ANAMMOX组合工艺;OLAND 工艺;CANON工艺;随着现代工业的不断发展、化肥的普遍应用及大量生活污水的排放,废水中的氮污染日益严重。
各种水体富营养污染事件频繁爆发,破坏了水体原有的生态平衡,严重污染了周围环境。
我国作为水资源十分短缺的国家,严格控制脱氮污水的超标排放是十分必要的。
对于氮素污染的治理,国内外常见的工程技术有空气吹脱法、选择性离子交换法、折点氯化法、磷酸铵镁沉淀法、生物脱氮法等。
其中,生物脱氮法使用范围广,投资及运转成本低,操作简单,无二次污染,处理后的废水易达标排放,已成为脱氮常用处理方法。
1 传统生物脱氮工艺传统生物脱氮一般包括硝化和反硝化两个阶段,分别由硝化菌和反硝化菌完成。
硝化反应是由一类化能自养好样的硝化细菌完成,主要包括两个步骤:第1步称为亚硝化过程,由亚硝酸菌将氨态氮转化为亚硝酸盐;第2步称为硝化过程,由硝酸菌将亚硝酸盐进一步氧化为硝酸盐。
反硝化作用是在厌氧或缺氧条件下反硝化菌把硝酸盐转化为氮气排除。
该转化过程有许多中间产物,如HNO2、NO2和N2O。
反硝化菌多数是兼性厌氧菌,在无分子态氮存在的环境下,利用硝酸盐作为电子受体,有机物作为碳源和电子供体提供能量并被转化为CO2、H2O。
传统生物脱氮工艺在废水脱氮方面起到了一定的作用,但任存在以下问题[1]:(1)在低温冬季硝化菌群增殖速度慢且难以维持较高的生物浓度。
造成系统总水力停留时间(HRT)长,有机负荷较低,增加了基建投资和运行费用。
(2)硝化过程是在有氧条件下完成的,需要大量的能耗;(3)反硝化过程需要一定的有机物,废水中的COD经过曝气有一大部分被去除,因此反硝化时往往要另外加入碳源;(4)系统为维持较高生物浓度及获得良好的脱氮效果,必须同时进行污泥回流和硝化液回流,增加了动力消耗及运行费用;(5)抗冲击能力弱,高浓度氨氮和亚硝酸盐进水会抑制硝化菌的生长;(6)为中和硝化过程产生的酸度,需要加碱中和,增加了处理费用;2SHARON工艺2.1 SHARON工艺的研发SHARON(Single reactor for High activity Ammonia Removal Over Nitrite)工艺是荷兰Delft技术大学开发的一种新型的脱氮工艺[2]。
其基本原理是在同一个反应器内,先在有氧的条件下,利用氨氧化细菌将氨氧化生成NO2-;然后再缺氧的条件下,以有机物作为电子供体,将亚硝酸盐反硝化,生成氨气。
其反应式如式(1),式(2)所示。
由于该工艺把硝化作控制在亚硝酸盐阶段,比传统硝化—反硝化工艺缩短了一段流程,因此国内形象地将它称为短程硝化—反硝化工艺。
NH4+ + 1.5O2→NO2- + 2H+ + H2ONO2- + 0.5O2→NO3-SHARON工艺的典型特征是:①短程硝化和短程反硝化被放置在一个反应器内实施,工艺流程较短;②反应器内不持留活性污泥,装置结构简单;③操作温度较高(30~40℃),处理效率较好;④借助于反硝化作用调控酸碱度(Ph7~8),无需加碱中和。
2.2SHARON工艺的微生物Loosdrecht等人[3]认为,氧化NH3—N的通常是Nitrosomonas europaea,这是一种典型的好氧氨氧化菌。
郑平[4]的研究表明,该种细菌培养物的氨氧化活性高于氨氧化菌和硝化菌的混培物的氨氧化活性。
Logemann等人[5]采用现代分子生物学技术对SHARON反应器中的微生物群落进行研究,结果表明SHARON工艺中其主要作用的细菌是Nitrosomonas europaea,即一种普遍存在的氨氧化细菌。
2.3SHARON工艺的技术要点SHARON工艺的核心是使消化过程终止于亚硝酸盐阶段。
在实施上,不仅主要抑制亚硝酸盐氧化,还要促进氨化,只有这样,才能使工艺经济效益高。
2.3.1温度控制温度对生物反应有很大的影响。
升高温度一方面可加快酶促反应,另一方面也可加快酶变性失活。
如果其他条件保持不变,生物反应有一个最适温度。
对于硝化反应,文献来源不同,所报道的温度范围和适宜温度差距很大。
总的来看,硝化反应的温度范围为4~45℃,适宜温度为20~30℃,温度低于15℃或高于40℃硝化反应速率降低。
Hellinga等人认为,在常温(5~20℃)下,由于亚硝化细菌的生长速率小于硝化细菌的速率,前者产生的亚硝酸盐很容易被后者氧化为硝酸盐,因此在这个温度范围运作的传统生物脱氮工艺,只能进行全程硝化—反硝化反应。
[2]提升反应器的运行温度(20~30℃),利用亚硝化细菌和硝化细菌不同的温度效应,有助于亚硝化细菌从而实现短程硝化。
需要指出的是,温度并非越高越好,温度超过40℃会导致反应速率下降;另外,废水升温需要能量,温度越高,能耗越大。
综合考虑,SHARON工艺的操作温度以30~35℃为宜。
2.3.2pH控制在硝化工艺中,pH是一个非常重要的调控参数。
一般而论,硝化反应的pH范围为5.5~10.0,适宜pH为6.5~9.0。
pH低于6.5或高于9.0,硝化速率降低。
其中,亚硝化细菌与硝化细菌适宜生长的pH范围略有差异,分别为7.0~8.5和6.5~7.5。
pH7.4~8.3时亚硝化细菌的活性较高,亚硝化细菌的活性较高,亚硝酸盐产生速率较快,最大值出现在pH8.0附近。
硝化细菌在pH7.0附近较高,硝酸盐产生速率的最大值也出现在中性范围。
试验表明,pH大于7.4时,亚硝酸盐占产物的比例高于90%。
SHARON工艺的pH宜控制在7.4~8.3之间。
2.3.3溶解氧浓度控制氨氧化细菌和硝化菌都是绝对好氧菌,一般认为应使DO在0.5mg/L以上时硝化作用才能较好的进行。
Hanaki等人[6]研究表明,在25℃时,进水NH3—N为80mg/L,低溶解氧(0.5mg/L)下,氨氧化细菌的增值速率加快近一倍,不唱了由于低溶解氧所造成的代谢活性的下降,使得从氨氧化到NO2—N的过程没有受到明显的影响;而硝化细菌的增殖速度在低的溶解氧(0.5mg/L)下没有任何提高,从NO2-—N到NO3-—N的氧化过程受到了严重的抑制,从而导致NO2-—N的大量积累。
因此,即使再较低温度(25℃)下,控制较低的溶解氧浓度也可以抑制硝化菌生长获得NO2-—N的积累。
2.3.4泥龄控制泥龄是指活性污泥在反应器内的平均停留时间,也即反应器内污泥完全更新一次所需时间。
由于亚硝化细菌的倍增时间短于硝化细菌,在悬浮生长系统中,控制污泥泥龄可逐渐洗出硝化细菌而保留亚硝化细菌,从而实现短程硝化。
Van Kempen[7]等人根据SHARON 工艺生产性应用经验,推荐奖泥龄控制在1~2.5d。
2.4SHARON工艺的应用SHARON是应荷兰鹿丹特Dokhaven污水处理厂的要求而研发的,它没有经过中间的试验,直接从实验室规模(1.5L)放大到生产性规模(1800m3)。
Dokhaven污水处理厂的工艺流程如图1所示。
其中SHARON工艺用于处理厌氧消化污泥分离液。
图 1 Dokhaven污水处理厂流程SHARON工艺在Dokhaven污水处理厂取得成功后,已推广应用于荷兰Utrecht污水处理厂,处理对象相同(厌氧消化污泥分离液)[7]。
3ANAMMOX工艺3.1 ANAMMOX工艺的研发ANAMMOX(Anaerobic AMMonium OXidation)即厌氧氨氧化工艺也是荷兰Delft 大学1990年提出的一种新型脱氮工艺[8]。
该工艺的特征是在厌氧条件下,以硝酸盐或亚硝酸盐为电子受体,将氨氮氧化生成氮气。
如果说上述的SHARON 工艺还只是将传统的硝化反硝化工艺通过运行控制缩短了生物脱氮的途径,,ANAMMOX 工艺则是一种全新的生物脱氮工艺, 完全突破了传统生物脱氮工艺中的基本概念。
3.2ANAMMOX工艺的微生物Graaf[9]研究表明,参与厌氧氨氧化的细菌是一种自养菌,在厌氧氨氧化过程中不需要添加有机物。
同时他们还发现,随着试验的进行,反应器内污泥的颜色由褐色变为红色。
厌氧氨氧化菌是ANAMMOX工艺的基石,其生长能力和代谢能力是ANAMMOX工艺的灵魂。
厌氧氨氧化菌代谢活性高,对基质亲和力强,意味着ANAMMOX工艺具有很高的容积转化效率和基质转化程度。
厌氧氨氧化菌生长慢,细胞产率低,意味着ANAMMOX 工艺虽有剩余污泥排放量少的优点,但也有启动时间长和运行不稳定的缺点。
厌氧氨氧化菌代谢产生硝酸盐,意味着ANAMMOX工艺的出水需要补充合理,否则会影响出水水质。
虽然厌氧氨氧化菌可把氨和亚硝酸盐转化成氨气,但在许多生境中,只存在氨,并不存在亚硝酸盐。
要进行厌氧氨氧化,需要外部提供亚硝酸盐。
亚硝化细菌能够把氨氧化成亚硝酸盐,是厌氧氨氧化菌理想的合作伙伴。
3.3ANAMMOX工艺的技术要点ANAMMOX工艺的关键是获得足量的厌氧氨氧化菌,并将其有效的保持在装置内,使反应器达到设计的厌氧氨氧化功能。
在实施上,不仅要优化营养条件和环境条件,促进厌氧氨氧化菌的生长,同时要设法改善菌体的沉降性能并改进反应器的结构,促使功能菌有效保持。
3.3.1温度控制温度是影响细菌生长和代谢的重要环境条件,但是由于厌氧氨氧化菌生长缓慢,测定菌体浓度变化十分困难,至今未见温度与该菌生长之间的定量关系。
从反应活化能角度看,厌氧氨氧化菌属于容易进行的化学反应;但同时属于较难进行的生物反应。
在温度效应上,活化能越大,化学反应对温度变化的敏感性越高。
在废水生物处理中,厌氧氨氧化属于对温度变化比较敏感的反应类型,理论上提高温度有利于加速反应。
3.3.2pH控制由于氨和NO2-在水溶液中会发生离解, 因此pH对厌氧氨氧化具有影响作用。
郑平[4]的研究表明ANAMMOX 反应的最适pH 在7.5附近。
Jetten[10]等人认为, ANAMMOX 工艺在pH 为6.7~ 8.3 范围内都可以运行较好,最适pH 为8。
3.3.3溶解氧控制Strous等人采用序批式反应器试验了氧对厌氧氨氧化的影响[11]。
该反应器以厌氧和好氧交替运行,在充氧期间,没有厌氧氨氧化反应;只有在停止供氧后,才发生厌氧氨氧化反应。
试验表明,氧能够抑制厌氧氨氧化活性,但除氧后厌氧氨氧化活性能够恢复。
Strous等人进一步考察了对厌氧氨氧化活性的抑制浓度[11]。
他们发现,在氧浓度为0.5%~2.0%空气饱和度的条件下,厌氧氨氧化活性被完全抑制;氧对厌氧氨氧化的抑制浓度低于0.5%空气饱和度。
3.3.4泥龄控制由于厌氧氨氧化菌生长缓慢,细菌产率低,维持长泥龄对ANAMMOXA工艺具有至关重要的作用。