二次函数的最值问题课后练习1

合集下载

初中数学二次函数最值练习题(附答案)

初中数学二次函数最值练习题(附答案)

初中数学二次函数最值练习题一、单选题1.二次函数245y x x -=+的最小值是( ) A.1-B.1C.3D.52.在平面直角坐标系中,对于二次函数2(2)1y x =-+,下列说法中错误的是( ) A.y 的最小值为1B.图象顶点坐标为(2,1),对称轴为直线2x =C.当2x <时,y 的值随x 值的增大而增大,当2x ≥时,y 的值随x 值的增大而减小D.它的图象可以由2y x =的图象向右平移2个单位长度,再向上平移1个单位长度得到3.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,若这种商品的零售价每降价1元,其日销量就增加1个,为了获取每日最大利润,则应降价( ) A.5元 B. 10元 C. 15元 D.20元4.当1a x a ≤≤+时,函数221y x x =-+的最小值为1,则a 的值为( ) A.-1 B.2 C.0或2 D.-1或2 5.当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为( )A.74-或74- 6.已知二次函数2()1y x h =-+(h 为常数),在自变量x 的值满足13x 的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A.1或-5B.-1或5C.1或-3D.1或37.某二次函数,当自变量x 满足04x 时,对应的函数值y 满足02y ,则这个函数不可能是( ) A.21(2)2y x =- B.242y x x =-+ C.21(2)22y x =--+ D.2114y x x =-++ 8.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m 长的篱笆围成一个矩形花园ABCD (篱笆只围,AB BC 两边),设m AB x =.若在点P 处有一棵树与墙,CD AD的距离分别是15 m 和6 m,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积S 的最大值为( )A.2193mB.2194mC.2195mD.2196m9.已知二次函数22233y ax ax a =+++(其中x 是自变量),当2x ≥时,y 随x 的增大而增大,且21x -≤≤时,y 的最大值为9,则a 的值为( )A.1或-2B. D.110.已知二次函数2()y x h =--(h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y 的最大值为1-,则h 的值为( ) A.3或6 B.1或6C.1或3D.4或6二、解答题11.2a b+≤(0,0)a b >>,当且仅当a b =时,等号成立,其中我们把2a b+叫作正数a b 、,a b 的几何平均数,其意义是两个正数的算术平均数不小于其几何平均数。

(825)二次函数 最值问题解答题专项练习60题(有答案)32页 ok

(825)二次函数 最值问题解答题专项练习60题(有答案)32页 ok

二次函数最值专项练习60题1.画出抛物线y=4(x﹣3)2+2的大致图象,写出它的最值和增减性.2.如图,二次函数y=ax2+bx+c的图象经过A(﹣1,0)、B(2,3)两点,求出此二次函数的解析式;并通过配方法求出此抛物线的对称轴和二次函数的最大值.3.已知二次函数y=x2﹣x﹣2及实数a>﹣2,求(1)函数在一2<x≤a的最小值;(2)函数在a≤x≤a+2的最小值.4.已知函数y=x2+2ax+a2﹣1在0≤x≤3范围内有最大值24最小值3,求实数a的值.5.我们知道任何实数的平方一定是一个非负数,即:(a+b)2≥0,且﹣(a+b)2≤0.据此,我们可以得到下面的推理:∵x2+2x+3=(x2+2x+1)+2=(x+1)2+2,而(x+1)2≥0∴(x+1)2+2≥2,故x2+2x+3的最小值是2.试根据以上方法判断代数式3y2﹣6y+11是否存在最大值或最小值?若有,请求出它的最大值或最小值.6.如图所示,已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm).(1)写出▱ABCD的面积y(cm2)与x的函数关系式,并求自变量x的取值范围.(2)当x取什么值时,y的值最大?并求最大值.7.求函数y=2x2﹣ax+1当0≤x≤1时的最小值.8.已知m,n是关于x的方程x2﹣2ax+a+6=0的两实根,求y=(m﹣1)2+(n﹣1)2的最小值.9.当﹣1≤x≤2时,求函数y=f(x)=2x2﹣4ax+a2+2a+2的最小值,并求最小值为﹣1时,a的所有可能的值.10.已知二次函数y=x2﹣6x+m的最小值为1,求m的值.11.已知函数是关于x的二次函数.(1)求m的值;(2)当m取什么值时,此函数图象的顶点为最低点?(3)当m取什么值时,此函数图象的顶点为最高点?12.两个数的和为6,这两个数的积最大可以达到多少?利用图象描述乘积与因数之间的关系.13.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做一个正方形.这两个正方形面积之和有最值吗?如有,求出最值;如没有请说明理由.14.关于自变量x的二次函数y=x2﹣4ax+5a2﹣3a的最小值为m,且a满足不等式0≤a2﹣4a﹣2≤10,则m的最大值是多少?15.求函数的最小值.16.当﹣1≤x≤1时,函数y=﹣x2﹣ax+b+1(a>0)的最小值是﹣4,最大值是0,求a、b的值.17.已知a2+b2=1,,求a+b+ab的取值范围.18.如图,在矩形ABCD中,B(16,12),E、F分别是OC、BC上的动点,EC+CF=8.当F运动到什么位置时,△AEF的面积最小,最小为多少?19.如图;AC,BD是四边形ABCD的对角线,AC⊥BD于点O;(1)求证:S四边形ABCD=AC•BD;(2)若AC+BD=10,当AC,BD的长是多少时,四边形ABCD的面积最大?20.先画出函数图象,然后结合图象回答下列问题:(1)函数y=3x2的最小值是多少?(2)函数y=﹣3x2的最大值是多少?(3)怎样判断函数y=ax2有最大值或最小值?与同伴交流.21.将长为156cm的铁线剪成两段,每段都围成一个边长为整数(cm)的正方形,求这两个正方形面积和的最小值.22.已知函数y=(a+2)x2﹣2(a2﹣1)x+1,其中自变量x为正整数,a也是正整数,求x何值时,函数值最小.23.设实数a,b满足:3a2﹣10ab+8b2+5a﹣10b=0,求u=9a2+72b+2的最小值.24.若函数y=4x2﹣4ax+a2+1(0≤x≤2)的最小值为3,求a的值.25.说明:不论x取何值,代数式x2﹣5x+7的值总大于0.并尝试求出当x取何值时,代数式x2﹣5x+7的值最小?最小值是多少?26.求经过点A(0,2)、B(2,0)、C(﹣1,2)的抛物线的解析式,并求出其最大或最小值.27.如图,在△ABC中,∠A=90°,∠C=30°,AB=1,两个动点P,Q同时从A点出发,点P沿AC运动,点Q沿AB,BC运动,两点同时到达点C.(1)点Q的速度是点P速度的多少倍?(2)设AP=x,△APQ的面积是y,求y关于x的函数关系式,并写出x的取值范围,(3)求出y的最大值.28.已知二次函数y=x2与一次函数y=2x+1相交于A、B两点,点C是线段AB上一动点,点D是抛物线上一动点,且CD平行于y轴,求在移动过程中CD的最大值.29.代数式x2﹣3x﹣1有最大值或最小值吗?若有,请求出:当x取何值时,最大(小)值是多少?30.已知二次函数y=2x2﹣4ax+a2+2a+2(1)通过配方,求当x取何值时,y有最大或最小值,最大或最小值是多少?(2)当﹣1≤x≤2时,函数有最小值2.求a所有可能取的值.31.设函数y=|x2﹣x|+|x+1|,求﹣2≤x≤2时,y的最大值和最小值.32.求函数y=(k﹣1)x2﹣2(k﹣1)x﹣k的最值,其中k为常数且k≠1.33.已知函数y=﹣9x2﹣6ax+2a﹣a2,当时,y的最大值为﹣3,求a.34.求函数y=x2+5x+8的最小值.35.已知二次函数y=(3﹣k)x2+2,求:(1)当k为何值时,函数有最大值?最大值是多少?(2)当k为何值时,函数有最小值?最小值是多少?36.求关于x的二次函数y=x2﹣2tx+1在﹣1≤x≤1上的最大值(t为常数).37.已知二次函数y=﹣9x2﹣6ax﹣a2+2a有最大值﹣3,求实数a的值.38.(1)求函数y=|x2﹣4|﹣3x在区间﹣2≤x≤5中的最大值和最小值.(2)已知:|y|≤1,且2x+y=1,求2x2+16x+3y2的最小值.39.已知y=x2﹣2ax﹣3,﹣2≤x≤2.(1)求y的最小值;(2)求y的最大值.40.当|x+1|≤6时,求函数y=x|x|﹣2x+1的最大值?41.用长14m的篱笆围成如图所示的鸡舍,门MN宽2m,怎样设计才能使鸡舍的面积最大?42.如图所示,在直角梯形ABCD中,AB=2,P是边AB的中点,∠PDC=90°,问梯形ABCD面积的最小值是多少?43.有两条抛物线y=x2﹣3x,y=﹣x2+9,通过点P(t,0)且平行于y轴的直线,分别交这两条抛物线于点A和B,当t在0到3的范围内变化时,求线段AB的最大值.44.如图,半径为1的半圆内接等腰梯形,其下底是半圆的直径,试求:(1)它的周长y与腰长x之间的函数关系式,并求出自变量x的取值范围.(2)当腰长为何值时,周长有最大值?这个最大值为多少?45.已知点P,Q,R分别在△ABC的边AB,BC,CA上,且BP=PQ=QR=RC=1,求△ABC的面积的最大值.46.已知:0≤x≤1,函数的最小值为m,试求m的最大值.47.阅读下面的材料:小明在学习中遇到这样一个问题:若1≤x≤m,求二次函数y=x2﹣6x+7的最大值.他画图研究后发现,x=1和x=5时的函数值相等,于是他认为需要对m进行分类讨论.他的解答过程如下:∵二次函数y=x2﹣6x+7的对称轴为直线x=3,∴由对称性可知,x=1和x=5时的函数值相等.∴若1≤m<5,则x=1时,y的最大值为2;若m≥5,则x=m时,y的最大值为m2﹣6m+7.请你参考小明的思路,解答下列问题:(1)当﹣2≤x≤4时,二次函数y=2x2+4x+1的最大值为_________;(2)若p≤x≤2,求二次函数y=2x2+4x+1的最大值;(3)若t≤x≤t+2时,二次函数y=2x2+4x+1的最大值为31,则t的值为_________.48.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度移动,如果P,Q两点同时出发,分别到达B,C两点后就停止移动.(1)设运动开始后第t秒钟后,五边形APQCD的面积为Scm2,写出S与t的函数关系式,并指出自变量t的取值范围.(2)t为何值时,S最小?最小值是多少?49.已知二次函数y=x2与一次函数y=2x+1相交于A、B两点,点C是线段AB上一动点,点D是抛物线上一动点,且CD平行于y轴,求在移动过程中CD的最大值.50.如图,在△ABC中,∠A=90°,∠C=30°,AB=1,两个动点P,Q同时从A点出发,点P沿AC运动,点Q沿AB,BC运动,两点同时到达点C.(1)点Q的速度是点P速度的多少倍?(2)设AP=x,△APQ的面积是y,求y关于x的函数关系式,并写出x的取值范围,(3)求出y的最大值.51.一块三角形废料如图所示,∠A=30°,∠C=90°,BC=6.用这块废料剪出一个平行四边形AGEF,其中,点G,E,F分别在AB,BC,AC上.设CE=x(1)求x=2时,平行四边形AGEF的面积.(2)当x为何值时,平行四边形AGEF的面积最大?最大面积是多少?52.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=8,点D在BC上运动(不运动至B,C),DE∥AC,交AB 于E,设BD=x,△ADE的面积为y.(1)求y与x的函数关系式及自变量x的取值范围;(2)x为何值时,△ADE的面积最大?最大面积是多少?53.如图,将两张长为8,宽为2的矩形纸条交叉放置.(1)求证:重叠部分的图形是菱形;(2)求重叠部分图形的周长的最大值和最小值.(要求画图﹑推理﹑计算)54.如图,设点P是边长为a的正三角形ABC的边BC上一点,过点P作PQ⊥AB,垂足为Q,延长QP交AC的延长线于点R.当点P在何处时,△BPQ与△CPR的面积之和取最大(小)值?并求出最大(小)值.55.(2012•杭州)当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.56.(2003•黄石)二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于C(0,3),若△ABC的面积为9,求此二次函数的最小值.57.(2013•南岗区一模)如图,在Rt△AOB中,∠AOB=90°,且AO=8,BO=6,P是线段AB上一个动点,PE⊥A0于E,PF⊥B0于F.设PE=x,矩形PFOE的面积为S(1)求出S与x的函数关系式;(2)当x为何值时,矩形PFOE的面积S最大?最大面积是多少?58.(2013•资阳)在关于x,y的二元一次方程组中.(1)若a=3.求方程组的解;(2)若S=a(3x+y),当a为何值时,S有最值.59.(2010•漳州)如图,在△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm.动点P、Q分别从A、C两点同时出发,其中点P以1cm/s的速度沿AC向终点C移动;点Q以cm/s的速度沿CB向终点B移动.过P作PE∥CB交AD于点E,设动点的运动时间为x秒.(1)用含x的代数式表示EP;(2)当Q在线段CD上运动几秒时,四边形PEDQ是平行四边形;(3)当Q在线段BD(不包括点B、点D)上运动时,求四边形EPDQ面积的最大值.60.(2010•长春)如图,梯形ABCD中,AB∥DC,∠ABC=90°,∠A=45°.AB=30,BC=x,其中15<x <30.作DE⊥AB于点E,将△ADE沿直线DE折叠,点A落在F处,DF交BC于点G.(1)用含有x的代数式表示BF的长.(2)设四边形DEBG的面积为S,求S与x的函数关系式.(3)当x为何值时,S有最大值,并求出这个最大值.二次函数最值解答题60题参考答案:1.解:因为顶点坐标为(3,2),对称轴为x=3,与y轴交点为(0,38),因为△=144﹣4×2×19=144﹣152=﹣8<0,所以与x轴无交点.作图得:最值2.增减性:当x≥3时,y随x的增大而增大;当x≤3时,y随x的增大而减小2.解:由函数图象可得二次函数图象过点C(0,3),将A,B,两点代入函数解析式得解得:a=﹣1,b=2,c=3,可得二次函数解析式为:y=﹣x2+2x+3;配方得:y=﹣(x﹣1)2+4,∴对称轴x=1,最大值为43.解:二次函数y=x2﹣x﹣2=﹣的图象如图:顶点坐标为(,),(1)当﹣2<a<时,函数为减函数,最小值为当x=a时,y=a2﹣a﹣2.当a≥时,y min=﹣,(2)当a>﹣2,且a+2<,即:﹣2<a<﹣时,函数为减函数,最小值为:y x=a+2=(a+2)2﹣(a+2)﹣2,当a<≤a+2,即﹣≤a<时,函数的最小值为y=﹣4.解:配方y=(x+a)2﹣1,函数的对称轴为直线x=﹣a,顶点坐标为(﹣a,﹣1).①当0≤﹣a≤3即﹣3≤a≤0时,函数最小值为﹣1,不合题意;②当﹣a<0即a>0时,∵当x=3时,y有最大值;当x=0时,y有最小值,∴,解得a=2;③当﹣a>3即a<﹣3时,∵当x=3时,y有最小值;当x=0时,y有最大值,∴,解得a=﹣5.∴实数a的值为2或﹣55.解:原式=3(y﹣1)2+8,∵(y﹣1)2≥0,∴3(y﹣1)2+8≥8,∴有最小值,最小值为86.解:(1)过A作AE⊥BC于E,如图,∵∠B=30°,AB=x,∴AE=x,又∵平行四边形ABCD的周长为8cm,∴BC=4﹣x,∴y=AE•BC=x(4﹣x)=﹣x2+2x(0<x<4);(2)y=﹣x2+2x=﹣(x﹣2)2+2,∵a=﹣,∴当x=2时,y有最大值,其最大值为27.解:对称轴x=﹣=﹣=,①≤0,即a≤0时,0≤x≤1范围内,y随x的增大而增大,当x=0时,y最小,最小值y=2×02﹣a×0+1=1,②0<<1,即0<a<4时,当x=时有最小值,最小值y=2×()2﹣a×+1=1﹣,③≥1,即a≥4时,0≤x≤1范围内,y随x的增大而减小,当x=1时,y最小,最小值y=2×12﹣a×1+1=3﹣a,综上所述,a≤0时,最小值为1,0<a<4时,最小值为1﹣,a≥4时,最小值为3﹣a8.解:依题意△=4a2﹣4(a+6)≥0,即a2﹣a﹣6≥0,∴a≤﹣2或a≥3,(3分)由m+n=2a,mn=a+6,y=m2+n2﹣2(m+n)+2=(m+n)2﹣2mn﹣2(m+n)+2=4a2﹣6a﹣10,=4(a﹣)2﹣,∴a=3时,y的最小值为8.(12分)故y的最小值为89.解:对称轴x=﹣=﹣=a,①a≤﹣1时,﹣1≤x≤2范围内,y随x的增大而增大,当x=﹣1时,y最小,最小值y=2×(﹣1)2﹣4a×(﹣1)+a2+2a+2=a2+6a+4,②﹣1<a<2时,当x=a时,有最小值,最小值y=2×a2﹣4a×a+a2+2a+2=﹣a2+2a+2,③a≥2时,﹣1≤x≤2范围内,y随x的增大而减小,当x=2时,y最小,最小值y=2×22﹣4a×2+a2+2a+2=a2﹣6a+10,综上所述,a≤﹣1时,最小值为a2+6a+4,﹣1<a<2时,最小值为﹣a2+2a+2,a≥2时,最小值为a2﹣6a+10;∵最小值为﹣1,∴a2+6a+4=﹣1,整理得a2+6a+5=0,解得a1=﹣1,a2=﹣5,﹣a2+2a+2=﹣1,整理得,a2﹣2a﹣3=0,解得a3=﹣1,a4=3(舍去),a2﹣6a+10=﹣1,整理得,a2﹣6a+11=0,△=(﹣6)2﹣4×1×11=﹣8<0,方程无解,综上所述,a的所有可能值为﹣1、﹣510.解:根据抛物线顶点坐标公式得:=1,解得:m=1011.解:(1)根据二次函数的定义可知:m2+2m﹣6=2,m+2≠0,解得:m=2或﹣4.(2)当m=2时,抛物线的开口向上,有最小值,此函数图象的顶点为最低点;(3)当m=﹣4时,抛物线的开口向下,有最大值,此函数图象的顶点为最高点12.解:设两数为x、y,两数的积为s,根据题意列方程组得,,整理得,s=x(6﹣x)=﹣x2+6x,配方得,s=﹣(x﹣3)2+9,可见,s的最大值为9.如图:由于函数为抛物线,其与x轴的交点坐标为:(0,0),(6,0),顶点为(3,9),对称轴为直线x=3,画出函数图象13.解:设一段铁丝的长度为x,另一段为(20﹣x),则S=x2+(20﹣x)(20﹣x)=(x﹣10)2+12.5,∴由函数当x=10cm时,S最小,为12.5cm214.解:由0≤a2﹣4a﹣2≤0,解得:﹣2≤a≤2﹣或2+≤a≤6.由y=x2﹣4ax+5a2﹣3a可得y=(x﹣2a)2+a2﹣3a,则最小值m=a2﹣3a=(a﹣)2﹣,它的图象的对称轴为a=.在上述a的取值范围内的a值中6与的距离最大.∴a=6时,原函数的最小值m有最大值m=62﹣3×6=1815.解:根据x2﹣x﹣6≥0且x2﹣x﹣6≠6时,函数才有意义,解得:x≤﹣2且x≠﹣3或x≥3且x≠4,此时函数y=x2﹣4x﹣9,图象如图:在x≤﹣2且x≠﹣3或x≥3且x≠4的范围内可知,当x=3时,这个函数的最小值为﹣1216.解:由题意:对称轴为x=﹣.其次这是一个定区间(﹣1≤x≤1)动对称轴(x=﹣)的函数,所以需要对对称轴所在位置进行分类讨论.第一种情况:0<﹣≤1,不可能.因对称轴在区间内故函数最大值在x=﹣时取到,因对称轴在区间左半段故函数最小值在x=1时取到.联立x=﹣时y=﹣4与x=﹣1时y=0两个方程解得a=2±2,均不符合条件,故舍去.第二种情况,﹣<﹣1,即对称轴在区间外,此时a>2,在区间内函数单调递减,故x=﹣1时y=0,x=1时y=﹣4,解得a=2,b=﹣2,满足a>0的条件.解得:a=2,b=﹣217.解:∵a2+b2=(a+b)2﹣2ab,a2+b2=1,∴ab=,设a+b=t,则﹣≤t≤,∴y=a+b+ab=+a+b=(t2﹣1)+t=t2+t﹣=(t+1)2﹣1,∴t=﹣1时,y有最小值为﹣1,t=时,y有最大值,此时y=(+1)2﹣1=,∴﹣1≤y≤,即a+b+ab的取值范围为﹣1≤a+b+ab≤18.解:在矩形ABCD中,B(16,12),EC+CF=8;则AB=OC=16,BC=OA=12;设CF=x,则EC=8﹣x;S△AEF=S□ABCO﹣S△AOE﹣S△ABF﹣S△ECF=OA×OC﹣×OE×OA﹣×AB×BF﹣×CE×CF=12×16﹣×[16﹣(8﹣x)]×12﹣×16×(12﹣x)﹣×x×(8﹣x)=x2﹣2x+48=(x﹣2)2+46;因此,当x=2时,S△AEF取得最小值46.故当F运动到CF为2时,△AEF的面积最小,最小为4619.(1)证明:∵AC⊥BD,∴S四边形ABCD=S△ABC+S△ACD,=AC•OB+AC•OD,=AC(OB+OD)=AC•BD;(2)解:设AC=x,∵AC+BD=10,∴BD=10﹣x,∴四边形ABCD的面积=x(10﹣x)=﹣(x2﹣10x)=﹣(x﹣5)2+,∵﹣<0,∴当x=5时,四边形ABCD的面积有最大值,此时AC=5,BD=520.解:(1)根据图象得:它的最小值是0;(2)根据图象得:它的最大值是0;(3)当a>0时,y=ax2有最小值,当a<0时,y=ax2有最大值21.解:设其中一段铁丝的长度为xcm,另一段为(156﹣x)cm,则两个正方形面积和S=x2+(156﹣x)2=(x﹣78)2+761,∴由函数当x=78cm时,S最小,为761cm2.答:这两个正方形面积之和的最小值是761cm222.解:∵y=(a+2)x2﹣2(a2﹣1)x+1,∴y=(a+2)+1﹣,其对称轴为,因为a为正整数,故因,,因此,函数的最小值只能在x取a﹣2,a﹣1,时达到,(1)当a﹣1=时,a=1,此时,x=0使函数取得最小值,由于x是正整数,故应舍去;(2)a﹣2<<a﹣1时,即a>1时,由于x是正整数,而为小数,故x=不能达到最小值,当x=a﹣2时,y1=(a+2)(a﹣2)2﹣2(a2﹣1)(a﹣2)+1,当x=a﹣1时,y2=(a+2)(a﹣1)2﹣2(a2﹣1)(a﹣1)+1,又y1﹣y2=4﹣a,①当4﹣a>0时,即1<a<4且a为整数时,x取a﹣1,使y2为最小值;②当4﹣a=0时,即a=4时,有y1=y2,此时x取2或3;③当4﹣a<0时,即a>4且为整数时,x取a﹣2,使y1为最小值;综上,(其中a为整数)23.解:由3a2﹣10ab+8b2+5a﹣10b=0可得(a﹣2b)(3a﹣4b+5)=0,(6分)所以a﹣2b=0,或3a﹣4b+5=0.(8分)①当a﹣2b=0,即a=2b时,u=9a2+72b+2=36b2+72b+2=36(b+1)2﹣34,于是b=﹣1时,u的最小值为﹣34,此时a=﹣2,b=﹣1.(13分)②当3a﹣4b+5=0时,u=9a2+72b+2=16b2+32b+27=16(b+1)2+11,于是b=﹣1时,u的最小值为11,此时a=﹣3,b=﹣1.(18分)综上可知,u的最小值为﹣3424.解:∵y=4x2﹣4ax+a2+1(0≤x≤2),∴y=4+1,(1)当0≤≤2,即0≤a≤4时,最小值为1,不符合题意,舍去;(2)当<0即a<0时,令f(0)=3得:a2+1=3,解得:a=±,故a=﹣;(3)当>2即a>4时,令f(2)=3,即a2﹣8a+14=0,解得;a=4±,故a=4+;综上有;a=﹣或4+25.解:原式=(x)2+.∵(x)2≥0.∴原式>0恒成立;当x=时,原式有最小值为26.解:由题意设二次函数解析式为:y=ax2+bx+c,把A(0,2)、B(2,0)、C(﹣1,2)分别代入二次函数解析式,得:解得所以函数解析式为:y=﹣x2﹣x+2,配方得:y=﹣(x﹣)2+,所以二次函数有最大值且最大值为:27.解:(1)∵在△ABC中,∠A=90°,∠C=30°,AB=1,∴BC=2,AC=,而两个动点P,Q同时从A点出发,点P沿AC运动,点Q沿AB,BC运动,两点同时到达点C ∴Q的速度是P的速度的(2+1)÷=倍;(2)∵设AP=x,△APQ的面积是y,①当Q在AB上,即时,,②当Q在BC上,即时,,即:;(3)对于()当时,对于(≤x≤)当时,,∵,∴当时,.28.解:设C(m,2m+1),D(m,m2),则CD=2m+1﹣m2=﹣m2+2m+1=﹣(m﹣1)2+2,当m=1时,CD有最大值229.解:原式=(x﹣)2﹣,∴当x=时,原式有最小值为﹣30.解:(1)y=2x2﹣4ax+a2+2a+2,y=2(x﹣a)2﹣a2+2a+2,当x=a时,y有最小值为3﹣(a﹣1)2;(2)当﹣1≤x≤2时,3﹣(a﹣1)2=2,解得a=0或a=2,当x<﹣1时,则当x=﹣1时y=2,解得,当x>2时,则当x=2时y=2,解得a=4,所以:a=0或a=2或或a=431.解:(1)当1≤x≤2时,y=x2﹣x+x+1=x2+1,当x=1时取最小值为2,x=2时取最大值为5;(2)当﹣2≤x≤﹣1时,y=x2﹣2x﹣1=(x﹣1)2﹣2,当x=﹣1时,y取得最小值为2,当x=﹣2时,y取得最大值为7;(3)当﹣1≤x≤0时,y=x2﹣x+x+1=x2+1,当x=﹣1时,y取最大值为2,当x=0时,y取最小值为1;(4)当0≤x≤1时,y=x﹣x2+x+1=﹣(x﹣1)2+2,当x=1时y取最大值为2,当x=0时y取最小值为1;综上所述:y的最大值为7,最小值为132.解:∵y=(k﹣1)x2﹣2(k﹣1)x﹣k,=(k﹣1)(x﹣1)2﹣2k+1,∴当k>1时,函数有最小值为﹣2k+1,当k<1时,函数有最大值为﹣2k+133.解:(1)若,即﹣1≤a≤1,抛物线开口向下,当时,y最大值=2a,∵二次函数最大值﹣3,即与﹣1≤a≤1矛盾,舍去.(2)若当时,y随x增大而减小,当时,y最大值=﹣a2+4a﹣1,由又a>1,∴(3)若当时,y随x增大而增大,当时,y最大值=﹣a2﹣1,由又a<﹣1,∴综上所述,或34.最小值===.35.解:(1)3﹣k<0,即k>3时,函数有最大值2;(2)3﹣k>0,即k<3时,函数有最大小236.解:二次函数的对称轴为直线x=﹣=t,①﹣1≤t≤1时,x=t时,函数有最大值y=t2﹣2t•t+1=﹣t2+1,②t<﹣1时,x=1时,函数有最大值y=12﹣2t•1+1=﹣2t+2,③t>1时,x=﹣1时,函数有最大值y=(﹣1)2﹣2t•(﹣1)+1=2t+237.解:(1)若,即﹣1≤a≤1,抛物线开口向下,当时,y最大值=2a,∵二次函数最大值﹣3,即与﹣1≤a≤1矛盾,舍去.(2)若当时,y随x增大而减小,当时,y最大值=﹣a2+4a﹣1,由又a>1,∴(3)若当时,y随x增大而增大,当时,y最大值=﹣a2﹣1,由又a<﹣1,∴综上所述,或38.解:(1)若x2﹣4≥0,即|x|≥2,则y=x2﹣3x﹣4∴,若x2﹣4≤0,即|x|≤2,则y=﹣x2﹣3x+4∴,∴(2≤x≤5),当x=5时,y最大值=6;当x=2时,y最小值=﹣6,对(﹣2≤x≤2),当时,;x=2时,y最小值=﹣6,综上所述,x=2时,y最小值=﹣6;当时,;(2)由2x+y=1得,y=1﹣2x,由|y|≤1得﹣1≤x≤1故0≤x≤1,∴z为开口向上,对称轴为的抛物线,虽然有最小值,但不在0≤x≤1的范围内,因此不是所求的最值.又x=0时,z=3;x=1时,z=21.∴所求的最小值为339.解:对称轴为直线x=﹣=a,①a<﹣2时,x=﹣2时,y有最小值,最小值=(﹣2)2﹣2a×(﹣2)﹣3=4+4a﹣3=4a+1,x=2时,y有最大值,最大值=22﹣2a×2﹣3=4﹣4a﹣3=﹣4a+1;②﹣2≤a≤0时,x=a时y有最小值,最小值=a2﹣2a•a﹣3=﹣a2﹣3,x=2时,y有最大值,最大值=22﹣2a×2﹣3=4﹣4a﹣3=﹣4a+1;③0<a≤2时,x=a时y有最小值,最小值=a2﹣2a•a﹣3=﹣a2﹣3,x=﹣2时,y有最大值,最大值=(﹣2)2﹣2a×(﹣2)﹣3=4+4a﹣3=4a+1;④a>2时,x=2时,y有最小值,最小值=22﹣2a×2﹣3=4﹣4a﹣3=﹣4a+1,x=﹣2时,y有最大值,最大值=(﹣2)2﹣2a×(﹣2)﹣3=4+4a﹣3=4a+140.解:∵|x+1|≤6,解得:﹣7≤x≤5,∴当﹣7≤x<0时,y=﹣x2﹣2x+1=﹣(x+1)2+2,当x=﹣1时,取得最大值为2;当0≤x≤5时,y=x2﹣2x+1=(x﹣1)2,故当x=5时,y取得最大值为16.综合上述,原函数式最大值为1641.解:设鸡舍的长为x,则宽为(14﹣2x+2)=8﹣x,所以,鸡舍的面积=x(8﹣x)=﹣x2+8x=﹣(x﹣4)2+16,所以,当x=4,即长与宽都是4时,鸡舍的面积最大,最大值是16m2.答:鸡舍的长与宽都是4m时,鸡舍的面积最大42.解:设梯形上底为x,下底为y,∵AB=2,P是边AB的中点,∠PDC=90°,∴1+y2﹣(1+x2)=4+(y﹣x)2,解得:y=+x,梯形ABCD面积=×(x+y)×2=x+y=x+x+=2x+≥4=4,当x=时,即x=1,y=3时,梯形ABCD面积取得最小值为443.解:将直线x=t,代入y=x2﹣3x,y=﹣x2+9中,得A和B的纵坐标分别为t2﹣3t,﹣t2+9,∴AB=,∴当时,线段AB取得最大值44.解:(1)作OE⊥AD,DF⊥AO,垂足分别为E、F,由垂径定理可知AE=AD=x,易证Rt△ADF∽Rt△AOE,∴=,即=,解得AF=x2,∴CD=AB﹣2AF=2﹣x2,∴y=2x+2+2﹣x2=﹣x2+2x+4,∵OA=1,AF=x2,∴x2<1∴0<x<;(2)∵y=﹣x2+2x+4=﹣(x﹣1)2+5,∴x=1时,周长最大为545.解:由正弦定理得:BQ=2cosB,CQ=2cosC,由上可推出BC=2(cosB+cosC),AB=BC,AC=BC,∴S△ABC=×AB×AC×sinA,∵三边固定,当面积最大时,sinA=1,∠A=90°,又∠APR=∠ARP=∠QPR=∠QRP所以△APR相似于△QPR因为PR边公用,所以AP=AR=QP=QR=1AB=AC=2,∴S△ABC=×AB×AC×sinA=246.解:函数,∴y=+﹣,(1)当0≤≤1时,m=﹣,(2)当<0时,m=,(3)当>1时,m=1﹣a+,综上知:a=1时,m有最大值0.2547.解:(1)∵抛物线的对称轴为直线x=﹣1,∴当﹣2≤x≤4时,二次函数y=2x2+4x+1的最大值为:2×42+4×4+1=49;(2)∵二次函数y=2x2+4x+1的对称轴为直线x=﹣1,∴由对称性可知,当x=﹣4和x=2时函数值相等,∴若p≤﹣4,则当x=p时,y的最大值为2p2+4p+1,若﹣4<p≤2,则当x=2时,y的最大值为17;(3)t<﹣2时,最大值为:2t2+4t+1=31,整理得,t2+2t﹣15=0,解得t1=3(舍去),t2=﹣5,t≥﹣2时,最大值为:2(t+2)2+4(t+2)+1=31,整理得,(t+2)2+2(t+2)﹣15=0,解得t1=1,t2=﹣7(舍去),所以,t的值为1或﹣548.解:(1)第t秒钟时,AP=tcm,故PB=(6﹣t)cm,BQ=2tcm,故S△PBQ=•(6﹣t)•2t=﹣t2+6t∵S矩形ABCD=6×12=72.∴S=72﹣S△PBQ=t2﹣6t+72(0<t<6);(2)∵S=t2﹣6t+72=(t﹣3)2+63,∴当t=3秒时,S有最小值63cm249.解:设C(m,2m+1),D(m,m2),则CD=2m+1﹣m2=﹣m2+2m+1=﹣(m﹣1)2+2,当m=1时,CD有最大值250.解:(1)∵在△ABC中,∠A=90°,∠C=30°,AB=1,∴BC=2,AC=,而两个动点P,Q同时从A点出发,点P沿AC运动,点Q沿AB,BC运动,两点同时到达点C ∴Q的速度是P的速度的(2+1)÷=倍;(2)∵设AP=x,△APQ的面积是y,①当Q在AB上,即时,,②当Q在BC上,即时,,即:;(3)对于()当时,对于(≤x≤)当时,,∵,∴当时,51.解:设平行四边形AGEF的面积是S.∵四边形AGEF是平行四边形,∴EF∥AG;∵∠A=30°,∠C=90°,CE=x,BC=6,∴∠A=∠CFE=30°,∴CF=x,AC=6,∴AF=6﹣x;∴S=AF•CE=(6﹣x)x=﹣x2+6x,即S=﹣x2+6x;(1)当x=2时,S=﹣4+12=8,即S=8.答:平行四边形AGEF的面积为(平方单位)…4分(2)由S=﹣x2+6x,得,∴,∴当x=3时,平行四边形AGEF的面积最大,最大面积是(平方单位)…9分52.解:(1)在Rt△ABC中,AC==6,∴tanB=.∵DE∥AC,∴∠BDE=∠BCA=90°.∴DE=BD•tanB=x,CD=BC﹣BD=8﹣x.设△ADE中DE边上的高为h,∵DE∥AC,∴h=CD.∴y=DE•CD=•(8﹣x),即y=+3x.自变量x的取值范围是0<x<8;(2)x==4时,y最大==6.即当x=4时,△ADE的面积最大为653.(1)证明:过点A作AE⊥BC于E,AF⊥CD于F,∵两条纸条宽度相同(对边平行),∴AB∥CD,AD∥BC,AE=AF,∴四边形ABCD是平行四边形,∵S▱ABCD=BC•AE=CD•AF,又∵AE=AF,∴BC=CD,∴四边形ABCD是菱形;(2)解:当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,由勾股定理:x2=(8﹣x)2+22,得:4x=17,即菱形的最大周长为17cm.当两张纸条如图所示放置时,即是正方形时取得最小值为:2×4=8.54.解:在Rt△BPQ中,设PB=x,由∠B=60°,得:BQ=,PQ=,从而有PC=CR=a﹣x,∴△BPQ与△CPR的面积之和为:S=x2+(a﹣x)2=(x﹣a)2+a2,∵0≤x≤a,∴当x=0时,S取最大值a2,当x=a时,S取最小值a255.解:k可取值﹣1,1,2(1)当k=1时,函数为y=﹣4x+4,是一次函数(直线),无最值;(2)当k=2时,函数为y=x2﹣4x+3,为二次函数.此函数开口向上,只有最小值而无最大值;(3)当k=﹣1时,函数为y=﹣2x2﹣4x+6,为二次函数.此函数开口向下,有最大值.因为y=﹣2x2﹣4x+6=﹣2(x+1)2+8,则当x=﹣1时,函数有最大值为856.解:设A(m,0),B(n,0),则m,n是方程x2+bx+c=0的两个根,∵y=x2+bx+c过点C(0,3),∴c=3,又∵S△ABC=|AB|•|OC|=|AB|•3=9,∴|AB|=6,∴|m﹣n|=6,即(m+n)2﹣4mn=36,而,∴b2﹣12=36,b=±4,∴y=x2±4x+3=(x±2)2﹣9,∴所求的最小值为﹣957.解:(1)在矩形PFOE中,OF=PE=x,∵AO=8,BO=6,∴tanB==,即=,解得PF=(6﹣x),∴矩形PFOE的面积为S=PE•PF=x•(6﹣x)=﹣x2+8x,即S=﹣x2+8x;(2)∵S=﹣x2+8x=﹣(x2﹣6x+9)+12=﹣(x﹣3)2+12,∴当x=3时,矩形PFOE的面积S最大,最大面积是1258.解:(1)当a=3时,方程组为,②×2得,4x﹣2y=2③,①+③得,5x=5,解得x=1,把x=1代入①得,1+2y=3,解得y=1,所以,方程组的解是;(2)方程组的两个方程相加得,3x+y=a+1,所以,S=a(3x+y)=a(a+1)=(a+)2﹣,所以,当a=﹣时,S有最小值﹣59.解:(1)∵PE∥CB,∴∠AEP=∠ADC,又∵∠EAP=∠DAC,∴△AEP∽△ADC,(2分)∴=,∴=,(3分)∴.(4分)(2)由四边形PEDQ1是平行四边形,可得EP=DQ1.(5分)即x=3﹣x,所以x=1.5.(6分)∵0<x<2.4(7分)∴当Q在线段CD上运动1.5秒时,四边形PEDQ是平行四边形.(8分)(3)S四边形EPDQ2=(x+x﹣3)•(4﹣x)(9分)=﹣x2+x﹣6=﹣(x﹣)2+,(10分)又∵2.4<x<4,(12分)∴当x=时,S取得最大值,最大值为60.解 :(1)由题意,得EF=AE=DE=BC=x ,AB=30, ∴BF=2x-30.(2)∵∠F=∠A=45°,∠CBF=∠ABC=90°, ∴∠BGF=∠F=45°.∴BG=BF=2x-30,∴S=S DEF △−S GBF △=21DE ²−21BF ² =21 x ²−21(2x −30)² =−23 x ²+60x −450. (3)S=−23 x ²+60x −450=−23 (x −20)²+150. ∵a =−23 <0,15<20<30, ∴当x=20时,S 有最大值,最大值为150。

二次函数与最值问题(含答案)

二次函数与最值问题(含答案)

二次函数与最值问题1.如图,二次函数y=-x2+2(m-2)x+3的图象与x、y轴交于A、B、C三点,其中A(3,0),抛物线的顶点为D.(Ⅰ)求m的值及顶点D的坐标;(Ⅱ)当a≤x≤b时,函数y的最小值为74,最大值为4,求a,b应满足的条件;(Ⅲ)在y轴右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.解:(Ⅰ)把A(3,0)代入y=-x2+2(m-2)x+3,得-9+6(m-2)+3=0,解得m=3,则二次函数为y=-x2+2x+3,∵y=-x2+2x+3=-(x-1)2+4,∴顶点D的坐标为(1,4);(Ⅱ)把y=74代入y=-x2+2x+3中,得74=-x2+2x+3,解得x1=-12,x2=25,又∵函数y的最大值为4,顶点D的坐标为(1,4),结合图象知-12≤a≤1.当a=-12时,1≤b≤25,当-12<a≤1时,b=25;(Ⅲ)存在点P,使得△PDC是等腰三角形,当x=0时,y=3,∴点C坐标为(0,3).当△PDC是等腰三角形时,分三种情况:①如解图①,当DC=DP时,由抛物线的对称性知:点P与点C关于抛物线的对称轴x=1对称,∴点P坐标为(2,3);②如解图②,当PC=PD时,则线段CD的垂直平分线l与抛物线的交点即为所求的点P, 过点D作x轴的平行线交y轴于点H,过点P作PM⊥y轴于点M,PN⊥DH的延长线于点N,∵HD=HC=1,PC=PD,∴HP是线段CD的垂直平分线.∵HD=HC,HP⊥CD,∴HP平分∠MHN,∵PM⊥y轴于点M,PN⊥HD的延长线于点N, ∴PM=PN.设P(m,-m2+2m+3),则m=4-(-m2+2m+3),解得m=253±,∴点P的坐标为(253-,255+)(解图中未标记此点)或(253+,255-);③如解图③,当CD=CP时,点P在y轴左侧,不符合题意.综上所述,所求点P的坐标为(2,3)或(253-,255+)或(253+,255-).图①图②图③第1题解图2.已知抛物线y=ax2+bx+c(a<0)过(m,b),(m+1,a)两点,(Ⅰ)若m=1,c=1,求抛物线的解析式;(Ⅱ)若b≥a,求m的取值范围;(Ⅲ)当b≥a,m<0时,二次函数y=ax2+bx+c有最大值-2,求a的最大值. 解:(Ⅰ)∵m=1,c=1,∴抛物线的解析式为y=ax2+bx+1(a<0)过(1,b),(2,a)两点,∴1421a b ba b a++=⎧⎨++=⎩,解得11ab=-⎧⎨=⎩,∴抛物线的解析式为y=-x2+x+1;(Ⅱ)依题意得22(1)(1)am bm c ba mb mc a⎧++=⎪⎨++++=⎪⎩①②,由②-①得b=-am, ∵b≥a,∴-am≥a,∵a<0,∴m≥-1;(Ⅲ) 由(Ⅱ)得b=-am,代入①得am2-am2+c=b,∴c=b=-am,∵b≥a,m<0,∴-1≤m<0,∵二次函数y=ax2+bx+c有最大值-2,∴244ac ba-=-2,∴8a=m2+4m,∴8a= (m+2)2-4,∵-1≤m<0,∴-3≤(m+2)2-4<0,∴a≤-8 3 ,∴a的最大值为-8 3 .3.平面直角坐标系xOy中,抛物线y=mx2-2m2x+2交y轴于A点,交直线x=4于B点. (Ⅰ)求抛物线的对称轴(用含m的代数式表示);(Ⅱ)若AB∥x轴,求抛物线的解析式;(Ⅲ)若抛物线在A,B之间的部分任取一点P(x p,y p),一定满足y p≤2,求m的取值范围.∴抛物线的对称轴为直线x=m;(Ⅱ)当x=0时,y=mx2-2m2x+2=2,∴点A(0,2).∵AB∥x轴,且点B在直线x=4上,∴点B(4,2),抛物线的对称轴为直线x=2,∴m=2,∴抛物线的解析式为y=2x2-8x+2;(Ⅲ)当m>0时,如解图①,∵A(0,2),∴要使0≤x p≤4时,始终满足y p≤2,只需使抛物线y=mx2-2m2x+2的对称轴与直线x=2重合或在直线x=2的右侧.∴m≥2;当m<0时,如解图②,m<0时,y p≤2恒成立.综上所述,m的取值范围为m<0或m≥2.第3题解图4.已知抛物线y=ax2+bx+c的顶点为(2,5),且与y轴交于点C(0,1). (Ⅰ)求抛物线的表达式;(Ⅱ)若-1≤x≤3,试求y的取值范围;(Ⅲ)若M(n2-4n+6,y1)和N(-n2+n+74,y2)是抛物线上的不重合的两点,试判断y1与y2的大小,并说明理由.解:(Ⅰ)∵抛物线y=ax2+bx+c的顶点为(2,5),∴设抛物线的表达式为:y=a(x-2)2+5,把(0,1)代入得:a(0-2)2+5=1,a=-1,∴抛物线的表达式为:y=-(x-2)2+5=-x2+4x+1;(Ⅱ)∵抛物线的顶点为(2,5),a=-1,对称轴为直线x=2,且-1≤x≤3,∴当x=-1时,y有最小值,最小值为y=-(-1-2)2+5=-4,当x=2时,y有最大值,最大值为y=5,∴y的取值范围是-4≤y≤5;(Ⅲ)∵n2-4n+6=(n-2)2+2≥2,-n2+n+74=-(n-12)2+2≤2,∴点M在抛物线对称轴右侧,点N在抛物线对称轴左侧,∵N(-n2+n+74,y2),∴点N关于对称轴对称的点坐标为(n2-n+94,y2),∵在抛物线对称轴右侧,y随x的增大而减小,∴①当n2-4n+6>n2-n+94时,即n<45时,y1<y2;②当n2-4n+6=n2-n+94时,即n=45时,y1=y2;③当n2-4n+6<n2-n+94时,即n>45时,y1>y2.和(m-b, m2-mb+n),其中a,b,c,m,n为实数,且a,m不为0.(Ⅰ)求c的值;(Ⅱ)求证:抛物线y=ax2+bx+c与x轴有两个交点;(Ⅲ)当-1≤x≤1时,设抛物线y=ax2+bx+c上与x轴距离最大的点为P(x0,y0),求这时|y0|的最小值.把点(m-b,m2-mb+n)代入抛物线,得:a(m-b)2+b(m-b)+c=m2-mb+n∴a(m-b)2+b(m-b)=m2-mb,am2-2abm+ab2+bm-b2-m2+mb=0,(a-1)m2-(a-1)•2bm+(a-1)b2=0,(a-1)(m2-2bm+b2)=0,(a-1)(m-b)2=0,若∴a=1,∴抛物线y=ax2+bx+c与x轴有两个交点;x轴距离最大的点的纵坐标为h,在x轴下方与x轴距离最大的点是(-1,y0),∴|H|>|h|,当b=0时等号成立,在x轴上方与x轴距离最大的点是(-1,y0),在x 轴下方与x 轴距离最大的点是(1,y 0),∴|H |>|h |,6.在平面直角坐标系中,直线l :y =x +3与x 轴交于点A ,抛物线C:y =x 2+mx +n 的图象经过点A .(Ⅰ)当m =4时,求n 的值;(Ⅱ)设m =-2,当-3≤x ≤0时,求二次函数y =x 2+mx +n 的最小值;(Ⅲ)当-3≤x ≤0时,若二次函数y =x 2+mx +n 时的最小值为-4,求m 、n 的值. 解:(Ⅰ)当y =x +3=0时,x =-3,∴点A 的坐标为(-3,0).∵二次函数y =x 2+mx +n 的图象经过点A ,∴0=9-3m +n,即n =3m -9,∴当m =4时,n =3m -9=3;当m =-2时,对称轴为x =1,n =3m -9=-15,∴当-3≤x ≤0时,y 随x 的增大而减小,∴当x =0时,二次函数y =x 2+mx +n 取得最小值,最小值为-15.在-3≤x ≤0范围内,y 随x 的增大而增大,当x =-3时,y 取得最小值0,不符合题意;∵二次函数最小值为-4,解得:2 3m n -⎧⎨⎩==或1021m n ⎧⎨⎩==(舍去),∴m =2,n =-3;∴4930n m n --+⎧⎪⎨⎪⎩==,综上所述:m =2,n =-3.7.在平面直角坐标系中,抛物线y =x 2-2x +c (c 为常数)的对称轴为x =1.(Ⅰ)当c =-3时,点(x 1,y 1)在抛物线y=x 2-2x +c 上,求y 1的最小值;∴B (2m ,0),∵二次函数y =x 2-2x +c 的对称轴为x =1,∵点A 在抛物线y =x 2-2x +c 上, ②当点A 在原点的左侧,点B 在原点的右侧时,如解图②,设A (-n ,0),∵OA =12OB ,且点A 、B 在原点的两侧, ∴B (2n ,0),由抛物线的对称性得n +1=2n -1,解得n =2,∴A (-2,0),∵点A 在抛物线y =x 2-2x +c 上,∴0=4+4+c ,解得c =-8,此时抛物线的解析式为y =x 2-2x -8,综上,抛物线的解析式为y =x 2-2x +89或y =x 2-2x -8; (Ⅲ)∵抛物线y =x 2-2x +c 与x 轴有公共点,∴对于方程x 2-2x +c =0,判别式b 2-4ac =4-4c ≥0,∴c ≤1.当x =-1时,y =3+c ;当x =0时,y =c ,∵抛物线的对称轴为x =1,且当-1<x <0时,抛物线与x 轴有且只有一个公共点, ∴3+c >0且c <0,解得-3<c <0,综上,当-1<x <0时,抛物线与x 轴有且只有一个公共点时,c 的取值范围为-3<c <0.第7题解图8.已知抛物线 y =(m -1)x 2+(m -2)x -1与x 轴交于A 、B 两点.(Ⅰ)求m 的取值范围;(Ⅱ)若m <0,且点A 在点B 的左侧,OA :OB =3:1,试确定抛物线的解析式;(Ⅲ)设(Ⅱ)中抛物线与y 轴的交点为C ,过点C 作直线l ∥x 轴,将抛物线在y 轴右侧的部分沿直线l 翻折,抛物线的其余部分保持不变,得到一个新图象.当直线y =-x +b 与新图象只有一个公共点P (x 0,y 0)且 y 0≥-5时,求b 的取值范围.解:(Ⅰ)∵抛物线y =(m -1)x 2+(m -2)x -1与x 轴交于A 、B 两点,∴()210241)0(m m m -≠-+⎩-⎧⎨>①②, 由①得m ≠1,由②得m ≠0,∴m 的取值范围是m ≠0且m ≠1;(Ⅱ)∵点A 、B 是抛物线y =(m -1)x 2+(m -2)x -1与x 轴的交点,∴令y =0,即 (m -1)x 2+(m -2)x -1=0.∴新图象经过点D (-2,-5).当直线y =-x +b 经过D 点时,可得b =-7. 当直线y =-x +b 经过C 点时,可得b =-1. 当直线y =-x +b (b >−1)与函数y =-3x 2−4x −1的图象仅有一个公共点P (x 0,y 0)时,得-x 0+b =-3x 02−4x 0−1.整理得 3x 02+3x 0+b +1=0.第8题解图9.如图,已知c <0,抛物线y =x 2+bx +c 与x 轴交于A (x 1,0),B (x 2,0)两点(x 2>x 1),与y 轴交于点C .(Ⅰ)若x 2=1,BC =5,求函数y =x 2+bx +c 的最小值; (Ⅱ)过点A 作AP ⊥BC ,垂足为P (点P 在线段BC 上),AP 交y 轴于点M .若OA OM=2,求抛物线y =x 2+bx +c 顶点的纵坐标随横坐标变化的函数解析式,并直接写出自变量的取值范围.第9题图解:(Ⅰ)∵x 2=1,∴OB =1,∵BC =5,∴OC =22BC OB =2,∴C (0,-2),把B (1,0),C (0,-2)代入y =x 2+bx +c ,得:0=1+b -2,解得:b =1,∴抛物线的解析式为:y =x 2+x -2.转化为y =(x +12)2-94; ∴函数y =x 2+bx +c 的最小值为-94; (Ⅱ)∵∠OAM +∠OBC =90°,∠OCB +∠OBC =90°,∴∠OAM =∠OCB ,又∵∠AOM =∠BOC =90°,∴△AOM∽△COB,BC上的x最小取值,使P、C、M重合,满足点P在线段根据根与系数的关系,对于x2+bx+c=0,-1,由c=2b-4,解得c=。

2024河南中考数学备考专题:二次函数图象与性质综合题 对称性、增减性、最值问题

2024河南中考数学备考专题:二次函数图象与性质综合题 对称性、增减性、最值问题

∴抛物线的顶点坐标为(t,-t);
例 在平面直角坐标系xOy中,已知抛物线y=x2-2tx+t2-t.
(2)点P(x1,y1),Q(x2,y2)在抛物线上,其中t-1≤x1≤t+2,x2=1-t.
①若y1的最小值是-2,求y1的最大值;
画出草图,标出对称轴
t-1≤x1≤t+2与对称轴的关系? 从图像发现了什么? 最大值在哪取?
(2)求抛物线上动点Q纵坐

类讨论点M,N的坐标;根据
标的取值范围
二次函数增减性确定最值
典例精讲
例 在平面直角坐标系xOy中,已知抛物线y=x2-2tx+t2-t.
(1)求抛物线的顶点坐标(用含t的代数式表示); 看到这个能想到什么?
解:(1)∵y=x2-2tx+t2-t=(x-t)2-t,
完全平方式
一题多解
点C(0,c)
B( 0)
c 2

已知A(1,0)
将已知点坐标代入抛物线解析式
练习 在平面直角坐标系中,抛物线y=ax2-4ax+c
(a<0)与x轴交于A(1,0),B两点,与y轴交于点C.
(2)若点P(x0,m),Q(
5 2
,n)在抛物线上,且m<n,求x0的取值范围.
第一步: 画出草图
2024中考备考重难专题课件
二次函数图象与性质综合题
对称性、增减性、最值问题
目 录
1 典例精讲 2 课堂练兵 3 课后小练
考情分析
年份 题号 题型 分值
解题关键点
设问形式
(1)将B(0,c)转化为A(c,0)
(1)求抛物线的解析式及

(2)根据抛物线上点与对称轴的
顶点坐标;
2023 21 答 10 距离,判断出点M的位置;分

二次函数的最值问题(典型例题)

二次函数的最值问题(典型例题)

二次函数的最值问题【例题精讲】题面:当-1≤x ≤2时,函数y =2x 2-4ax +a 2+2a +2有最小值2, 求a 的所有可能取值.【拓展练习】如图,在平面直角坐标系xOy 中,二次函数2y bx c =++的图象与x 轴交于A (-1,0)、B (3,0)两点, 顶点为C .(1)求此二次函数解析式;(2)点D 为点C 关于x 轴的对称点,过点A 作直线l :y =+BD 于点E ,过点B 作直线BK //AD 交直线l 于K 点.问:在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由;(3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.练习一【例题精讲】若函数y=4x2-4ax+a2+1(0≤x≤2)的最小值为3,求a的值.【拓展练习】题面:已知:y关于x的函数y=(k-1)x2-2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k-1)x12+2kx2+k+2= 4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.练习二金题精讲题面:已知函数y=x2+2ax+a2-1在0≤x≤3范围内有最大值24,最小值3,求实数a的值.【拓展练习】题面:当k分别取-1,1,2时,函数y=(k-1)x2 -4x+5-k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.讲义参考答案【例题精讲】答案:3--0或2或4【拓展练习】答案:(1) 2y=-;(2) (2);(3)8练习一答案【例题精讲】答案:a =【拓展练习】答案:(1) k≤2;(2)①k值为-1;②y的最大值为32,最小值为-3.详解:(1)当k=1时,函数为一次函数y= -2x+3,其图象与x轴有一个交点. 当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,令y=0得(k-1)x2-2kx+k+2=0.△=(-2k)2-4(k-1)(k+2)≥0,解得k≤2.即k≤2且k≠1.综上所述,k的取值范围是k≤2.(2)①∵x1≠x2,由(1)知k<2且k≠1.由题意得(k-1)x12+(k+2)=2kx1(*),将(*)代入(k-1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.又∵x1+x2=2kk1-,x1x2=k+2k1-,∴2k•2kk1-=4•k+2k1-,解得:k1= -1,k2=2(不合题意,舍去).∴所求k值为-1.②如图,∵k1= -1,y= -2x2+2x+1= -2(x-12)2+32,且-1≤x≤1,由图象知:当x= -1时,y最小= -3;当x=12时,y最大=32.∴y的最大值为32,最小值为-3.练习二答案课后练习详解【例题精讲】答案:2或-5.详解:配方y=(x+a)2-1,函数的对称轴为直线x= -a,顶点坐标为(-a,-1).①当0≤-a≤3即-3≤a≤0时,函数最小值为-1,不合题意;②当-a<0即a>0时,∵当x=3时,y有最大值;当x=0时,y有最小值,∴9+6a+a2 −1=24,a2 −1=3,解得a=2;③当-a>3即a<-3时,∵当x=3时,y有最小值;当x=0时,y有最大值,∴a2 −1=24,9+6a+a2 −1=3,解得a= -5.∴实数a的值为2或-5.【拓展练习】答案:有最大值,为8.详解:∵当开口向下时函数y=(k-1)x2 -4x+5-k取最大值∴k-1<0,解得k<1.∴当k= -1时函数y=(k-1)x2 -4x+5-k有最大值,当k=1,2时函数没有最大值. ∴当k= -1时,函数y= -2x2-4x+6= -2(x+1)2+8.∴最大值为8.。

二次函数最值问题练习

二次函数最值问题练习

二次函数的最值问题(练习)
1、如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上。

已知AM=30m,AN=40m。

(1).设矩形的一边AB=xm,那么AD边的长度如何表示?
?
(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少
2、某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所
有的黑线的长度和)为15m.当x等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?
x x
3、如图,在ΔABC中,∠B=90°,点P从点A开始沿AB边向点B以1厘米/秒的速
度移动,点Q从点B开始沿BC边向点C以2厘米/秒的速度移动,如果P,Q分别从A,B同时出发,几秒后ΔABC的面积最大?最大面积是多少?
4、某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400
件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?。

二次函数最值问题练习题

给定范围的二次函数的最值问题姓名: 班次:1.抛物线2(4)23y x m x m =--+-,当m = 时,图象的对称轴是y 轴;当m = 时,图象的顶点在x 轴上;当m = 时,图象过原点.2.用一长度为l 米的铁丝围成一个长方形或正方形,则其所围成的最大面积为________ .3.求下列二次函数的最值:(1) 2245y x x =-+;(2) (1)(2)y x x =-+. (4)22y ax x =- (5)2846y x x =-+4.求二次函数2235y x x =-+在22x -≤≤上的最大值和最小值,并求对应的x 的值.5.函数y 12++=x x 在区间11x -≤≤上的最小值和最大值分别是( ) )(A 1,3 )(B 3,34 (C )1,32- (D )1,34- 6.函数242-+-=x x y 在区间14x ≤≤上的最小值是( ))(A 7- )(B 4- )(C 2- )(D 27.函数5482+-=x x y 的最值为 ( ) )(A 最大值为8,最小值为0 )(B 不存在最小值,最大值为8(C )最小值为0, 不存在最大值 )(D 不存在最小值,也不存在最大值8.已知二次函数m x x y +-=62的最小值为1,那么m 的值为 .9.对于函数2243y x x =+-,当0x ≤时,求y 的取值范围.10.求函数3y =-11.已知关于x 的函数222y x ax =++在55x -≤≤上.(1) 当1a =-时,求函数的最大值和最小值;2) 当a 为常数时,求函数的最大值..12.已知关于x 的函数22(21)1y x t x t =+++-,当t 取何值时,y 的最小值为0?13.求关于x 的二次函数221y x tx =-+在11x -≤≤上的最大值(t 为常数).14.如图,抛物线22y x x p =--与直线x y =交于点A (-1,m )、B (4,n ),点M 是抛物线上的一个动点,连接OM(1)求m ,n ,p 。

二次函数--最值问题练习

-1 -二次函数最值问题练习题A 组21抛物线y x (m 4)x 2m 3,当m = _____________ 时,图象的顶点在y 轴上;当m = _____ 时,图象的顶点在 x 轴上;当m = _____ 时,图象过原点.2 •用一长度为I 米的铁丝围成一个长方形或正方形,则其所围成的最大面积为________ .3.求下列二次函数的最值:2 (1) y 2x 4x 5 ;(2) y (1 x)(x 2).5.对于函数y 2x 2 4x 3,当x 0时,求y 的取值范围.的值.4.已知函数y x 2 2ax x 2上的最大值为4,求a 的值. 5.求关于x 的二次函数y x 2 2tx 1在1 x 1上的最大值(t 为常数).4.求二次函数y 2x 2 3x 5在2 x2上的最大值和最小值,并求对应的 x 的值.6.求函数y 3 5x3x 2 2的最大值和最小值. 7.已知关于x 的函数 2(2t 1)x t 1,当t 取何值时,y 的最小值为o ? 1.已知关于x 的函数2ax 2 在 5 x 5 上. (1)⑵ a 1时, a 为实数时, 求函数的最大值和最小值; 求函数的最大值. 2•函数x 2 2x 3在m x 0上的最大值为3,最小值为2,求m 的取值范围. 3.设ao,当 1时,函数y x 2 ax b 1的最小值是 4,最大值是0,求a, b3, -2 -4 14 或2,l 22m 16 (1)有最小值 第五讲二次函数的最值问题答案无最大值;(2) 有最大值 99,无最小值.4 ymin y min y min31 「§ ;当x 2时, y max 19 . -或1时, 3 y max(1) 当x 1时, y min 1 ; 当x 5时, y max 37 .⑵ 当a 0时, ymax 27 10a ;当a 0时, ymax 2 m 1 .a 2,b 2 .a 1—或a 41.当t 0 时,Y m; 3x 2 2t , 此时 x 1 ; 当t 0时, 组 B Y max 2 2t ,27 10a .此时x 1 . 1. 2. 3. 4. 5. 6. 7. 1. 2. 3. 4. 5.。

二次函数求最值(动轴定区间、动区间定轴)

5 f(x)max=10f(k+2)=(1k5 +2)2-2(k+2)-3 =k2+2k-3
8
6
4
2 x=1 k
2
k+2 5
当k ≥1 时 f(x) max=f(k+2)=k2+2k-3
10
15
f(x) min=f(k)=k2-2k-3
4
6
8
10
8
例: 6求函数y=x2-62x-3在x∈[k,k6+2]时的最值
(2)若x∈[ 2,4 ],求函数f(x)的最值; 10
(3)若x∈[ 1 , 5 ],求函数f(x)的最值; 8
2
(4)若x∈[
12, 2
3
6
2 ],求函数f(x)的最值;
4
解:画出函数在定义域内的图像如图
对称轴为直线x=1,由图知,
15
10
5
x= 1 时有最大值 f (1) 13
2
24
x=1时有最小值f(1)=-4
当0≤ k<1时 f(x)max=f(k+2)=k2+21k0 -3
10
10
当k ≥1 时 f(x) max=f(k+2)=k2+2k-3
f(x)min=f(1)=8- 4 f(x)min=f(1)=10- 4 f(x) min=f(k)=k2-2k-3
例: 6求函数y=x2-62x-3在x∈[k,k6+2]时的最值
k
2
2
2
2
1105
k+2
4
4
4
4
6
6
6
6
8

九年级下4二次函数的应用第1课时用二次函数解最值问题习题新版北师大版


13.(2020·无锡)有一块矩形地块 ABCD,AB=20 米,BC=30 米.为美观,拟种植不同的花卉,如图,将矩形 ABCD 分割 成四个等腰梯形及一个矩形,其中梯形的高相等,均为 x 米.现决定在等腰梯形 AEHD 和 BCGF 中种植甲种花卉;在 等腰梯形 ABFE 和 CDHG 中种植乙种 花卉;在矩形 EFGH 中种植丙种花卉. 甲、乙、丙三种花卉的种植成本分别 为 20 元/米 2、60 元/米 2、40 元/米 2, 设三种花卉的种植总成本为 y 元.
12.(2020·黄冈)网络销售已经成为一种热门的销售方式,为了减 少农产品的库存,我市市长亲自在某网络平台上进行直播销 售大别山牌板栗,为提高大家购买的积极性,直播时,板栗 公司每天拿出 2 000 元现金,作为红包发给购买者.已知该 板栗的成本价格为 6 元/kg,每日销售量 y(kg)与销售单价 x(元/kg)满足关系式:y=-100x+5 000.经销售发现,销售单 价不低于成本价格且不高于 30 元/kg.当每日销售量不低于
第二章 二次函数
4 二次函数的应用 第1课时 用二次函数解最值问题
提示:点击 进入习题
答案显示
1 见习题 2 D 3 D 4 二次函数;自变量 5 1.25
6 见习题 7 见习题 8 见习题 9 A
10 B
11 见习题 12 见习题 13 见习题
1.一般地,当 a>0(或 a<0)时,抛物线 y=ax2+bx+c 的顶点
(1)按如图①所示的直角坐标系,抛物线可以 用 y=kx2+m(k≠0)表示.求该抛物线的 函数表达式;
解:∵AD=4 m,∴D(2,0). 由题意知 EH=4 m,OH=AB=3 m, ∴EO=EH-OH=4-3=1(m), ∴E(0,1),∴该抛物线的函数表达式为 y=kx2+1,把点 D (2,0)的坐标代入,得 k=-14,∴该抛物线的函数表达式为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学科:数学
专题:二次函数的最值问题

金题精讲
题面:若函数y=4x24ax+a2+1(0≤x≤2)的最小值为3,求a的值.

满分冲刺
题面:已知:y关于x的函数y=(k1)x22kx+k+2的图象与x轴有交点.
(1)求k的取值范围;
(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k1)x12+2kx2+k+2= 4x1x2.
①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.
课后练习详解
金题精讲
答案:a = 2或4+2.

详解:∵y= 4x24ax+a2+1(0≤x≤2)
∴y= 4(x−2a)2+1
(1)当0≤2a≤2,即0≤a≤4时,最小值为1,不符合题意,舍去;
(2)当2a<0即a<0时,令f(0)=3得:a2+1=3,解得:a = ±2,
故a = 2;
(3)当2a>2即a>4时,令f(2)=3,即a28a+14=0,解得;a= 4±2,
故a = 4+2;
综上有a = 2或4+2.
满分冲刺
答案:(1) k≤2;(2)①k值为1;②y的最大值为32,最小值为3.

详解:(1)当k=1时,函数为一次函数y= 2x+3,其图象与x轴有一个交点.
当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,
令y=0得(k1)x22kx+k+2=0.
△=(2k)24(k1)(k+2)≥0,解得k≤2.即k≤2且k≠1.
综上所述,k的取值范围是k≤2.
(2)①∵x1≠x2,由(1)知k<2且k≠1.
由题意得(k1)x12+(k+2)=2kx1(*),
将(*)代入(k1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.
又∵x1+x2=2kk1,x1x2=k+2k1,∴2k•2kk1=4•k+2k1,
解得:k1= 1,k2=2(不合题意,舍去).∴所求k值为1.
②如图,∵k1= 1,y= 2x2+2x+1= 2(x12)2+32,且1≤x≤1,
由图象知:当x= 1时,y最小= 3;当x=12时,y最大=32.
∴y的最大值为32,最小值为3.

相关文档
最新文档