【难点解析】2022年河南省新乡市中考数学第二次模拟试题(含答案及解析)
2022年人教版中考考前模拟检测《数学试题》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共8小题)1.港珠澳大桥被英国《卫报》誉为”新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米.数字55000用科学记数法表示为( )A. 45.510⨯ B. 45510⨯ C. 55.510⨯ D. 60.5510⨯2.下列有关医疗和倡导卫生的图标中,是轴对称图形的是( )A. B.C. D.3.将一副三角板和一个直尺按如图所示的位置摆放,则∠1的度数为( )A. 60°B. 65°C. 75°D. 85°4.在数轴上,点A表示数a,将点A向右平移4个单位长度得到点B,点B表示数b.若|a|=|b|,则a的值为( )A. ﹣3B. ﹣2C. ﹣1D. 15.箱子内装有除颜色外均相同28个白球及2个红球,小芬打算从箱子内摸球,以毎次摸到一球后记下颜色将球再放回的方式摸28次球.若箱子内每个球被摸到的机会相等,且前27次中摸到白球26次及红球1次,则第28次摸球时,小芬摸到红球的概率是( )A. 12B.114C.115D.1276.已知直线l及直线l外一点P.如图,(1)在直线l上取一点A,连接P A;(2)作P A的垂直平分线MN,分别交直线l,P A于点B,O;(3)以O为圆心,OB长为半径画弧,交直线MN于另一点Q;(4)作直线PQ.根据以上作图过程及所作图形,下列结论中错误的是( ) A. △OPQ≌△OAB B. PQ∥ABC. AP=12BQ D. 若PQ=P A,则∠APQ=60°7.用三个不等式a>b,c>d,a+c>b+d中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A. 0B. 1C. 2D. 38.小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如图两个统计图.根据图中信息,有下面四个推断:①这5期的集训共有56天;②小明5次测试的平均成绩是11.68秒;③从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑;④从测试成绩看,两人的最好成绩都是在第4期出现,建议集训时间定为14天.所有合理推断的序号是( )A. ①③B. ②④C. ②③D. ①④二.填空题(共8小题)9.若26x -有意义,则的取值范围是_______10.如图,在量角器的圆心O 处下挂一铅锤,制作了一个简易测倾仪.量角器的0刻度线AB 对准楼顶时,铅垂线对应的读数是50º,则此时观察楼顶的仰角度数是_____.11.在如图所示的几何体中,主视图、左视图和俯视图完全相同的几何体是_____.(写出所有正确答案的序号)12.化简分式22231⎛⎫--÷⎪+--⎝⎭x y x y x y x y的结果为_____. 13.如图,将一矩形纸片ABCD 沿着虚线EF 剪成两个全等的四边形纸片.根据图中标示的长度与角度,求出剪得的四边形纸片中较短的边AE 的长是_____.14.已知点A (2,﹣3)关于x 轴对称点A '在反比例函数y =kx的图象上,则实数k 的值为_____. 15.某同学要统计本校图书馆最受学生欢迎的图书种类,以下是打乱顺序的统计步骤: ①从扇形图中分析出最受学生欢迎的种类; ②去图书馆收集学生借阅图书的记录; ③绘制扇形图来表示各个种类所占的百分比;④整理借阅图书记录并绘制频数分布表,正确统计步骤的顺序是_____.16.如图,在正方形ABCD 中,AB =4,E 、F 是对角线AC 上的两个动点,且EF =2,P 是正方形四边上的任意一点.若△PEF 是等边三角形,则符合条件的P 点共有_____个,此时AE 的长为_____.三.解答题(共12小题)17.计算:15tan 3020(3)︒--+--18.解方程组:2313x y x y +=⎧⎨-=⎩.19.已知:关于x 的方程x 2+(m ﹣2)x ﹣2m =0. (1)求证:方程总有实数根;(2)若方程有一根小于2,求m 的取值范围. 20.如图,AM ∥BC ,且AC 平分∠BAM .(1)用尺规作∠ABC 的平分线BD 交AM 于点D ,连接CD .(只保留作图痕迹,不写作法) (2)求证:四边形ABCD 是菱形.21.小宜跟几位同学在某快餐厅吃饭,如图为此快餐厅的菜单.若他们所点的餐食总共为10份盖饭,x 杯饮料,y 份凉拌菜.(1)他们点了 份A 套餐, 份B 套餐, 份C 套餐(均用含x 或y 的代数式表示); (2)若x =6,且A 、B 、C 套餐均至少点了1份,则最多有 种点餐方案.22.如图,在▱ABCD 中,∠B =45°,点C 恰好在以AB 为直径的⊙O 上. (1)求证:CD 是⊙O 的切线;(2)连接BD ,若AB =8,求BD 的长.23.2019年11月,胡润研究院携手知识产权与科创云平台汇桔,联合发布《IP助燃AI新纪元﹣2019中国人工智能产业知识产权发展白皮书》,白皮书公布了2019中国人工智能企业知识产权竞争力百强榜,对500余家中国人工智能主流企业进行定量评估(满分100分),前三名分别为:华为、腾讯、百度.对得分由高到低的前41家企业的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.得分的频数分布直方图:(数据分成8组:60≤x<65,65≤x<70,70≤x<75,75≤x<80,80≤x<85,85≤x<90,90≤x<95,95≤x≤100,)b.知识产权竞争力得分在70≤x<75这一组的是:70.3,71.6,72.1,72.5,74.1.c.41家企业注册所在城市分布图(不完整)如图:(结果保留一位小数)d.汉王科技股份有限公司的知识产权竞争力得分是70.3.(以上数据来源于《IP助燃AI新纪元﹣2019中国人工智能产业知识产权发展白皮书》)根据以上信息,回答下列问题:(1)汉王科技股份有限公司的知识产权竞争力得分排名是第;(2)百度在人工智能领域取得诸多成果,尤其在智能家居、自动驾驶与服务于企业的智能云领域,百度都已进行前瞻布局,请你估计百度在本次排行榜中的得分大概是;(3)在41家企业注册所在城市分布图中,m=,请用阴影标出代表上海的区域;(4)下列推断合理的是.(只填序号)①前41家企业的知识产权竞争力得分的中位数应在65≤x<70这一组中,众数在65≤x<70这一组的可能性最大;②前41家企业分布于我国8个城市.人工智能产业的发展聚集于经济、科技、教育相对发达的城市,一线城市中,北京的优势尤其突出,贡献榜单过半的企业,充分体现北京在人工智能领域的产业集群优势.24.如图,D是直径AB上一定点,E,F分别是AD,BD的中点,P是AB上一动点,连接P A,PE,PF.已知AB=6cm,设A,P两点间的距离为xcm,P,E两点间的距离为y1cm,P,F两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm 0 1 2 3 4 5 6y1/cm 0.97 1.27 2.66 3.43 422 5.02y2/cm 3.97 3.93 3.80 3.58 3.25 2.76 202(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△PEF为等腰三角形时,AP的长度约为cm.25.已知:在平面直角坐标系xOy中,函数y=nx(n≠0,x>0)的图象过点A(3,2),与直线l:y=kx+b交于点C,直线l与y轴交于点B(0,﹣1).(1)求n、b的值;(2)横、纵坐标都是整数的点叫做整点.记函数y=nx(n≠0,x>0)的图象在点A,C之间的部分与线段BA,BC围成的区域(不含边界)为W.①当直线l过点(2,0)时,直接写出区域W内的整点个数,并写出区域W内的整点的坐标;②若区域W内的整点不少于5个,结合函数图象,求k的取值范围.26.在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象经过点A(0,﹣4)和B(﹣2,2).(1)求c的值,并用含a的式子表示b;(2)当﹣2<x<0时,若二次函数满足y随x的增大而减小,求a的取值范围;(3)直线AB上有一点C(m,5),将点C向右平移4个单位长度,得到点D,若抛物线与线段CD只有一个公共点,求a的取值范围.27.已知,如图,△ABC是等边三角形.(1)如图1,将线段AC绕点A逆时针旋转90°,得到AD,连接BD,∠BAC的平分线交BD于点E,连接CE.①求∠AED的度数;②用等式表示线段AE、CE、BD之间的数量关系(直接写出结果).(2)如图2,将线段AC绕点A顺时针旋转90°,得到AD,连接BD,∠BAC的平分线交DB的延长线于点E,连接CE.①依题意补全图2;②用等式表示线段AE、CE、BD之间数量关系,并证明.28.已知:点P为图形M上任意一点,点Q为图形N上任意一点,若点P与点Q之间的距离PQ始终满足PQ>0,则称图形M与图形N相离.(1)已知点A(1,2)、B(0,﹣5)、C(2,﹣1)、D(3,4).①与直线y=3x﹣5相离的点是;②若直线y=3x+b与△ABC相离,求b的取值范围;(2)设直线y=3x+3、直线y=﹣3x+3及直线y=﹣2围成的图形为W,⊙T的半径为1,圆心T的坐标为(t,0),直接写出⊙T与图形W相离的t的取值范围.答案与解析一.选择题(共8小题)1.港珠澳大桥被英国《卫报》誉为”新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米.数字55000用科学记数法表示为( ) A. 45.510⨯ B. 45510⨯C. 55.510⨯D. 60.5510⨯【答案】A 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:数字55000用科学记数法表示为45.510⨯. 故选A .【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.下列有关医疗和倡导卫生的图标中,是轴对称图形的是( )A. B.C. D.【答案】D 【解析】 【分析】根据轴对称图形的概念求解.【详解】解:A 、不是轴对称图形,故此选项不合题意; B 、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、轴对称图形,故此选项符合题意.故选:D.【点睛】本题考查轴对称图形的识别,熟练掌握轴对称图形的特点是解题的关键.3.将一副三角板和一个直尺按如图所示的位置摆放,则∠1的度数为( )A. 60°B. 65°C. 75°D. 85°【答案】C【解析】【分析】首先计算∠4的度数,再根据平行线的性质可得∠1=∠4,进而可得答案.【详解】解:∵∠2=60°,∠3=45°,∴∠4=180°﹣60°﹣45°=75°,∵a∥b,∴∠1=∠4=75°,故选:C.【点睛】本题考查平角的概念和平行线的性质,两直线平行同位角相等.4.在数轴上,点A表示数a,将点A向右平移4个单位长度得到点B,点B表示数b.若|a|=|b|,则a的值为( )A. ﹣3B. ﹣2C. ﹣1D. 1【答案】B【解析】【分析】由题意可得b=a+4,可得|a|=|a+4|,即可求解.【详解】解:∵点A表示数a,将点A向右平移4个单位长度得到点B,∴b=a+4,∵|a|=|b|,∴|a|=|a+4|,∴a=a+4或a=﹣a﹣4,当a=a+4时,无解,当a=﹣a﹣4时,a=﹣2,故选:B.【点睛】本题考查了数轴,绝对值,掌握去绝对值的方法是本题的关键.5.箱子内装有除颜色外均相同的28个白球及2个红球,小芬打算从箱子内摸球,以毎次摸到一球后记下颜色将球再放回的方式摸28次球.若箱子内每个球被摸到的机会相等,且前27次中摸到白球26次及红球1次,则第28次摸球时,小芬摸到红球的概率是( )A. 12B.114C.115D.127【答案】C【解析】【分析】直接利用概率公式计算.【详解】解:因为毎次摸到一球后记下颜色将球再放回,所以箱子内总装有除颜色外均相同的28个白球及2个红球,所以第28次摸球时,小芬摸到红球的概率=2282=115.故选:C.【点睛】本题考查概率公式的应用,对于放回试验,每次摸到红球的概率是相等的.6.已知直线l及直线l外一点P.如图,(1)在直线l上取一点A,连接P A;(2)作P A的垂直平分线MN,分别交直线l,P A于点B,O;(3)以O为圆心,OB长为半径画弧,交直线MN于另一点Q;(4)作直线PQ.根据以上作图过程及所作图形,下列结论中错误的是( )A △OPQ≌△OAB B. PQ∥ABC. AP=12BQ D. 若PQ=P A,则∠APQ=60°【答案】C【解析】【分析】连接AQ,BP,如图,利用基本作图得到BQ垂直平分P A,OB=OQ,则可根据”SAS”判断△OAB≌△OPQ,根据全等三角形的性质得∠ABO=∠PQO,于是可判断PQ∥AB;由BQ垂直平分P A得到QP=QA,若PQ =P A,则可判断△P AQ为等边三角形,于是得到∠APQ=60°,从而可对各选项进行判断.【详解】解:连接AQ,BP,如图,由作法得BQ垂直平分P A,OB=OQ,∴∠POQ=∠AOB=90°,OP=OA,∴△OAB≌△OPQ(SAS);∴∠ABO=∠PQO,∴PQ∥AB;∵BQ垂直平分P A,∴QP=QA,若PQ=P A,则PQ=QA=P A,此时△P AQ为等边三角形,则∠APQ=60°.故选:C.【点睛】本题考查基本作图、全等三角形的性质和判定、等边三角形的判定和平行线的判定,牢记性质和判定是解题的关键.7.用三个不等式a>b,c>d,a+c>b+d中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A. 0B. 1C. 2D. 3【答案】B【解析】【分析】根据题意得出三个命题,由不等式的性质再判断真假即可.【详解】解:根据题意可知:一共有三种命题组合方式:①如果a>b,c>d,那么a+c>b+d.是真命题.②如果a>b,a+c>d+d,那么c>d.是假命题.③如果c>d,a+c>b+d,那么a>b.是假命题.故选:B.【点睛】本题考查命题的判定和不等式的性质,在等式的两边同时加上或者减去同一个数,不等号的方向不变.8.小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如图两个统计图.根据图中信息,有下面四个推断:①这5期的集训共有56天;②小明5次测试的平均成绩是11.68秒;③从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑;④从测试成绩看,两人的最好成绩都是在第4期出现,建议集训时间定为14天.所有合理推断的序号是( )A. ①③B. ②④C. ②③D. ①④【答案】A【解析】根据条形统计图将每期的天数相加即可得到这5期的集训共有多少天;根据折线统计图可以求得小明5次测试的平均成绩;根据图中的信息和题意可知,平均成绩最好是在第1期.【详解】解:对于①:这5期的集训共有5+7+10+14+20=56(天),故正确;对于②:小明5次测试的平均成绩是:(11.83+11.72+11.52+11.58+11.65)÷5=11.66(秒),故错误;对于③:从集训时间看,集训时间不越多越好,集训时间过长,可能造成劳累,导致成绩下滑,故正确; 对于④:从测试成绩看,两人的最好的平均成绩是在第1期出现,建议集训时间定为5天.故错误;故选:A.【点睛】本题考查条形统计图、折线统计图、平均数的概念,解答本题的关键是明确题意,利用数形结合的思想解答.二.填空题(共8小题)9.若26x-有意义,则的取值范围是_______x【答案】3【解析】【分析】根据二次根式有意义的条件:被开方数为非负数求解即可.x-有意义,【详解】解:代数式26∴-,260xx.解得:3x.故答案为3【点睛】本题考查了二次根式有意义的条件,解答本题的关键是掌握被开方数为非负数.10.如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪.量角器的0刻度线AB对准楼顶时,铅垂线对应的读数是50º,则此时观察楼顶的仰角度数是_____.【答案】40º【解析】过A点作AC⊥OC于C,根据直角三角形的性质可求∠OAC,再根据仰角的定义即可求解.【详解】解:过A点作AC⊥OC于C,∵∠AOC=50°,∴∠OAC=40°.∴此时观察楼顶的仰角度数是40°.故答案为40°.【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,仰角是向上看的视线与水平线的夹角,解决本题关键是作出辅助线,构造直角三角形求∠OAC的度数.11.在如图所示的几何体中,主视图、左视图和俯视图完全相同的几何体是_____.(写出所有正确答案的序号)【答案】①③【解析】【分析】主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形.【详解】解:①正方体的三视图分别为正方形,正方形,正方形;②圆柱的三视图分别为四边形、四边形、圆;③球的主视图、左视图、俯视图分别为三个全等的圆;∴主视图、左视图和俯视图完全相同的几何体是①③.故答案为:①③.【点睛】本题考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.12.化简分式22231⎛⎫--÷⎪+--⎝⎭x y x y x y x y 的结果为_____. 【答案】1【解析】【分析】 先计算括号内异分母分式的减法、同时将除法转化为乘法,再约分即可得出答案.【详解】解:原式=[22()()x y x y x y -+-﹣()()3x y x y x y -+-]•(x ﹣y ) =()()x y x y x y ++-•(x ﹣y ) =1,故答案为:1.【点睛】本题考查了分式的混合运算,解题的关键是掌握运算法则.13.如图,将一矩形纸片ABCD 沿着虚线EF 剪成两个全等的四边形纸片.根据图中标示的长度与角度,求出剪得的四边形纸片中较短的边AE 的长是_____.【答案】3【解析】【分析】根据矩形的性质得出∠A =∠B =90°,AB =DC =4,AD ∥BC ,根据矩形的判定得出四边形ABFQ 是矩形,求出AB =FQ =DC =4,求出EQ =FQ =4,即可得出答案.【详解】解:过F 作FQ ⊥AD 于Q ,则∠FQE =90°,∵四边形ABCD 是长方形,∴∠A =∠B =90°,AB =DC =4,AD ∥BC ,∴四边形ABFQ 是矩形,∴AB =FQ =DC =4,∵AD ∥BC ,∴∠QEF =∠BFE =45°,∴EQ=FQ=4,∴AE=CF=12(10﹣4)=3,故答案为:3.【点睛】本题考查矩形的性质和判定,能灵活运用定理进行推理是解题的关键.14.已知点A(2,﹣3)关于x轴的对称点A'在反比例函数y=kx的图象上,则实数k的值为_____.【答案】6 【解析】【分析】先根据关于x轴对称的点的坐标特征确定A'的坐标为(2,3),然后把A′的坐标代入y=kx中即可得到k的值.【详解】解:点A(2,﹣3)关于x轴的对称点A'的坐标为(2,3),把A′(2,3)代入y=kx得k=2×3=6.故答案为:6.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.15.某同学要统计本校图书馆最受学生欢迎的图书种类,以下是打乱顺序的统计步骤:①从扇形图中分析出最受学生欢迎的种类;②去图书馆收集学生借阅图书的记录;③绘制扇形图来表示各个种类所占的百分比;④整理借阅图书记录并绘制频数分布表,正确统计步骤的顺序是_____.【答案】②④③①【解析】【分析】根据题意和频数分布表、扇形统计图制作的步骤,可以解答本题.【详解】解:正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录;④整理借阅图书记录并绘制频数分布表;③绘制扇形图来表示各个种类所占的百分比;①从扇形图中分析出最受学生欢迎的种类;故答案为:②④③①.【点睛】本题考查扇形统计图、频数分布表,解答本题的关键是明确制作频数分布表和扇形统计图的制作步骤.16.如图,在正方形ABCD 中,AB =4,E 、F 是对角线AC 上的两个动点,且EF =2,P 是正方形四边上的任意一点.若△PEF 是等边三角形,则符合条件的P 点共有_____个,此时AE 的长为_____.【答案】 (1). 4 (2). 4231--或31-【解析】【分析】当点P 在AD 上时,过点PH ⊥EF 于H ,由等边三角形的性质可求PH =3,由正方形的性质可求∠DAC =45°,AC =2AB =42,可得AH =PH ,可求AE =3﹣1,同理可求点P 在AB ,CD ,BC 上时,AE 的值,即可求解.【详解】解:如图,当点P 在AD 上时,过点PH ⊥EF 于H ,∵△PEF 是等边三角形,PH ⊥EF ,∴∠PEF =60°,PE =PF =EF =2,EH =FH =1,∴PH 3∵四边形ABCD 是正方形,AB =4,∴∠DAC =45°,AC 2AB =2,∵PH ⊥AC ,∴∠APH =∠P AH =45°,∴AH=PH∴AE1,同理可得:当点P在AB上时,AE1,当点P在CD或BC上时,AE=﹣2﹣1)=1,故答案为:4,11.【点睛】考查了正方形的性质,等边三角形的判定和性质,解题关键是灵活运用其性质.三.解答题(共12小题)17.计算:1tan30︒-+【答案】【解析】【分析】直接利用二次根式的性质和绝对值的性质、特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.33-=故答案为:【点睛】本题考查了特殊角的三角函数值、二次根式运算、绝对值的性质等,熟练掌握基本公式是解决此题的关键.18.解方程组:2313x yx y+=⎧⎨-=⎩.【答案】21xy=⎧⎨=-⎩【解析】【分析】由②得x=3+y③,把③代入①得到一个关于y的一元一次方程,求出y,把y的值代入③求出x即可.【详解】由题意可知:2313x yx y+=⎧⎨-=⎩①②由②得:x=3+y③,把③代入①得2(3+y)+3y=1,解得 y =﹣1.把y =﹣1代入③得 x =2.∴原方程组的解是21x y =⎧⎨=-⎩. 【点睛】本题考查了二元一次方程组的解法,常见的方法有代入消元法和加减消元法,熟练掌握这两个方法是解决二元一次方程组的关键.19.已知:关于x 的方程x 2+(m ﹣2)x ﹣2m =0.(1)求证:方程总有实数根;(2)若方程有一根小于2,求m 的取值范围.【答案】(1)见解析;(2)m >﹣2.【解析】【分析】(1)先求出方程的根的判别式,再判断出根的判别式不小于0,即可得出结论;(2)先利用因式分解法求出方程的两根,由一根小于2建立不等式求解,即可得出结论.【详解】(1)关于x 的方程2(2)20x m x m +--=的根的判别式为2(2)41(2)m m ∆=--⨯⋅- 整理得:2(2)m ∆=+∵2(2)0m +≥∴0∆≥故关于x 的方程2(2)20x m x m +--=总有实数根;(2)2(2)20x m x m +--=因式分解得:(2)()0x x m -+=解得122,x x m ==-∵方程有一根小于2∴2m -<解得2m >-故m 的取值范围为2m >-.【点睛】本题考查了一元二次方程的根的判别式、一元二次方程的解法,掌握一元二次方程的根的判别式与解法是解题关键.20.如图,AM∥BC,且AC平分∠BAM.(1)用尺规作∠ABC的平分线BD交AM于点D,连接CD.(只保留作图痕迹,不写作法)(2)求证:四边形ABCD是菱形.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)利用尺规作图的方式(本质为三角形全等)作出∠ABC的角平分线即可;(2)先证明AB=BC,AB=AD,则AD=BC,则可判断四边形ABCD是平行四边形,然后加上邻边相等可判断四边形ABCD是菱形.【详解】解:(1)如下图所示,DB、CD为所作;(2)证明:∵AC平分∠BAM,∴∠BAC=∠DAC,∵AM∥BC,∴∠DAC=∠BCA.∴∠BAC=∠BCA.∴AB=BC,同理可证:AB=AD.∴AD=BC.又∵AD∥BC,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形.【点睛】本题考查了尺规作图中角平分线的作法,其本质是利用三角形全等的知识来作图;另外本题考查了菱形的判定方法,熟练掌握菱形判定方法是解决此题的关键.21.小宜跟几位同学在某快餐厅吃饭,如图为此快餐厅的菜单.若他们所点的餐食总共为10份盖饭,x杯饮料,y份凉拌菜.(1)他们点了份A套餐,份B套餐,份C套餐(均用含x或y的代数式表示);(2)若x=6,且A、B、C套餐均至少点了1份,则最多有种点餐方案.【答案】(1)(10﹣y),(10﹣x),(x+y﹣10);(2)5【解析】【分析】(1)由三种套餐包含的东西,可用含x或y的代数式表示出他们点了三种套餐的份数;(2)由x=6及A、B、C套餐均至少点了1份,即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,再结合y为整数即可得出结论.【详解】解:(1)∵B,C套餐都包含一份盖饭和一份凉拌菜,∴他们点了(10﹣y)份A套餐;∵A,C套餐都包含一份盖饭和一杯饮料,∴他们点了(10﹣x)份B套餐;∴他们点了10﹣(10﹣y)﹣(10﹣x)=(x+y﹣10)份C套餐.故答案为:(10﹣y);(10﹣x);(x+y﹣10).(2)依题意,得:101 6101-≥⎧⎨+-≥⎩yy,解得:5≤y≤9.又∵y为整数,∴y=5,6,7,8,9,∴最多有5种点餐方案.故答案为:5.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.22.如图,在▱ABCD中,∠B=45°,点C恰好在以AB为直径的⊙O上.(1)求证:CD是⊙O的切线;(2)连接BD,若AB=8,求BD的长..【答案】(1)见解析;(2)BD410【解析】【分析】(1)连接OC,欲证明CD是⊙O的切线,只要证明CD⊥OC即可.(2)连接AC,BD交于点E.求出BE,再根据BD=2BE可得结论.【详解】(1)证明:连接OC,如下图所示:∵OB=OC,∠B=45°,∴∠BCO=∠B=45°.∴∠BOC=90°,∵四边形ABCD是平行四边形,∴AB∥DC.∴∠OCD=∠BOC=90°,∴OC⊥CD,∴CD是⊙O的切线.(2)连接AC,BD交于点E,如下图所示:∵AB是直径,AB=8,∴∠ACB=90°.BC=AC=42∵四边形ABCD是平行四边形,∴1222==CE AC,∴2240210=+==BE BC CE,∴BD2BE410==.故答案为:410【点睛】本题考查切线的判定和性质,平行四边形的性质,解直角三角形,圆周角定理等知识,解题的关键是学会添加常用辅助线,根据直角三角形解决问题,属于中考常考题型.23.2019年11月,胡润研究院携手知识产权与科创云平台汇桔,联合发布《IP助燃AI新纪元﹣2019中国人工智能产业知识产权发展白皮书》,白皮书公布了2019中国人工智能企业知识产权竞争力百强榜,对500余家中国人工智能主流企业进行定量评估(满分100分),前三名分别为:华为、腾讯、百度.对得分由高到低的前41家企业的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.得分的频数分布直方图:(数据分成8组:60≤x<65,65≤x<70,70≤x<75,75≤x<80,80≤x<85,85≤x<90,90≤x<95,95≤x≤100,)b.知识产权竞争力得分在70≤x<75这一组的是:70.3,71.6,72.1,72.5,74.1.c.41家企业注册所在城市分布图(不完整)如图:(结果保留一位小数)d.汉王科技股份有限公司的知识产权竞争力得分是70.3.(以上数据来源于《IP助燃AI新纪元﹣2019中国人工智能产业知识产权发展白皮书》)根据以上信息,回答下列问题:(1)汉王科技股份有限公司的知识产权竞争力得分排名是第;(2)百度在人工智能领域取得诸多成果,尤其在智能家居、自动驾驶与服务于企业的智能云领域,百度都已进行前瞻布局,请你估计百度在本次排行榜中的得分大概是;(3)在41家企业注册所在城市分布图中,m=,请用阴影标出代表上海的区域;(4)下列推断合理的是.(只填序号)①前41家企业的知识产权竞争力得分的中位数应在65≤x<70这一组中,众数在65≤x<70这一组的可能性最大;②前41家企业分布于我国8个城市.人工智能产业的发展聚集于经济、科技、教育相对发达的城市,一线城市中,北京的优势尤其突出,贡献榜单过半的企业,充分体现北京在人工智能领域的产业集群优势.【答案】(1)16;(2)94;(3)5;(4)①②.【解析】【分析】(1)根据条形统计图中的信息即可得到结论;(2)根据条形统计图中的信息即可得到结论;(3)根据扇形统计图中的信息列式计算即可;(4)根据统计图中的信息判断即可.【详解】解:(1)汉王科技股份有限公司的知识产权竞争力得分排名是第16名;(2)估计百度在本次排行榜中的得分大概是94分;(3)∵41家企业注册在在北京的有41×53.7%≈22家,∴在41家企业注册所在城市分布图中,m=41﹣7﹣22﹣2﹣2﹣1﹣1﹣1=5;如下图中阴影部分标代表上海的区域:(4)推断合理的是①②,。
真题解析:2022年河南省平顶山市中考数学第二次模拟试题(含答案及详解)

2022年河南省平顶山市中考数学第二次模拟试题 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、据统计,11月份互联网信息中提及“梅州”一词的次数约为48500000,数据48500000科学记数法表示为( ) A .548510⨯ B .648.510⨯ C .74.8510⨯ D .0.48510⨯ 2、为庆祝建党百年,六年级一班举行手工制作比赛,下图小明制作的一个小正方体盒子展开图,把展开图叠成小正方体后,有“爱”字一面的相对面的字是( )A .的B .祖C .国D .我 3、将正方体的表面分别标上数字1,2,3,并在它们的对面分别标上一些负数,使它的任意两个相对面的数字之和为0,将这个正方体沿某些棱剪开,得到以下的图形,这些图形中,其中的x 对应的数字是﹣3的是( ) ·线○封○密○外A .B .C .D .4、已知2250x x --=的两个根为1x 、2x ,则12x x +的值为( )A .-2B .2C .-5D .55、已知点(2,3)A m +与点(4,)B n -关于y 轴对称,则m n +的值为( )A .5B .1-C .3-D .9-6、如图是一个正方体的展开图,把它折叠成正方体后,有“学”字一面的相对面上的字是( )A .雷B .锋C .精D .神7、有理数a 、b 、c 、d 在数轴上对应的点的位置如图所示,则下列结论错误的是( )A .3d >B .0bc <C .0b d +>D .c a c a -+=8、筹算是中国古代计算方法之一,宋代数学家用白色筹码代表正数,用黑色筹码代表负数,图中算式一表示的是(2)(4)2++-=-,按照这种算法,算式二被盖住的部分是( )A .B .C .D . 9、已知正五边形的边长为1,则该正五边形的对角线长度为( ). ABCD10、平面直角坐标系中,O 为坐标原点,点A 的坐标为()2,1-,将OA 绕原点按逆时针方向旋转90°得OB ,则点B 的坐标为( )A .()1,2B .()2,1-C .()2,1--D .()1,2-- 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分) 1、如图是某手机店今年8月至12月份手机销售额统计图,根据图中信息,可以判断该店手机销售额变化最大的相邻两个月是________(填月份). ·线○封○密○外2、计算:√5÷√3×√3=___. 3、如图,已知ΔΔΔΔ的三个角,∠Δ=21°,140B ︒∠=,∠Δ=19°,将ΔΔΔΔ绕点Δ顺时针旋转Δ°得到ΔΔΔΔ,如果∠ΔΔΔ=58°,那么Δ=_______.4、如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC =__________时,AB 所在直线与CD 所在直线互相垂直.5、计算:√2(√3+√2)= _______三、解答题(5小题,每小题10分,共计50分) 1、解不等式组()41710853x x x x ⎧+≤+⎪⎨--⎪⎩<,并写出它的所有正整数解. 2、观察并找出规律:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当m =8时,和S 的等式为_________(2)按此规律计算:①2+4+6+…+200值;②82+84+86+…+204值.3、为纪念一二·九运动86周年,我校组织八年级学生远赴新密参观豫西抗日纪念馆,学校负责人前去联系车辆,目前有甲、乙两种类型的客车供学校租用,据了解:3辆甲型客车与4辆乙型客车的总载客量为276人,2辆甲型客车与3辆乙型客车的总载客量为199人. (1)请帮算一算:1辆甲型客车与1辆乙型客车的载客量分别是多少人? (2)我校八年级学生共850人,拟租用甲、乙两型客车共20辆,一次将全部师生送到指定地点.若每辆甲型客车的租金为800元,每辆乙型客车的租金为1000元,请给出最节省费用的租车方案,并求出最低费用.4、由几个小立方体搭成的几何体从上面看得到的形状图如图所示,小正方形中的数字表示在该位置的小立方体的个数,请画出从正面、左面看到的这个几何体的形状图.5、计算:()()3211232⎛⎫⎡⎤----÷- ⎪⎣⎦⎝⎭. -参考答案- 一、单选题 1、C 【分析】 科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.·线○封○密·○外【详解】解:48500000科学记数法表示为:48500000=7⨯.4.8510故答案为:7⨯.4.8510【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,第一列的“我”与“的”是相对面,第二列的“我”与“国”是相对面,“爱”与“祖”是相对面.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3、A【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,求出各选项的x的值即可.【详解】解: A.x=-3B .x =-2C .x =-2D .x =-2故答案为:A【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4、B 【分析】 直接运用一元二次方程根与系数的关系求解即可. 【详解】 解:∵2250x x --=的两个根为1x 、2x , ∴122=()21x x -+-= 故选:B 【点睛】 本题主要考查了一元二次方程根与系数的关系,若1x 、2x 为一元二次方程20ax bx c ++=的两个实数根,则有12=b x x a +-,12=c x x a .5、A【分析】 点坐标关于y 轴对称,横坐标互为相反数,纵坐标相等,可求得m n ,的值,进而可求m n +的值. 【详解】 ·线○封○密○外解:由题意知:()2403m n⎧++-=⎨=⎩ 解得23m n =⎧⎨=⎩ ∴235m n +=+=故选A .【点睛】本题考查了关于y 轴对称的点坐标的关系,代数式求值等知识.解题的关键在于理解关于y 轴对称的点坐标,横坐标互为相反数,纵坐标相等.6、D【分析】根据正方体的表面展开图的特征,判断相对的面即可.【详解】解:由正方体的表面展开图的特征可知:“学”的对面是“神”,故选:D .【点睛】本题考查了正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的关键.7、C【分析】根据有理数a ,b ,c ,d 在数轴上对应的点的位置,逐个进行判断即可.【详解】解:由有理数a ,b ,c ,d 在数轴上对应的点的位置可得,-4<d <-3<-1<c <0<1<b <2<3<a <4, ∴3d >,0bc <,0b d +<, c a c c a c a -+=-++=, 故选:C .【点睛】本题考查数轴表示数的意义,根据点在数轴上的位置,确定该数的符号和绝对值是正确判断的前提. 8、A 【分析】 参考算式一可得算式二表示的是(4)(3)1++-=+,由此即可得. 【详解】 解:由题意可知,图中算式二表示的是(4)(3)1++-=+, 所以算式二为所以算式二被盖住的部分是选项A , 故选:A . 【点睛】 本题考查了有理数的加法,理解筹算的运算法则是解题关键.9、C【分析】如图,五边形ABCDE 为正五边形, 证明,ABBC AE CD ,AF BF BG CG 1,AB AG再证明·线○封○密○外,ABF ACB ∽可得:,ABBF AC CB设AF =x ,则AC =1+x ,再解方程即可. 【详解】解:如图,五边形ABCDE 为正五边形,∴五边形的每个内角均为108°,,AB BC AE CD∴∠BAG =∠ABF =∠ACB =∠CBD = 36°,∴∠BGF =∠BFG =72°,72,ABG AGB ,,,AF BF BG GC BG BF ,AF BF BG CG 1,AB AG,,BAC FAB ABF ACB,ABF ACB ∽∴ ,AB BFAC CB设AF =x ,则AC =1+x , 1,11xx210,x x ∴+-=解得:12x x ==经检验:x = 15151.22AC故选C【点睛】本题考查的是正多边形的性质,等腰三角形的判定与性质,相似三角形的判定与性质,证明ABF ACB ∽△△是解本题的关键. 10、D【分析】如图过点A 作AC 垂直于y 轴交点为C ,过点B 作BD 垂直于y 轴交点为D ,909090OA OB AOB A AOC AOC BOD =∠=︒∠+∠=︒∠+∠=︒,,,A BOD ∠=∠,故有AOC OBD ≌,21OD AC BD OC ====,,进而可得B 点坐标. 【详解】 解:如图过点A 作AC 垂直于y 轴交点为C ,过点B 作BD 垂直于y 轴交点为D ∵909090OA OB AOB A AOC AOC BOD =∠=︒∠+∠=︒∠+∠=︒,,, ∴A BOD ∠=∠ 在AOC △和OBD 中90A BOD ACO ODB OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩ ·线○封○密○外∴()AOC OBD AAS ≌∴21OD AC BD OC ====,∴B 点坐标为(1,2)--故选D .【点睛】本题考查了旋转的性质,三角形全等,直角坐标系中点的表示.解题的关键在于熟练掌握旋转的性质以及直角坐标系中点的表示.二、填空题1、10、11【分析】计算出相邻两个月销售额的变化,然后比较其绝对值的大小.【详解】解:根据图中的信息可得,相邻两个月销售额的变化分别为:30237-=、25−30=−5、15−25=−10、19−15=4,∵4<|−5|<7<|−10|,∴该店手机销售额变化最大的相邻两个月是10、11,故答案为:10、11【点睛】此题考查了有理数减法的应用以及有理数大小的比较,解题的关键是掌握有理数减法运算法则以及有理数大小比较规则.2、√53【分析】先把除法转化为乘法,再计算即可完成.【详解】√5÷√3×1√3=√51√31√3=√53 故答案为:√53【点睛】本题考查了二次根式的乘除混合运算,注意运算顺序不要出错.3、79°度 【分析】 根据求出∠ΔΔΔ=79°,即可求出旋转角的度数. 【详解】解:ΔΔΔΔ绕点Δ顺时针旋转Δ°得到ΔΔΔΔ,则∠ΔΔΔ=Δ°, ∠ΔΔΔ=∠ΔΔΔ+∠ΔΔΔ=21°+58°=79°,故答案为:79°. 【点睛】 本题考查了旋转的性质,解题关键是明确旋转角度为CAF 的度数. 4、105°或75° 【分析】 分两种情况:①AB ⊥CD ,交DC 延长线于E ,OB 交DC 延长线于F ,②AB ⊥CD 于G ,OA 交DC 于H 求出答案. 【详解】·线○封○密·○外解:①如图1,AB⊥CD,交DC延长线于E,OB交DC延长线于F,∵∠B=45°,∠BEF=90°,∴∠CFO=∠BFE=45°,∵∠DCO=60°,∴∠COF=15°∴∠AOC=90°+15°=105°;②如图2,AB⊥CD于G,OA交DC于H,∵∠A=45°,∠AGH=90°,∴∠CHO=∠AHG=45°,∵∠DCO=60°,∴∠AOC=180°-60°-45°=75°;故答案为:105°或75°.【点睛】此题考查了三角形的角度计算,正确掌握三角板的度数及各角度的关系是解题的关键.5、√6+2##【分析】根据二次根式的加减乘除运算法则逐个运算即可.【详解】解:原式=√2(√3+√2)=√6+2,故答案为:√6+2.【点睛】 本题考查了二次根式的四则运算,属于基础题,计算过程中细心即可. 三、解答题 1、﹣2≤x <3.5,正整数解有:1、2、3 【分析】 分别解不等式组中的两个不等式,再确定两个不等式的解集的公共部分得到不等式组的解集,再写出范围内的正整数解即可. 【详解】 解:解不等式4(x +1)≤7x +10,得:x ≥﹣2,解不等式x ﹣583x <,得:x <3.5, 故不等式组的解集为:﹣2≤x <3.5,所以其正整数解有:1、2、3.【点睛】·线○封○密○外本题考查的是一元一次不等式组的解法,掌握“解不等式组的步骤及确定两个不等式的解集的公共部分”是解本题的关键.2、(1)8×9=72(2)①10100 ②8866【分析】(1)仔细观察给出的等式可发现从2开始连续2个偶数和是2×3,连续3个,4个偶数和为3×4,4×5,当有m个从2开始的连续偶数相加是,式子就应该表示成:2+4+6+…+2m=m(m+1),从而推出当m=8时,和的值;(2)①直接根据(1)中规律计算即可;②用2+4+6+…+82+84+86+…+204的和减去2+4+6+…+80的和即可.(1)解:∵2+2=2×2,2+4=6=2×3=2×(2+1),2+4+6=12=3×4=3×(3+1),2+4+6+8=20=4×5=4×(4+1),…,∴2+4+6+…+2m=m(m+1),∴m=8时,和为:8×9=72;故答案为:72;(2)①2+4+6+…+200=100×101,=10100;②82+84+86+...+204 =(2+4+6+...+82+84+86+...+204)-(2+4+6+ (80)=102×103-40×41=10506-1640=8866.【点睛】此题主要考查了数字规律,要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值是解题关键. 3、 (1)1辆甲型客车与1辆乙型客车的载客量分别是32,45人 (2)最节省费用的租车方案为甲型车3辆,乙型车17辆,最低费用为19400元 【分析】(1)设1辆甲型客车与1辆乙型客车的载客量分别是x y ,人,由题意知3427623199x y x y +=⎧⎨+=⎩计算求解即可. (2)设租用甲型客车x 辆,乙型客车20x -辆,由题意知()324520850x x +⨯-≥,解得:5013x ≤,费用()80010002020000200W x x x =+⨯-=-,可知 3x =时费用最低,进而得出结果. (1)解:设1辆甲型客车与1辆乙型客车的载客量分别是x y ,人 由题意知3427623199x y x y +=⎧⎨+=⎩ 解得3245x y =⎧⎨=⎩ ·线○封○密○外∴1辆甲型客车与1辆乙型客车的载客量分别是32,45人.(2)解:设租用甲型客车x 辆,乙型客车20x -辆由题意知()324520850x x +⨯-≥ 解得:5013x ≤费用()80010002020000200W x x x =+⨯-=-费用最低时,3x =2020317x -=-=辆20000200319400min W =-⨯=元∴最节省费用的租车方案为甲型车3辆,乙型车17辆,最低费用为19400元.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用等知识.解题的关键在于正确的列方程和不等式.4、作图见详解【分析】根据简单组合体的三视图画出相应的图形即可.【详解】解:从正面看到的该几何体的形状如图所示:从左面看到的该几何体的形状如图所示:【点睛】本题考查简单组合体的三视图,理解“长对正,宽相等,高平齐”画三视图的关键. 5、15-【详解】解:原式()11292⎛⎫=---÷- ⎪⎝⎭ 1172⎛⎫ ⎪⎝=-+÷⎭- 114=-- 15=-. 【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算.如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行.·线○封○密○外。
2022年中考仿真模拟检测《数学卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共6小题)1.2020的相反数是( )A. 2020B. ﹣2020C. 12020D. 12020- 2.下列计算中,正确的是( )A. a 2•a 4=a 8B. (a 3)4=a 7C. (ab )4=ab 4D. a 6÷a 3=a 3 3.若将一个长方形纸条折成如图的形状,则图中∠1与∠2的数量关系是( )A. ∠1=2∠2B. ∠1=3∠2C. ∠1+∠2=180°D. ∠1+2∠2=180°4.已知两圆的半径分别为2和5,如果这两圆内含,那么圆心距d 的取值范围是( )A. 0<d <3B. 0<d <7C. 3<d <7D. 0≤d <3 5.如果正十边形的边长为a ,那么它的半径是( )A. sin 36a ︒B. cos36a ︒C. 2sin18a ︒D. 2cos18a ︒ 6.已知在四边形ABCD 中,AB ∥CD ,对角线AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是矩形是( )A. AD =BC ,AC =BDB. AC =BD ,∠BAD =∠BCDC. AO =CO ,AB =BCD. AO =OB ,AC =BD二.填空题(共12小题)7.分解因式:2mx -6my =__________.8.函数1x -中,自变量x 的取值范围是____________________. 9.从1,2,3,4,5,6,7,这七个数中,任意抽取一个数,那么抽到素数的概率是_____. 10.一组数据:2,2,5,5,6,那么这组数据的方差是_____.11.不等式组21021xx-+<⎧⎨-⎩解集是_____.12.方程+2x x=的根是__________.13.已知关于的一元二次方程2210mx x-+=有两个不相等的实数根,则的取值范围是___.14.在△ABC中,D、E分别在边AB、AC上,DE∥BC,DE经过△ABC的重心,如果AB=π,AC n=,那么DE=_____.(用π、n表示)15.如图,已知在5×5的正方形网格中,点A、B、C在小正方形的顶点上,如果小正方形的边长都为1,那么点C到线段AB所在直线的距离是_____.16.如图,已知在平面直角坐标系中,点A在x轴正半轴上,点B在第一象限内,反比例函数y=kx的图象经过△OAB的顶点B和边AB的中点C,如果△OAB的面积为6,那么k的值是_____.17.定义:对于函数y=f(x),如果当a≤x≤b时,m≤y≤n,且满足n﹣m=k(b﹣a)(k是常数),那么称此函数为”k级函数”.如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得k=3,所以函数y=﹣3x为”3级函数”.如果一次函数y=2x﹣1(1≤x≤5)为”k级函数”,那么k的值是_____.18.如图,已知在平行四边形ABCD中,AB=10,BC=15,tan∠A=43,点P是边AD上一点,联结PB,将线段PB绕着点P逆时针旋转90°得到线段PQ,如果点Q恰好落在平行四边形ABCD的边上,那么AP 的值是_____.三.解答题(共7小题)19.先化简,再求值:(1222a a ++-)÷2322a a a++,其中a =5+1. 20.解方程组: 22212320x y x xy y +=⎧⎨-+=⎩ 21.如图,有一拱桥的桥拱是圆弧形,已知桥拱的水面跨度AB (弧所对的弦的长)为8米,拱高CD (弧的中点到弦的距离)为2米.(1)求桥拱所在圆的半径长;(2)如果水面AB 上升到EF 时,从点E 测得桥顶D 的仰角为α,且cotα=3,求水面上升的高度.22.某社区为了加强居民对新型冠状病毒肺炎防护知识了解,鼓励社区居民在线参与作答《2020年新型冠状病毒肺炎的防护全国统一考试(全国卷)》试卷(满分100分),社区管理员随机从该社区抽取40名居民的答卷,并对他们的成绩(单位:分)进行整理、分析,过程如下:收集数据85 65 95 100 90 95 85 65 75 85 100 90 70 90 100 80 80 100 95 75 80 100 80 95 65 100 90 95 85 80 100 75 60 90 70 80 95 75 100 90整理数据(每组数据可含最低值,不含最高值) 分组(分)频数 频率 60~704 0.1 70~80 a b 80~9010 025 90~100c d 100~1108 0.2分析数据(1)填空:a = ,b = ,c = ,d = ;(2)补全频率分布直方图;(3)由此估计该社区居民在线答卷成绩在(分)范围内的人数最多;(4)如果该社区共有800人参与答卷,那么可估计该社区成绩在90分及以上约为人.23.如图,已知在正方形ABCD中,对角线AC与BD交于点O,点M在线段OD上,联结AM并延长交边DC于点E,点N在线段OC上,且ON=OM,联结DN与线段AE交于点H,联结EN、MN.(1)如果EN∥BD,求证:四边形DMNE是菱形;(2)如果EN⊥DC,求证:AN2=NC•AC.24.如图,已知平面直角坐标系xOy中,抛物线y=ax2+bx+4经过点A(﹣3,0)和点B(3,2),与y轴相交于点C.(1)求这条抛物线的表达式;(2)点P是抛物线在第一象限内一点,联结AP,如果点C关于直线AP的对称点D恰好落在x轴上,求直线AP的截距;(3)在(2)小题的条件下,如果点E是y轴正半轴上一点,点F是直线AP上一点.当△EAO与△EAF全等时,求点E的纵坐标.25.如图,已知在△ABC中,∠ACB=90°,AC=4,BC=8,点P是射线AC上一点(不与点A、C重合),过P作PM⊥AB,垂足为点M,以M为圆心,MA长为半径的⊙M与边AB相交的另一个交点为点N,点Q 是边BC上一点,且CQ=2CP,联结NQ.(1)如果⊙M与直线BC相切,求⊙M的半径长;(2)如果点P在线段AC上,设线段AP=x,线段NQ=y,求y关于x的函数解析式及定义域;(3)如果以NQ为直径的⊙O与⊙M的公共弦所在直线恰好经过点P,求线段AP的长.答案与解析一.选择题(共6小题)1.2020的相反数是( )A. 2020B. ﹣2020C.12020D.12020【答案】B【解析】【分析】直接利用相反数的定义得出答案.【详解】解:2020的相反数是:﹣2020.故选:B.【点睛】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.下列计算中,正确的是()A. a2•a4=a8B. (a3)4=a7C. (ab)4=ab4D. a6÷a3=a3【答案】D【解析】【分析】直接利用积的乘方、幂的乘方运算法则以及同底数幂的乘除运算法则分别计算得出答案.【详解】A.a2•a4=a2+4=a6,故此选项计算错误,B.(a3)4=a3×4=a12,故此选项计算错误,C.(ab)4=a4b4,故此选项计算错误,D.a6÷a3=a6-3=a3,故此选项计算正确.故选D.【点睛】此题主要考查了积的乘方、幂的乘方运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.若将一个长方形纸条折成如图的形状,则图中∠1与∠2的数量关系是( )A. ∠1=2∠2B. ∠1=3∠2C. ∠1+∠2=180°D. ∠1+2∠2=180°【答案】A【解析】【分析】由折叠可得,∠2=∠ABC,再根据平行线的性质,即可得出∠1=∠ABD=2∠2.【详解】解:如图,由折叠可得,∠2=∠ABC,又∠2+∠ABC=∠ABD,即:∠ABD=2∠2,∵AB∥CD,∴∠1=∠ABD(两直线平行,内错角相等),∴∠1=∠ABD=2∠2故选:A.【点睛】本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键.4.已知两圆的半径分别为2和5,如果这两圆内含,那么圆心距d的取值范围是( )A. 0<d<3B. 0<d<7C. 3<d<7D. 0≤d<3【答案】D【解析】【分析】本题直接告诉了两圆的半径及两圆的位置的关系,根据数量关系与两圆位置关系的对应情况便可直接得出答案.【详解】解:由题意知,两圆内含,则0≤d<5-2(当两圆圆心重合时圆心距为0),即如果这两圆内含,那么圆心距d 的取值范围是0≤d <3,故选:D .【点睛】本题主要考查圆与圆的位置关系,①外离,则d >R+r ;②外切,则d=R+r ;③相交,则R-r <d <R+r ;④内切,则d=R-r ;⑤内含,则d <R-r .5.如果正十边形的边长为a ,那么它的半径是( ) A. sin 36a ︒ B. cos36a ︒ C. 2sin18a ︒ D. 2cos18a ︒【答案】C【解析】【分析】如图,画出图形,在直角三角形OAM 中,直接利用三角函数即可得到OA.【详解】如图,正十边形的中心角∠AOB=360°÷10=36°,AB=a∴∠AOM=∠BOM=18°,AM=MB=12a ; ∴OA=AM sin OAM ∠=218a sin ︒故选C.【点睛】本题考查三角函数,能够画出图形,找到正确的三角函数关系是解题关键.6.已知在四边形ABCD 中,AB ∥CD ,对角线AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是矩形的是( )A. AD =BC ,AC =BDB. AC =BD ,∠BAD =∠BCDC. AO =CO ,AB =BCD. AO =OB ,AC =BD【答案】B【解析】【分析】根据矩形的判定方法,一一判断即可解决问题.【详解】解:A、AB∥DC,AD=BC,无法得出四边形ABCD是平行四边形,故无法判断四边形ABCD是矩形.故错误;B、∵AB∥CD,∴∠BAD+∠ABC=∠ADC+∠BCD=180°,∵∠BAD=∠BCD,∴∠ABC=∠ADC,∴得出四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形.故正确;C、∵AO=CO,AB=BC,∴BD⊥AC,∠ABD=∠CBD,∵AB∥CD,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD,∴AB=CD,∴四边形ABCD是菱形,无法判断四边形ABCD是矩形.故错误;D、AO=OB,AC=BD无法判断四边形ABCD是矩形,故错误;故选:B.【点睛】本题考查矩形的判定方法、熟练掌握矩形的判定方法是解决问题的关键,记住对角线相等的平行四边形是矩形,有一个角是90度的平行四边形是矩形,有三个角是90度的四边形是矩形,属于中考常考题型.二.填空题(共12小题)7.分解因式:2mx-6my=__________.【答案】2m(x-3y)【解析】试题分析:对于因式分解的题目.如果有公因式,我们首先都需要提取公因式,然后利用公式法或十字相乘法进行因式分解.原式=2m(x-3y).考点:因式分解.8.函数中,自变量x的取值范围是____________________.【答案】x>1【解析】【分析】根据被开方数不能为负数,以及分母不能为零,列出不等式解不等式即可.【详解】根据题意得:x-1≥0,且x-1≠0解得x>1故填x>1【点睛】本题考查自变量的取值范围,正确列出不等式是解题关键.9.从1,2,3,4,5,6,7,这七个数中,任意抽取一个数,那么抽到素数的概率是_____.【答案】4 7【解析】【分析】根据素数定义,先找到素数的个数,让素数的个数除以数的总数即为所求的概率.【详解】解:∵1,2,3,4,5,6,7这7个数有4个素数是2,3,5,7;∴抽到素数的概率是47.故答案为:47.【点睛】本题考查的是概率公式.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn;找到素数的个数为易错点.10.一组数据:2,2,5,5,6,那么这组数据的方差是_____.【答案】14 5【解析】【分析】根据题意先求出这组数的平均数是4,再根据方差公式求解即可【详解】解:∵x=15(2+2+5+5+6)=4,∴S2=1n[(x1−x)2+(x2−x)2+…+(x n−x)2]=15[(4﹣2)2+(4﹣2)2+(4﹣5)2+(4﹣5)2+(4﹣6)2]=145,故答案为:145.【点睛】本题考查了方差:一般地设n个数据,x1,x2,…,x n的平均数为x,则方差S2=1n[(x1−x)2+(x2−x)2+…+(x n−x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.11.不等式组21021xx-+<⎧⎨-⎩解集是_____.【答案】13 2x <【解析】【分析】先求出各个不等式的解集,再求它们的公共解集即为不等式组得解集.【详解】解:21021xx-+<⎧⎨-⎩①②,解不等式①,得12 x>;解不等式②,得x≤3;所以原不等式组的解集为:13 2x<≤,故答案为:13 2x <.【点睛】此题主要考查了解一元一次不等式(组),关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.x=的根是__________.【答案】2【解析】【分析】本题可先对方程两边平方,得到x+2=x,再对方程进行因式分解即可解出本题.【详解】原方程变形为:x+2=x 即x−x−2=0∴(x−2)(x+1)=0∴x=2或x=−1∵x=−1时不满足题意.∴x=2.故答案为2.【点睛】此题考查解无理方程,解题关键在于掌握方程解法.13.已知关于的一元二次方程 2210mx x -+=有两个不相等的实数根,则的取值范围是___.【答案】1m <且0m ≠【解析】【分析】由二次项系数非零结合根的判别式△>0,即可得出关于m 的一元一次不等式组,解之即可得出结论.【详解】∵关于x 的一元二次方程mx 2-2x+1=0有两个不相等的实数根,∴()20240m m ≠⎧⎪⎨--⎪⎩=>, 解得:m <1且m≠0.故答案为1m <且0m ≠.【点睛】本题考查了根的判别式、一元二次方程的定义以及解一元一次不等式组,根据二次项系数非零结合根的判别式△>0列出关于m 的一元一次不等式组是解题的关键.14.在△ABC 中,D 、E 分别在边AB 、AC 上,DE ∥BC ,DE 经过△ABC 重心,如果AB =π,AC n =,那么DE =_____.(用π、n 表示) 【答案】2233n π- 【解析】分析】由DE ∥BC 推出AD :AB =AG :AF =DE :BC =2:3,推出DE =23BC ,求出 BC 即可解决问题.【详解】解:如图设G 是重心,作中线AF .∵DE ∥BC ,∴AD :AB =AG :AF =DE :BC =2:3,∴DE =23BC , ∵BC BA AC =+ ∴BC n π=-,∴()222333DE n n ππ=-=- 故答案为:2233n π-. 【点睛】本题考查三角形的重心、平行线的性质、平面向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.如图,已知在5×5的正方形网格中,点A 、B 、C 在小正方形的顶点上,如果小正方形的边长都为1,那么点C 到线段AB 所在直线的距离是_____.【答案】355【解析】分析】根据题意,连接AD 、AC ,作CE ⊥AD 于点E ,由每个小正方形的边长为1,利用勾股定理,可以得到AC 、CD 、AD 的长,然后即可得到△ACD 的形状,再利用等积法,即可求得CE 的长.【详解】解:连接AD 、AC ,作CE ⊥AD 于点E ,∵小正方形的边长都为1,∵224225+=223332+=22112+=∵((2225322=+,即AD 2=AC 2+CD 2∴△ACD 是直角三角形,∠ACD =90°, ∴22AC CD AD CE ⋅⋅=, 即32225=22CE ⨯⨯, 解得,CE =355, 即点C 到线段AB 所在直线的距离是355, 故答案为:355.【点睛】本题考查勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.16.如图,已知在平面直角坐标系中,点A 在x 轴正半轴上,点B 在第一象限内,反比例函数y =k x的图象经过△OAB 的顶点B 和边AB 的中点C ,如果△OAB 的面积为6,那么k 的值是_____.【答案】4【解析】【分析】过B 作BD ⊥OA 于点D ,设点B (m ,n ),根据△OAB 的面积为6,可以求得A 点坐标,而点C 是AB 的中点,即可表示出C 点坐标,再将点B 、C 坐标同时代入反比例函数解析式,即可求解.【详解】解:过B 作BD ⊥OA 于D ,∵点B在反比例函数kyx=的图象上,∴设B(m,n),∵△OAB的面积为6,∴12 OAn=,∴ (12n,),∵点C是AB的中点,∴ (122mnn+,2n),∵点C在反比例函数kyx=的图象上,∴12=22mn nmnn+⋅,∴4mn=,∴4k=.故答案为.【点睛】本题目考查反比例函数,难度一般,正确作出辅助线,设出点B的坐标,是顺利解题的关键.17.定义:对于函数y=f(x),如果当a≤x≤b时,m≤y≤n,且满足n﹣m=k(b﹣a)(k是常数),那么称此函数为”k级函数”.如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得k=3,所以函数y=﹣3x为”3级函数”.如果一次函数y=2x﹣1(1≤x≤5)为”k级函数”,那么k的值是_____.【答案】2【解析】【分析】先根据一次函数的性质求出对应的y的取值范围,再根据k级函数的定义解答即可.【详解】解:∵一次函数y=2x﹣1,1≤x≤5,∴1≤y≤9,∵一次函数y=2x﹣1(1≤x≤5)为”k级函数”,∴9-1=k(5-1),解得:k=2;故答案为:2.【点睛】本题是新定义试题,主要考查了对”k级函数”的理解和一次函数的性质,正确理解”k级函数”的概念、熟练掌握一次函数的性质是解题关键.18.如图,已知在平行四边形ABCD中,AB=10,BC=15,tan∠A=43,点P是边AD上一点,联结PB,将线段PB绕着点P逆时针旋转90°得到线段PQ,如果点Q恰好落在平行四边形ABCD的边上,那么AP 的值是_____.【答案】6或10【解析】【分析】分情况解答:当点Q落在CD上时,作BE⊥AD于E,QF⊥AD交AD的延长线于F.设PE=x,通过证明△PBE≌△QPF,得出PE=QF=x,DF=x﹣1,由tan∠FDQ=tan A=43=FQDF,即可得出AP的值;当点Q落在AD上时,得出∠APB=∠BPQ=90°,由tan A=43,即可得出AP的值;当点Q落在直线BC上时,作BE⊥AD于E,PF⊥BC于F.则四边形BEPF是矩形.由tan A=BEAE=43,可得出△BPQ是等腰直角三角形,此时求出BQ不满足题意,舍去.【详解】解:如图1中,当点Q落在CD上时,作BE⊥AD于E,QF⊥AD交AD的延长线于F.设PE=x.在Rt△AEB中,∵tan A=BEAE=43,AB=10,∴BE=8,AE=6,∵将线段PB 绕着点P 逆时针旋转90°得到线段PQ ,∴∠BPQ =90°,∴∠EBP +∠BPE =∠BPE +∠FPQ =90°,∴∠EBP =∠FPQ ,∵PB =PQ ,∠PEB =∠PFQ =90°,∴△PBE ≌△QPF (AAS ),∴PE =QF =x ,EB =PF =8,∴DF =AE +PE +PF ﹣AD =x ﹣1,∵CD ∥AB ,∴∠FDQ =∠A ,∴tan ∠FDQ =tan A =43=FQ DF , ∴1x x =43, ∴x =4,∴PE =4,∴AP =6+4=10;如图2,当点Q 落在AD 上时,∵将线段PB 绕着点P 逆时针旋转90°得到线段PQ ,∴∠BPQ =90°,∴∠APB =∠BPQ =90°,在Rt △APB 中,∵tan A =AP BP =43,AB =10, ∴AP =6;如图3中,当点Q 落在直线BC 上时,作BE ⊥AD 于E ,PF ⊥BC 于F .则四边形BEPF 是矩形.在Rt △AEB 中,∵tan A =BE AE =43,AB =10, ∴BE =8,AE =6,∴PF =BE =8, ∵△BPQ 是等腰直角三角形,PF ⊥BQ ,∴PF =BF =FQ =8,∴PB =PQ =,BQPB =16>15(不合题意舍去),综上所述,AP 的值是6或10,故答案为:6或10.【点睛】本题主要考查旋转的性质,由正切求边长,正确画出图形,分情况解答是解题的关键.三.解答题(共7小题)19.先化简,再求值:(1222a a ++-)÷2322a a a++,其中a. 【答案】2a a -,32+【解析】【分析】 先根据分式的混合运算法则化简,再把a 的值代入化简后的式子计算即可.【详解】解:原式=()()()()22232222a a a a a a a -+++÷+-+ =()()()2322232a a a a a a ++⨯+-+ =2a a -. 当a【点睛】本题考查了分式的化简求值和二次根式的除法运算,属于基本题型,熟练掌握分式的混合运算法则和分母有理化方法是解题关键.20.解方程组: 22212320x y x xy y +=⎧⎨-+=⎩【答案】1144x y =⎧⎨=⎩,2263x y =⎧⎨=⎩【解析】【分析】首先把第二个方程左边分解因式,即可转化为两个一次方程,分别与第一个方程组成方程组,即可求解.【详解】解:由(2)得(x−y)(x−2y)=0.∴x−y=0或x−2y=0,原方程组可化为212x yx y+=⎧⎨-=⎩,21220x yx y+=⎧⎨-=⎩,解这两个方程组,得原方程组的解为:114 4x y =⎧⎨=⎩,2263xy=⎧⎨=⎩.【点睛】本题主要考查了高次方程组的解法,解题的基本思想是降次,掌握降次的方法是解高次方程的关键.21.如图,有一拱桥的桥拱是圆弧形,已知桥拱的水面跨度AB(弧所对的弦的长)为8米,拱高CD(弧的中点到弦的距离)为2米.(1)求桥拱所在圆的半径长;(2)如果水面AB上升到EF时,从点E测得桥顶D的仰角为α,且cotα=3,求水面上升的高度.【答案】(1)桥拱所在圆的半径长为5米;(2)水面上升的高度为1米【解析】【分析】(1)根据点D是AB中点,DC AB⊥知C为AB中点,联结OA,设半径OA=OD=R,OC=OD﹣DC=R﹣2,在Rt△ACO中,由勾股定理求出半径.(2) 设OD与EF相交于点G,联结OE,由EF∥AB,OD⊥AB,得到OD⊥EF,进而找出EG=3DG,设水面上升的高度为x米,即CG=x,则DG=2﹣x,在Rt△EGO中根据勾股定理求出x即可.【详解】解:(1)∵点D是AB中点,DC AB⊥,∴AC=BC,DC经过圆心,设拱桥的桥拱弧AB所在圆的圆心为O,∵AB=8,∴AC=BC=4,联结OA ,设半径OA =OD =R ,OC =OD ﹣DC =R ﹣2,∵OD ⊥AB ,∴∠ACO =90°,在Rt △ACO 中,∵OA 2=AC 2+OC 2,∴R 2=(R ﹣2)2+42,解之得R =5.答:桥拱所在圆的半径长为5米.(2)设OD 与EF 相交于点G ,联结OE ,∵EF ∥AB ,OD ⊥AB ,∴OD ⊥EF ,∴∠EGD =∠EGO =90°,在Rt △EGD 中,cot 3EG DG α== , ∴EG =3DG ,设水面上升的高度为x 米,即CG =x ,则DG =2﹣x ,∴EG =6﹣3x ,在Rt △EGO 中,∵EG 2+OG 2=OE 2,∴(6﹣3x )2+(3+x )2=52,化简得 x 2﹣3x +2=0,解得 x 1=2(舍去),x 2=1,答:水面上升的高度为1米.【点睛】此题是关于圆的综合性试题,包含的知识点有解直角三角形,勾股定理,解一元二次方程等,有一定难度.22.某社区为了加强居民对新型冠状病毒肺炎防护知识的了解,鼓励社区居民在线参与作答《2020年新型冠状病毒肺炎的防护全国统一考试(全国卷)》试卷(满分100分),社区管理员随机从该社区抽取40名居民的答卷,并对他们的成绩(单位:分)进行整理、分析,过程如下:收集数据85 65 95 100 90 95 85 65 75 85 100 90 70 90 100 80 80 100 95 75 80 100 80 95 65 100 90 95 85 80 100 75 60 90 7080 95 75 100 90整理数据(每组数据可含最低值,不含最高值)分组(分) 频数频率60~70 4 0.170~80 a b80~90 10 0.2590~100 c d100~110 8 0.2分析数据(1)填空:a=,b=,c=,d=;(2)补全频率分布直方图;(3)由此估计该社区居民在线答卷成绩在(分)范围内的人数最多;(4)如果该社区共有800人参与答卷,那么可估计该社区成绩在90分及以上约为人.【答案】(1)6,0.15,12,0.3;(2)见解析;(3):90~100;(4)400【解析】【分析】(1)根据数据找出a,c再求出相应的b,d.(2)根据(1)画图即可.(3)从直方图中直接找出频率最高者即为所求.(4)总数乘以频率即可.【详解】解:(1)由题意可知:第二组的频数a=6,第四组的频数c=12,∴第二组的频率为:6÷40=0.15,第四组的频率为:12÷40=0.3.故答案为:6,0.15,12,0.3;(2)如下图即为补全的频率分布直方图;(3)由此估计该社区居民在线答卷成绩在90~100(分)范围内的人数最多.故答案为:90~100;(4)800×(0.3+0.2)=400(人).答:如果该社区共有800人参与答卷,那么可估计该社区成绩在90分及以上约为400人.故答案为:400.【点睛】此题考查数据的收集,包含频率的计算,画直方图等,难度一般.23.如图,已知在正方形ABCD中,对角线AC与BD交于点O,点M在线段OD上,联结AM并延长交边DC于点E,点N在线段OC上,且ON=OM,联结DN与线段AE交于点H,联结EN、MN.(1)如果EN∥BD,求证:四边形DMNE是菱形;(2)如果EN⊥DC,求证:AN2=NC•AC.【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据正方形性质及ON=OM,求出MN∥CD,进而得出四边形DMNE是平行四边形,在证明出△AOM ≌△DON 即可得到平行四边形DMNE 是菱形;(2)根据MN ∥CD 得到AN AM NC ME =,再由EN ⊥DC 得到EN ∥AD ,AC DC AN DE=,再由AB ∥DC ,得到AM AB ME DE =,即可得到AN AC NC AN=,即为所求. 【详解】证明:(1)如图1,∵四边形ABCD 是正方形,∴OA =OB =OC =OD ,AC ⊥BD ,∵ON =OM ,∴ON OM OC OD= , ∴MN ∥CD ,又∵EN ∥BD ,∴四边形DMNE 是平行四边形,在△AOM 和△DON 中,∵∠AOM =∠DON =90°,OA =OD ,OM =ON ,∴△AOM ≌△DON (SAS ),∴∠OMA =∠OND ,∵∠OAM+∠OMA =90°,∴∠OAM+∠OND =90°∴∠AHN =90°.∴DN ⊥ME ,∴平行四边形DMNE 是菱形;(2)如图2,∵MN∥CD,∴AN AM NC ME=,∵四边形ABCD是正方形,∴AB∥DC,AB=DC,∠ADC=90°,∴AD⊥DC,又∵EN⊥DC,∴EN∥AD,∴AC DC AN DE=,∵AB∥DC,∴AM AB ME DE=,∴AN AC NC AN=,∴AN2=NC•AC.【点睛】此题考查正方形相关知识,主要是利用平行线分线段成比例求解,难度较大.24.如图,已知在平面直角坐标系xOy中,抛物线y=ax2+bx+4经过点A(﹣3,0)和点B(3,2),与y轴相交于点C.(1)求这条抛物线的表达式;(2)点P是抛物线在第一象限内一点,联结AP,如果点C关于直线AP的对称点D恰好落在x轴上,求直线AP的截距;(3)在(2)小题的条件下,如果点E是y轴正半轴上一点,点F是直线AP上一点.当△EAO与△EAF全等时,求点E的纵坐标.【答案】(1)211433y x x =-++;(2)32;(3335+或5 6 【解析】【分析】(1)把(3,0)A -和点(3,2)B 代入抛物线的解析式,列方程组,可得结论;(2)如图1,根据对称的性质得5AD AC ==,可得2OD =,设OH a =,则4HC HD a ==-,在Rt HOD ∆中,根据勾股定理得222HD OH OD =+,列方程可得结论;(3)分两种情况:先说明AOE ∆是直角三角形,所以EAF ∆也是直角三角形,根据90EFA ∠=︒,画图,由勾股定理列方程可解答.【详解】解:(1)抛物线24y ax bx =++过点(3,0)A -和点(3,2)B , 93409342a b a b -+=⎧⎨++=⎩, 解得1313a b ⎧=-⎪⎪⎨⎪=⎪⎩, 211433y x x =-++; (2)如图1,连接AC ,DH ,点关于直线AP 的对称点,AD AC =∴,211433y x x =-++与轴交于点(0,4)C ,与轴交于点(3,0)A -, 5AC ∴=,5AD ∴=,点(2,0)D ,设直线AP 与轴交于点,则HC HD =,设OH a =,则4HC HD a ==-,在Rt HOD ∆中,222HD OH OD =+,222(4)2a a ∴-=+, 32a =, 直线AP 的截距为32; (3)点是轴正半轴上一点,AOE ∴∆是直角三角形,且90AOE ∠=︒当EAO ∆与EAF ∆全等时,存在两种情况:①如图2,当90EFA AOE ∠=∠=︒,EFA AOE ∆≅∆,EF OA ∴=,AHO EHF ∠=∠,90AOH EFH ∠=∠=︒,()AOH EFH AAS ∴∆≅∆,AH EH ∴=,由(2)知:32OH =, 32EH AH OE ∴==-, Rt AHO ∆中,222AH AO OH =+,22233()3()22OE ∴-=+, 解得:3352OE +=或3352-(舍), 点的纵坐标是3352+; ②如图3,当90EFA AOE ∠=∠=︒,EFA EOA ∆≅∆,3AF AO ∴==,EF OE =, Rt AHO ∆中,223353()2AH =+= 353FH ∴=-,32EH OE =-, Rt EFH ∆中,由勾股定理得:222EH FH EF =+,222335()(3)2OE OE ∴-=-+, 解得:356OE =,点的纵坐标是356;335+或356. 【点睛】本题是一道二次函数综合题,解答本题的关键是掌握二次函数的性质,对称的性质:对称轴是对称点连接的垂直平分线,三角形全等的性质和判定,当三角形全等不确定边的对应关系时,先确定三角形的特殊性,如直角三角形或等腰三角形等条件,再进一步分情况讨论.25.如图,已知在△ABC 中,∠ACB =90°,AC =4,BC =8,点P 是射线AC 上一点(不与点A 、C 重合),过P 作PM ⊥AB ,垂足为点M ,以M 为圆心,MA 长为半径的⊙M 与边AB 相交的另一个交点为点N ,点Q 是边BC 上一点,且CQ =2CP ,联结NQ .(1)如果⊙M 与直线BC 相切,求⊙M 的半径长;(2)如果点P 在线段AC 上,设线段AP =x ,线段NQ =y ,求y 关于x 的函数解析式及定义域;(3)如果以NQ 为直径的⊙O 与⊙M 的公共弦所在直线恰好经过点P ,求线段AP 的长.【答案】(1)55-;(2)2221220y x x =-+0<x <4);(3)52或112. 【解析】【分析】 (1)先根据勾股定理求得5AB =,设⊙M 的半径长为R ,则45BM R =,过M 作MH ⊥BC ,垂足为点H ,根据相似三角形的对应边成比例得到MB MH AB AC =,最后根据⊙M 与直线BC 相切,即MA =MH ,即可求解;(2)设AP =x ,得到CP =4﹣x ,CQ =8﹣2x ,BQ =2x ,过Q 作QG ⊥AB ,垂足为点G ,根据三角函数可得4525BG QG x x ==,,根据PM ⊥AB ,5cosA AM AC AP AB ===52565MA AN NG 45x x x ===,,,最后在Rt △QNG 中,根据勾股定理即可求解; (3)当点P 在线段AC 上,设以NQ 为直径的⊙O 与⊙M 的另一个交点为点E ,连接EN ,MO ,则MO ⊥EN ,根据以NQ 为直径的⊙O 与⊙M 的公共弦所在直线恰好经过点P ,PM ⊥AB ,MA =MN ,得到PN =P A ,∠P AN=∠ANE ,再根据∠ACB =90°,得到∠P AN +∠B =90°,∠NMO =∠B ,连接AQ ,根据 M 、O 分别是线段AN 、NQ 的中点,得到MO ∥AQ ,∠NMO =∠BAQ ,∠BAQ =∠B , QA =QB ,在Rt △QAC 中,根据勾股定理得,QA 2=AC 2+QC 2即可求解;当点P 在线段AC 的延长112上,即11x 2=. 【详解】(1)解:如图1,在Rt△ABC中,∵∠ACB=90°,AC=4,BC=8,∴22AB4845=+=设⊙M半径长为R,则BM45R=-过M作MH⊥BC,垂足为点H,∴MH∥AC,∵MH∥AC,∴△BHM∽△BCA,∴MB MH AB AC=∵⊙M与直线BC相切,∴MA=MH,∴454 45R R-=∴R55=-,即M的半径长为55-;(2)如图2,∵AP =x ,∴CP =4﹣x ,∵CQ =2CP ,∴CQ =8﹣2x ,∴BQ =BC ﹣CQ =8﹣(8﹣2x )=2x ,过Q 作QG ⊥AB ,垂足为点G , ∵cos BG BC B BQ AB==, ∴2BG x =,∴BG 5x =同理: QG 5x =∵PM ⊥AB ,∴∠AMP =90°,∴cosA AM AC AP AB ===∵AP =x ,∴MA AN x x ==,∴NG 5x = 在Rt △QNG 中,根据勾股定理得,QN 2=NG 2+QG 2,∴222y ⎛⎫⎫=+ ⎪⎪⎝⎭⎭∴y =0<x <4);(3)当点P 在线段AC 上,如图3,设以NQ 为直径的⊙O 与⊙M 的另一个交点为点E ,连接EN ,MO , 则MO ⊥EN ,∴∠NMO+∠ANE=90°,∵以NQ为直径的⊙O与⊙M的公共弦所在直线恰好经过点P,即P、E、N在同一直线上,又∵PM⊥AB,MA=MN,∴PN=P A,∴∠P AN=∠ANE,∵∠ACB=90°,∴∠P AN+∠B=90°,∴∠NMO=∠B,连接AQ,∵M、O分别是线段AN、NQ的中点,∴MO∥AQ,∴∠NMO=∠BAQ,∴∠BAQ=∠B,∴QA=QB,在Rt△QAC中,根据勾股定理得,QA2=AC2+QC2,∴(2x)2=42+(8﹣2x)2,∴5 x2 =同理:当点P在线段AC的延长112上,11x2=即线段AP的长为52或112.【点睛】此题考查圆的综合题,涉及到相似三角形的判定和性质、解直角三角形,还涉及到了分类讨论的思想,熟练掌握各知识点的融会贯通是解题关键.。
2022年人教版中考考前模拟考试《数学试题》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题1.2020-的相反数等于( )A. 2020-B. 12020C. 12020-D. 20202.非洲猪瘟病毒的直径达0.0000002米,由于它的块头较大,难以附着在空气中的粉尘上,因此不会通过空气传播.0.0000002用科学计数法表示为( )A. 7210-⨯B. 6210-⨯C. 80.210-⨯D. 7210-⨯ 3.如图,已知a ∥b ,直角三角板的直角顶点在直线a 上,若∠1=30°,则∠2等于( )A. 30°B. 40°C. 50°D. 60° 4.方程2﹣12x -=12x -的解为( ) A. x =2 B. x =4 C. x =6 D. 无解5.如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是( )A. 俯视图不变,左视图不变B. 主视图改变,左视图改变C. 俯视图不变,主视图不变D. 主视图改变,俯视图改变6.一元二次方程(x+3)(x ﹣3)=2x ﹣5的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根7.在某校”班级篮球联赛”中,全年级共有11个班级参加比赛,它们决赛的最终成绩各不相同,小芳向知道自己班能否进入前6名,不仅要了解自己班的成绩,还要了解这11个班级成绩的( )A 众数 B. 方差 C. 平均数 D. 中位数8.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是( )A. y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣49.如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于12AB长为半径画弧,两弧相交于点M、N;②作直线MN交AC于点D,连接BD.若CD=CB,∠A=35°,则∠C等于()A. 40°B. 50°C. 60°D. 70°10.如图在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…若点A(32,0),B(0,2),则点B2018的坐标为( )A. (6048,0)B. (6054,0)C. (6048,2)D. (6054,2) 二.填空题364+2-2=______.12.不等式组23142x x +>⎧⎪⎨-≤⎪⎩的解为_____________________. 13.鸡蛋孵化后,小鸡为雌与雄的概率相同.如果两个鸡蛋都成功孵化,则孵出的两只小鸡中都为雄鸡的概率为_______.14.如图,∠AOB =90°,∠B =30°,以点O 为圆心,OA 为半径作弧交AB 于点A 、点C ,交OB 于点D ,若OA =3,则阴影都分的面积为___________.15.如图,▱ABCD 中,AB ∥x 轴,AB =6.点A 坐标为(1,﹣4),点D 的坐标为(﹣3,4),点B 在第四象限,点G 是AD 与y 轴的交点,点P 是CD 边上不与点C ,D 重合的一个动点,过点P 作y 轴的平行线PM ,过点G 作x 轴的平行线GM ,它们相交于点M ,将△PGM 沿直线PG 翻折,当点M 的对应点落在坐标轴上时,点P 的坐标为______.三.解答题16.先化简、再求值:(222x x x -+﹣2144x x x -++)÷4x x -,其中x 3﹣2. 17.如图,AB 为⊙O 的直径,C 、D 为⊙O 上不同于A 、B 的两点,∠ABD =2∠BAC ,过点C 作CE ⊥DB 交DB 的延长线于点E ,直线AB 与CE 交于点F .(1)求证:CF 为⊙O 的切线;(2)填空:①若AB =4,当OB =BF 时,BE =______;②当∠CAB 度数为______时,四边形ACFD 是菱形.18.张老师抽取了九年级部分男生掷实心球成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x <6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,规定x≥6.25为合格,x≥9.25为优秀.并绘制出扇形统计图和频数分布直方图(不完整).(1)抽取的这部分男生有______人,请补全频数分布直方图;(2)抽取的这部分男生成绩的中位数落在_____组?扇形统计图中D组对应的圆心角是多少度?(3)如果九年级有男生400人,请你估计他们掷实心球的成绩达到合格的有多少人?19.如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.(参考数据:sin50°≈0.77,c os50°≈0.64,tan50°≈1.20).20.为了落实党的”精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?21.如图,一次函数y=-x+3的图象与反比例函数y=kx(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.22. 定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为”智慧三角形”.理解:⑴如图,已知是⊙上两点,请在圆上找出满足条件的点,使为”智慧三角形”(画出点的位置,保留作图痕迹);⑵如图,在正方形中,是的中点,是上一点,且,试判断是否为”智慧三角形”,并说明理由;运用:⑶如图,在平面直角坐标系中,⊙的半径为,点是直线上的一点,若在⊙上存在一点,使得为”智慧三角形”,当其面积取得最小值时,直接写出此时点的坐标.23.如图,二次函数y=﹣x2+4x+5图象的顶点为D,对称轴是直线1,一次函数y25=x+1的图象与x轴交于点A,且与直线DA关于l的对称直线交于点B.(1)点D的坐标是;(2)直线l与直线AB交于点C,N是线段DC上一点(不与点D、C重合),点N的纵坐标为n.过点N作直线与线段DA、DB分别交于点P、Q,使得△DPQ与△DAB相似.①当n275时,求DP的长;②若对于每一个确定的n的值,有且只有一个△DPQ与△DAB相似,请直接写出n的取值范围.答案与解析一.选择题1.2020-的相反数等于( )A. 2020-B. 12020C. 12020-D. 2020【答案】D【解析】【分析】根据相反数的定义,即可得到答案.【详解】2020-的相反数等于2020.故选D .【点睛】本题主要考查相反数的定义,掌握相反数的定义,是解题的关键.2.非洲猪瘟病毒的直径达0.0000002米,由于它的块头较大,难以附着在空气中的粉尘上,因此不会通过空气传播.0.0000002用科学计数法表示为( )A. 7210-⨯B. 6210-⨯C. 80.210-⨯D. 7210-⨯ 【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】0.0000002的小数点向右移动7位得到2,所以0.0000002用科学记数法表示为2×10-7, 故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.如图,已知a ∥b ,直角三角板的直角顶点在直线a 上,若∠1=30°,则∠2等于( )A. 30°B. 40°C. 50°D. 60°【答案】D【解析】∵直角三角板的直角顶点在直线a上,∠1=30°,∴∠3=60°.∵a∥b,∴∠2=∠3=60°.故选D.4.方程2﹣12x-=12x-的解为()A. x=2B. x=4C. x=6D. 无解【答案】D【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:2(x﹣2)﹣1=﹣1,去括号得:2x﹣4﹣1=﹣1,移项合并得:2x=4,解得:x=2,经检验x=2是增根,分式方程无解,故选:D.【点睛】本题主要考查解分式方程,熟练掌握计算法则是解题关键.5.如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是( )A. 俯视图不变,左视图不变B. 主视图改变,左视图改变C. 俯视图不变,主视图不变D. 主视图改变,俯视图改变【答案】A【解析】【分析】结合几何体的形状,结合三视图可得出俯视图和左视图没有发生变化.【详解】将正方体①移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变,主视图发生了改变,故选A.【点睛】本题考查了简单组合体三视图,根据题意正确掌握三视图的观察角度是解题关键.6.一元二次方程(x+3)(x﹣3)=2x﹣5的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根【答案】A【解析】【分析】先化为一般形式,再求出b2﹣4ac的值,根据b2﹣4ac的正负即可得出答案.【详解】解:(x+3)(x﹣3)=2x﹣5,x2﹣2x﹣4=0,这里a=1,b=﹣2,c=﹣4,∵b2﹣4ac=(﹣2)2﹣4×1×(﹣4)=20>0,∴有两个不相等的实数根.故选:A.【点睛】本题主要考查根的判别式,解题关键是熟练掌握计算法则.7.在某校”班级篮球联赛”中,全年级共有11个班级参加比赛,它们决赛的最终成绩各不相同,小芳向知道自己班能否进入前6名,不仅要了解自己班的成绩,还要了解这11个班级成绩的( )A. 众数B. 方差C. 平均数D. 中位数【答案】D【解析】【分析】11人成绩的中位数是第6名的成绩,要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有11个人,且他们分数互不相同,第6名的成绩是中位数,要判断是否进入前6名,故应知道中位数的多少.故选:D.【点睛】本题主要考查统计量的选择,熟悉平均数、中位数、众数、方差的意义是此类问题的关键.8.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是( )A. y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣4【答案】D【解析】试题分析:抛物线y=x2+2x﹣3与x轴的两交点横坐标分别是﹣3、1;抛物线的顶点坐标是(﹣1,﹣4),对称轴为x=﹣1.选项A,无法确定点A、B离对称轴x=﹣1的远近,无法判断y1与y2的大小,该选项错误;选项B,无法确定点A、B离对称轴x=﹣1的远近,无法判断y1与y2的大小,该选项错误;选项C,y的最小值是﹣4,该选项错误;选项D,y的最小值是﹣4,该选项正确.故答案选D.考点:二次函数图象上点的坐标特征;二次函数的最值.9.如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于12AB的长为半径画弧,两弧相交于点M、N;②作直线MN交AC于点D,连接BD.若CD=CB,∠A=35°,则∠C等于()A. 40°B. 50°C. 60°D. 70°【答案】A【解析】【分析】首先根据作图过程得到MN垂直平分AB,然后利用中垂线性质得到∠A=∠ABD,然后利用三角形外角的性质求得∠CDB的度数,从而可以求得∠C的度数.【详解】解:∵根据作图过程和痕迹发现MN垂直平分AB,∴DA=DB,∴∠DBA=∠A=35°,∵CD=BC,∴∠CDB=∠CBD=2∠A=70°,∠C=40故选A.【点睛】本题考查了基本作图中作已知线段的垂直平分线及线段的垂直平分线的性质,解题的关键是能利用垂直平分线的性质及外角的性质进行角之间的计算,难度不大.10.如图在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…若点A(32,0),B(0,2),则点B2018的坐标为( )A. (6048,0)B. (6054,0)C. (6048,2)D. (6054,2) 【答案】D【解析】首先根据已知求出三角形三边长度,然后通过旋转发现,B 、B 2、B 4…每偶数之间的B 相差6个单位长度,根据这个规律可以求得B 2018的坐标.【详解】∵A (32,0),B (0,2), ∴OA =32,OB =2, ∴Rt △AOB 中,AB52=, ∴OA +AB 1+B 1C 2=32+2+52=6, ∴B 2的横坐标为:6,且B 2C 2=2,即B 2(6,2),∴B 4的横坐标为:2×6=12, ∴点B 2018的横坐标为:2018÷2×6=6054,点B 2018的纵坐标为:2, 即B 2018的坐标是(6054,2).故选D .【点睛】此题考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B 点之间的关系是解决本题的关键.二.填空题+2-2=______.【答案】4.25【解析】【分析】首先计算乘方、开方,然后计算加法,求出算式的值是多少即可.﹣2=4+0.25=4.25.故答案为:4.25.【点睛】本题主要考查整式的混合运算,熟练掌握计算法则是解题关键.12.不等式组23142x x +>⎧⎪⎨-≤⎪⎩的解为_____________________. 【答案】19x <【解析】分别求出各不等式的解集,再求出其公共解集即可. 【详解】解:23142x x +>⎧⎪⎨-≤⎪⎩①②, 由①得,x >1,由②得,x≤9.故不等式组的解集为:19x <.【点睛】本题考查的是解一元一次不等式组,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.鸡蛋孵化后,小鸡为雌与雄的概率相同.如果两个鸡蛋都成功孵化,则孵出的两只小鸡中都为雄鸡的概率为_______.【答案】14. 【解析】【详解】解:画树状图如下:共有4种等可能的结果数,其中两只小鸡中都为雄鸡占1种,所以孵出的两只小鸡中都为雄鸡的概率=14. 故答案为:14. 14.如图,∠AOB =90°,∠B =30°,以点O 为圆心,OA 为半径作弧交AB 于点A 、点C ,交OB 于点D ,若OA =3,则阴影都分的面积为___________.【答案】34π【解析】【分析】连接OC ,作CH ⊥OB 于H ,根据直角三角形的性质求出AB ,根据勾股定理求出BD ,证明△AOC 为等边三角形,得到∠AOC=60°,∠COB=30°,根据扇形面积公式、三角形面积公式计算即可.【详解】连接OC,作CH⊥OB于H,∵∠AOB=90°,∠B=30°,∴∠OAB=60°,AB=2OA=6,由勾股定理得,OB=2233AB OA-=,∵OA=OC,∠OAB=60°,∴△AOC为等边三角形,∴∠AOC=60°,∴∠COB=30°,∴CO=CB,CH=12OC=32,∴阴影部分的面积=22 603131330333333602222360ππ⨯⨯-⨯⨯⨯+⨯⨯-=34π,故答案为:34π.【点睛】本题考查的是扇形面积计算、等边三角形的判定和性质,掌握扇形面积公式、三角形的面积公式是解题的关键.15.如图,▱ABCD中,AB∥x轴,AB=6.点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点G是AD与y轴的交点,点P是CD边上不与点C,D重合的一个动点,过点P作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,点P的坐标为______.【答案】(﹣55,4)或(655,4)【解析】【分析】先求出点G坐标,由勾股定理可求M'N的长,再由勾股定理可求m的值,即可求解.【详解】解:∵点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),∴直线AD解析式为:y=﹣2x﹣2,∴点G(0,﹣2),如图1中,当点P在线段CD上时,设P(m,4).在Rt△PNM′中,∵PM=PM′=6,PN=4,∴NM′22'M P PN5在Rt△OGM′中,∵OG2+OM′2=GM′2,∴22+(5)2=m2,解得m=﹣655,∴P(65,4)根据对称性可知,P 65,4)也满足条件.故答案为:(﹣655,4)或(55,4)【点睛】本题主要考查一次函数综合题,解题关键是由勾股定理求M'N的长. 三.解答题16.先化简、再求值:(222x x x -+﹣2144x x x -++)÷4x x -,其中x ﹣2. 【答案】21(2)x -+;﹣13. 【解析】【分析】 先化简分式,然后将x 的值代入求值.【详解】解:原式=[2(2)x x x -+﹣21(2)x x -+]÷4x x- =[2(2)(2)(2)x x x x -++﹣2(1)(2)x x x x -+]÷4x x- =2224(2)x x x x x --++÷4x x- =24(2)x x x -+•4x x- =21(2)x -+.当x 2时, 原式=13. 【点睛】本题主要考查分式的化简求值,解题关键是熟练掌握计算法则.17.如图,AB 为⊙O 的直径,C 、D 为⊙O 上不同于A 、B 的两点,∠ABD =2∠BAC ,过点C 作CE ⊥DB 交DB 的延长线于点E ,直线AB 与CE 交于点F .(1)求证:CF 为⊙O 的切线;(2)填空:①若AB =4,当OB =BF 时,BE =______;②当∠CAB 的度数为______时,四边形ACFD 是菱形.【答案】(1)证明见解析;(2)①1;②30°.【解析】【分析】(1)连结OC,如图,由于∠OAC=∠OCA,则根据三角形外角性质得∠BOC=2∠OAC,而∠ABD=2∠BAC,所以∠ABD=∠BOC,根据平行线的判定得到OC∥BD,再CE⊥BD得到OC⊥CE,然后根据切线的判定定理得CF为⊙O的切线;(2)①由平行线分线段成比例可得12BF BEOF OC==,即可求BE的长;②根据三角形的内角和得到∠F=30°,根据等腰三角形的性质得到AC=CF,连接AD,根据平行线的性质得到∠DAF=∠F=30°,根据全等三角形的性质得到AD=AC,由菱形的判定定理即可得到结论.【详解】证明:(1)连结OC,如图,∵OA=OC,∴∠OAC=∠OCA,∴∠BOC=∠A+∠OCA=2∠OAC,∵∠ABD=2∠BAC,∴∠ABD=∠BOC,∴OC∥BD,∵CE⊥BD,∴OC⊥CE,∴CF为⊙O的切线;(2)①∵AB=4,∴OB =BF =OC =2,∴OF =4,∵BE ∥OC , ∴12BF BE OF OC ==, ∴BE =1,故答案为:1;②当∠CAB 的度数为30°时,四边形ACFD 是菱形,理由:∵∠CAB =30°,∴∠COF =60°,∴∠F =30°,∴∠CAB =∠F ,∴AC =CF ,连接AD ,∵AB 是⊙O 的直径,∴AD ⊥BD ,∴AD ∥CF ,∴∠DAF =∠F =30°,在△ACB 与△ADB 中,CAB DAB 30ACB D 90AB AB ∠=∠=︒⎧⎪∠=∠=︒⎨⎪=⎩, ∴△ACB ≌△ADB (AAS ),∴AD =AC ,∴AD =CF ,∵AD ∥CF ,∴四边形ACFD 是菱形.故答案为:30°.【点睛】本题主要考查菱形的性质与切线的判定性质,解题关键是熟练掌握菱形的性质和切线的性质. 18.张老师抽取了九年级部分男生掷实心球的成绩进行整理,分成5个小组(x 表示成绩,单位:米).A 组:5.25≤x <6.25;B 组:6.25≤x <7.25;C 组:7.25≤x <8.25;D 组:8.25≤x <9.25;E 组:9.25≤x <10.25,规定x≥6.25为合格,x≥9.25为优秀.并绘制出扇形统计图和频数分布直方图(不完整).(1)抽取的这部分男生有______人,请补全频数分布直方图;(2)抽取的这部分男生成绩的中位数落在_____组?扇形统计图中D组对应的圆心角是多少度?(3)如果九年级有男生400人,请你估计他们掷实心球的成绩达到合格的有多少人?【答案】(1)50;补图见解析;(2)C;108°;(3)估计他们掷实心球的成绩达到合格的有360人.【解析】【分析】(1)设抽取的这部分男生有x人.根据A组的人数以及百分比,列出方程即可解决问题;(2)根据中位数的对应即可判定,利用圆心角=360°×百分比,计算即可;(3)用样本估计总体的思想解决问题;【详解】解:(1)设抽取的这部分男生有x人.则有5x×100%=10%,解得x=50,C组有50×30%=15人,E组有50﹣5﹣10﹣15﹣15=5人,条形图如图所示:(2)抽取的这部分男生成绩的中位数落在C组.∵D组有15人,占1530×100%=30%,∴对应的圆心角=360°×30%=108°.故答案为C.(3)(1﹣10%)×400=360人,估计他们掷实心球的成绩达到合格的有360人.【点睛】本题主要考查扇形统计图、中位数,解题关键是熟练掌握计算法则.19.如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).【答案】这座山的高度是1900米.【解析】【分析】设EC=x,则在RT△BCE中,可表示出BE,在Rt△ACE中,可表示出AE,继而根据AB+BE=AE,可得出方程,解出即可得出答案.【详解】解:设EC=x,在Rt△BCE中,tan∠EBC=EC BE,则BE=ECtan EBC∠=56x,在Rt△ACE中,tan∠EAC=EC AE,则AE=ECtan EAC∠=x,∵AB+BE=AE,∴300+56x=x,解得:x=1800,这座山的高度CD=DE﹣EC=3700﹣1800=1900(米).答:这座山的高度是1900米.【点睛】本题主要考查解直角三角形的应用,解题关键是熟练掌握勾股定理的应用.20.为了落实党的”精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少? 【答案】(1)A城和B城分别有200吨和300吨肥料;(2)从A城运往D乡200吨,从B城运往C乡肥料240吨,运往D乡60吨时,运费最少,最少运费是10040元;(3)当0<a<4时, A城200吨肥料都运往D乡,B 城240吨运往C乡,60吨运往D乡;当a=4时,在0≤x≤200范围内的哪种调运方案费用都一样;当4<a<6时, A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.【解析】【分析】(1)根据A、B两城共有肥料500吨,其中A城肥料比B城少100吨,列方程或方程组得答案;(2)设从A城运往C乡肥料x吨,用含x的代数式分别表示出从A运往运往D乡的肥料吨数,从B城运往C乡肥料吨数,及从B城运往D乡肥料吨数,根据:运费=运输吨数×运输费用,得一次函数解析式,利用一次函数的性质得结论;(3)列出当A城运往C乡的运费每吨减少a(0<a<6)元时的一次函数解析式,利用一次函数的性质讨论,得结论.【详解】(1)设A城有化肥a吨,B城有化肥b吨,根据题意,得500100 b ab a+=⎧⎨-=⎩,解得200300 ab=⎧⎨=⎩,答:A城和B城分别有200吨和300吨肥料;(2)设从A城运往C乡肥料x吨,则运往D乡(200﹣x)吨,从B城运往C乡肥料(240﹣x)吨,则运往D乡(60+x)吨,设总运费为y元,根据题意,则:y=20x+25(200﹣x)+15(240﹣x)+24(60+x)=4x+10040,∵20002400600xxxx≥⎧⎪-≥⎪⎨-≥⎪⎪+≥⎩,∴0≤x≤200,由于函数是一次函数,k=4>0,所以当x=0时,运费最少,最少运费是10040元;(3)从A城运往C乡肥料x吨,由于A城运往C乡的运费每吨减少a(0<a<6)元,所以y=(20﹣a)x+25(200﹣x)+15(240﹣x)+24(60+x)=(4﹣a)x+10040,当4﹣a>0时,即0<a<4时,y随着x的增大而增大,∴当x=0时,运费最少,A城200吨肥料都运往D乡,B城240吨运往C乡,60吨运往D乡;当4-a=0时,即a=4时,y=10040,在0≤x≤200范围内的哪种调运方案费用都一样;当4﹣a<0时,即4<a<6时,y随着x的增大而减小,∴当x=240时,运费最少,此时A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.【点睛】本题考查了二元一次方程组的应用、不等式组的应用、一次函数的应用等,弄清题意、根据题意找准等量关系、不等关系列出方程组,列出一次函数解析式是关键.注意(3)小题需分类讨论.21.如图,一次函数y=-x+3的图象与反比例函数y =kx(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【答案】(1)2yx=,B(2,1);(2)P(53,0).【解析】【分析】(1)由一次函数解析式求出点A的坐标,代入y=kx中求出反比例函数解析式,再将两个函数解析式联立解出点B坐标;(2)作点B关于轴的对称点,连接AD并求出直线AD解析式,再求得与轴交点的坐标即可得到答案;【详解】(1)解:把点()1,A a 代人一次函数y =-x +3中,得13a =-+,解得 a=2,∴A(1,2),将A 代入反比例函数k y x =, 得122k =⨯=,反比例函数的表达式为2y x =, 当23x x=-+时, 联立一次函数与反比例函数关系式成方程组,得:32y x y x =-+⎧⎪⎨=⎪⎩,解得: 121212,21x x y y ==⎧⎧⎨⎨==⎩⎩, ∴B (2,1).(2)如图,作点B 关于轴的对称点 (2,-1),连接与轴交于一点即为点,此时PA+PB 的值最小, 设直线AD 的关系式为y=kx+b ,将点A 、D 的坐标代入,得212k b k b =+⎧⎨-=+⎩,解得35k b =-⎧⎨=⎩, ∴设直线AD 的关系式为y=-3x+5, 当y=0时,x=53, ∴P (53,0).【点睛】此题是一道综合题,用待定系数法求反比例函数解析式,解决最短路径问题,正确理解题意即可正确解答.22. 定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为”智慧三角形”.理解:⑴如图,已知是⊙上两点,请在圆上找出满足条件的点,使为”智慧三角形”(画出点的位置,保留作图痕迹);⑵如图,在正方形中,是的中点,是上一点,且,试判断是否为”智慧三角形”,并说明理由;运用:⑶如图,在平面直角坐标系中,⊙的半径为,点是直线上的一点,若在⊙上存在一点,使得为”智慧三角形”,当其面积取得最小值时,直接写出此时点的坐标.【答案】(1)详见解析;(2)详见解析;(3)P的坐标(223,13),(223,13).【解析】试题分析:(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为”智慧三角形”;(3)根据”智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.试题解析:(1)如图1所示:(2)△AEF是否为”智慧三角形”,理由如下:设正方形边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为”智慧三角形”;(3)如图3所示:由”智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ=,PM=1×2÷3=,由勾股定理可求得OM=,故点P的坐标(﹣,),(,).考点:圆的综合题.23.如图,二次函数y=﹣x2+4x+5图象的顶点为D,对称轴是直线1,一次函数y25=x+1的图象与x轴交于点A,且与直线DA关于l的对称直线交于点B.(1)点D的坐标是;(2)直线l与直线AB交于点C,N是线段DC上一点(不与点D、C重合),点N的纵坐标为n.过点N作直线与线段DA、DB分别交于点P、Q,使得△DPQ与△DAB相似.①当n275=时,求DP的长;②若对于每一个确定的n的值,有且只有一个△DPQ与△DAB相似,请直接写出n的取值范围.【答案】(1)(2,9);(2)①DP954=DP253=②95<n215<.【解析】【分析】(1)直接用顶点坐标公式求即可;(2)由对称轴可知点C (2,95),A (52-,0),点A 关于对称轴对称的点(132,0),借助AD 的直线解析式求得B (5,3);①当n=275时,N (2,275),可求DA=2,DN=185,CD=365,当PQ ∥AB 时,△DPQ ∽△DAB ,;当PQ 与AB 不平行时,DP==②当PQ ∥AB ,DB=DP 时,DB=DN=245,所以N (2,215),则有且只有一个△DPQ 与△DAB 相似时,95<n 215<; 【详解】解:(1)顶点为D (2,9);故答案为(2,9);(2)对称轴x =2,∴C (2,95), 由已知可求A (52-,0), 点A 关于x =2对称点为(132,0), 则AD 关于x =2对称的直线为y =﹣2x+13,∴B (5,3),①当n=275时,N (2,275),∴DA=2,DN=185,CD =365, 当PQ ∥AB 时,△DPQ ∽△DAB ,∵△DAC ∽△DPN , ∴CDP DA DN D =,∴DP=4; 当PQ 与AB 不平行时,△DPQ ∽△DBA ,∴△DNQ ∽△DCA , ∴CDP DB DN D =,∴DP =综上所述,DP =DP =②当PQ ∥AB ,DB =DP 时,DB =, ∴CDP DA DN D = ∴DN 245= ∴N (2,215), ∴有且只有一个△DPQ 与△DAB 相似时,95<n 215<; 故答案为:95<n 215<; 【点睛】本题考查二次函数的图象及性质,三角形的相似;熟练掌握二次函数的性质,三角形相似的判定与性质是解题的关键.。
2022年河南省中考数学试卷(解析版)

2022年河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.(3分)的相反数是()A.B.2C.﹣2D.2.(3分)2022年北京冬奥会的奖牌“同心”表达了“天地合•人心同”的中华文化内涵.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人3.(3分)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°4.(3分)下列运算正确的是()A.2﹣=2B.(a+1)2=a2+1C.(a2)3=a5D.2a2•a=2a35.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点.若OE=3,则菱形ABCD的周长为()A.6B.12C.24D.486.(3分)一元二次方程x2+x﹣1=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根7.(3分)如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为()A.5分B.4分C.3分D.45%8.(3分)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿.则1兆等于()A.108B.1012C.1016D.10249.(3分)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为()A.(,﹣1)B.(﹣1,﹣)C.(﹣,﹣1)D.(1,)10.(3分)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的R1),R1的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是()A.呼气酒精浓度K越大,R1的阻值越小B.当K=0时,R1的阻值为100C.当K=10时,该驾驶员为非酒驾状态D.当R1=20时,该驾驶员为醉驾状态二、填空题(每小题3分,共15分)11.(3分)请写出一个y随x的增大而增大的一次函数的表达式:.12.(3分)不等式组的解集为.13.(3分)为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为.14.(3分)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:﹣()0+2﹣1;(2)化简:÷(1﹣).17.(9分)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a.成绩频数分布表:成绩x(分)50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100频数7912166b.成绩在70≤x<80这一组的是(单位:分):70 71 72 72 74 77 78 78 78 79 79 79根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是分,成绩不低于80分的人数占测试人数的百分比为.(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.18.(9分)如图,反比例函数y=(x>0)的图象经过点A(2,4)和点B,点B在点A 的下方,AC平分∠OAB,交x轴于点C.(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC的垂直平分线.(要求:不写作法,保留作图痕迹)(3)线段OA与(2)中所作的垂直平分线相交于点D,连接CD.求证:CD∥AB.19.(9分)开封清明上河图是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得拂云阁顶端D的仰角为34°,沿AC方向前进15m到达B处,又测得拂云阁顶端D的仰角为45°.已知测角仪的高度为1.5m,测量点A,B与拂云阁DC的底部C在同一水平线上,求拂云阁DC的高度(结果精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).20.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.21.(9分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.22.(10分)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.(1)求证:∠BOC+∠BAD=90°.(2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得cos∠BAD=.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.23.(10分)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ=°,∠CBQ=°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ 的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP 的长.2022年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.(3分)的相反数是()A.B.2C.﹣2D.【分析】直接利用相反数的定义得出即可.【解答】解:的相反数是:.故选:A.【点评】此题主要考查了相反数的概念,正确把握相反数的定义是解题关键.2.(3分)2022年北京冬奥会的奖牌“同心”表达了“天地合•人心同”的中华文化内涵.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人【分析】根据正方体的表面展开图找相对面的方法,一线隔一个,即可解答.【解答】解:在原正方体中,与“地”字所在面相对的面上的汉字是人,故选:D.【点评】本题考查了正方体相对两个面上的问题,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.3.(3分)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°【分析】首先利用垂直的定义得到∠COE=90°,然后利用平角的定义即可求解.【解答】解:∵EO⊥CD,∴∠COE=90°,∵∠1+∠COE+∠2=180°,∴∠2=180°﹣∠1﹣∠COE=180°﹣54°﹣90°=36°.故选:B.【点评】本题主要考查了垂直的定义和平角的性质计算,要注意领会由垂直得直角这一要点.4.(3分)下列运算正确的是()A.2﹣=2B.(a+1)2=a2+1C.(a2)3=a5D.2a2•a=2a3【分析】利用二次根式的减法的法则,完全平方公式,幂的乘方的法则,单项式乘单项式的法则对各项进行运算即可.【解答】解:A、,故A不符合题意;B、(a+1)2=a2+2a+1,故B不符合题意;C、(a2)3=a6,故C不符合题意;D、2a2•a=2a3,故D符合题意.故选:D.【点评】本题主要考查二次根式的化简,完全平方公式,幂的乘方,单项式乘单项式,解答的关键是对相应的运算法则的掌握.5.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点.若OE=3,则菱形ABCD的周长为()A.6B.12C.24D.48【分析】由菱形的性质可得出AC⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得出CD的长,结合菱形的周长公式即可得出结论.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△COD为直角三角形.∵OE=3,点E为线段CD的中点,∴CD=2OE=6.∴C菱形ABCD=4CD=4×6=24.故选:C.【点评】本题考查了菱形的性质以及直角三角形的性质,解题的关键是求出CD=6.6.(3分)一元二次方程x2+x﹣1=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根【分析】根据根的判别式进行判断即可.【解答】解:在一元二次方程x2+x﹣1=0中,a=1,b=1,c=﹣1,∴Δ=b2﹣4ac=12﹣4×1×(﹣1)=1+4=5>0,∴原方程有两个不相等的实数根.故选:A.【点评】本题主要考查根的判别式,解答的关键是明确当Δ<0时,原方程没有实数根;当Δ=0时,原方程有两个相等的实数根;当Δ>0时,原方程有两个不相等的实数根.7.(3分)如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为()A.5分B.4分C.3分D.45%【分析】根据众数的定义求解即可.【解答】解:由扇形统计图知,得4分的人数占总人数的45%,人数最多,所以所打分数的众数为4分,故选:B.【点评】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.8.(3分)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿.则1兆等于()A.108B.1012C.1016D.1024【分析】根据同底数幂的乘法先求出1亿,再求1兆即可.【解答】解:1亿=104×104=108,1兆=104×104×108=104+4+8=1016,故选:C.【点评】本题考查了科学记数法﹣表示较大的数,掌握a m•a n=a m+n是解题的关键.9.(3分)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为()A.(,﹣1)B.(﹣1,﹣)C.(﹣,﹣1)D.(1,)【分析】由正六边形的性质可得A(1,),再根据由360°÷90°=4可知,每4次为一个循环,由2022÷4=505……2,可知点A2022与点A2重合,求出点A2的坐标可得答案.【解答】解:∵边长为2的正六边形ABCDEF的中心与原点O重合,∴OA=AB=2,∠BAO=60°,∵AB∥x轴,∴∠APO=90°,∴∠AOP=30°,∴AP=1,OP=,∴A(1,),∵将△OAP绕点O顺时针旋转,每次旋转90°,可知点A2与D重合,由360°÷90°=4可知,每4次为一个循环,∴2022÷4=505……2,∴点A2022与点A2重合,∵点A2与点A关于原点O对称,∴A2(﹣1,﹣),∴第2022次旋转结束时,点A的坐标为(﹣1,﹣),故选:B.【点评】本题主要考查了正六边形的性质,旋转的性质,含30°角的直角三角形的性质等知识,根据旋转的性质确定每4次为一个循环是解题的关键.10.(3分)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的R1),R1的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是()A.呼气酒精浓度K越大,R1的阻值越小B.当K=0时,R1的阻值为100C.当K=10时,该驾驶员为非酒驾状态D.当R1=20时,该驾驶员为醉驾状态【分析】观察图2可直接判断A、B,由K=10可算出M的值,从而判断C,观察图2可得R1=20时K的值,从而算出M的值,即可判断D.【解答】解:由图2可知,呼气酒精浓度K越大,R1的阻值越小,故A正确,不符合题意;由图2知,K=0时,R1的阻值为100,故B正确,不符合题意;由图3知,当K=10时,M=2200×10×10﹣3=22(mg/100mL),∴当K=10时,该驾驶员为酒驾状态,故C不正确,符合题意;由图2知,当R1=20时,K=40,∴M=2200×40×10﹣3=88(mg/100mL),∴该驾驶员为醉驾状态,故D正确,不符合题意;故选:C.【点评】本题考查反比例函数的应用,解题的关键是读懂题意,能正确识图.二、填空题(每小题3分,共15分)11.(3分)请写出一个y随x的增大而增大的一次函数的表达式:答案不唯一,如y=x.【分析】根据一次函数的性质只要使一次项系数大于0即可.【解答】解:例如:y=x,或y=x+2等,答案不唯一.【点评】此题比较简单,考查的是一次函数y=kx+b(k≠0)的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.12.(3分)不等式组的解集为2<x≤3.【分析】先解出每个不等式的解集,即可得到不等式组的解集.【解答】解:,解不等式①,得:x≤3,解不等式②,得:x>2,∴该不等式组的解集是2<x≤3,故答案为:2<x≤3.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.13.(3分)为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为.【分析】画树状图,共有12种可能的结果,其中恰好选中甲和丙的结果有2种,再由概率公式求解即可.【解答】解:画树状图如下:共有12种可能的结果,其中恰好选中甲和丙的结果有2种,∴恰好选中甲和丙的概率为=,故答案为:.【点评】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为+.【分析】如图,设O′A′交于点T,连接OT.首先证明∠OTO′=30°,根据S阴=S扇形O′A′B′﹣(S扇形OTB﹣S△OTO′)求解即可.【解答】解:如图,设O′A′交于点T,连接OT.∵OT=OB,OO′=O′B′,∴OT=2OO′,∵∠OO′T=90°,∴∠O′TO=30°,∠TOO′=60°,∴S阴=S扇形O′A′B′﹣(S扇形OTB﹣S△OTO′)=﹣(﹣×1×)=+.故答案为:+.【点评】本题考查扇形的面积,解直角三角形等知识,解题的关键是学会割补法求阴影部分的面积.15.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为或.【分析】分两种情况:当点Q在CD上,当点Q在DC的延长线上,利用勾股定理分别进行计算即可解答.【解答】解:如图:∵∠ACB=90°,AC=BC=2,∴AB=AC=4,∵点D为AB的中点,∴CD=AD=AB=2,∠ADC=90°,∵∠ADQ=90°,∴点C、D、Q在同一条直线上,由旋转得:CQ=CP=CQ′=1,分两种情况:当点Q在CD上,在Rt△ADQ中,DQ=CD﹣CQ=1,∴AQ===,当点Q在DC的延长线上,在Rt△ADQ′中,DQ′=CD+CQ′=3,∴AQ′===,综上所述:当∠ADQ=90°时,AQ的长为或,故答案为:或.【点评】本题考查了勾股定理,旋转的性质,等腰直角三角形,分两种情况进行讨论是解题的关键.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:﹣()0+2﹣1;(2)化简:÷(1﹣).【分析】(1)先算立方根、零指数幂、负整数指数幂,再算加减;(2)先通分,把除化为乘,再分解因式约分.【解答】解:(1)原式=3﹣1+=;(2)原式=÷=•=x+1.【点评】本题考查实数运算和分式化简,解题的关键是掌握实数运算、分式运算的相关法则.17.(9分)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a.成绩频数分布表:成绩x(分)50≤x<6060≤x <7070≤x<8080≤x<9090≤x≤100频数7912166b.成绩在70≤x<80这一组的是(单位:分):70 71 72 72 74 77 78 78 78 79 79 79根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是78.5分,成绩不低于80分的人数占测试人数的百分比为44%.(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.【分析】(1)根据中位数的定义求解即可,用不低于80分的人数除以被测试人数即可;(2)根据中位数的意义求解即可;(3)答案不唯一,合理均可.【解答】解:(1)这次测试成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为=78.5(分),所以这组数据的中位数是78.5分,成绩不低于80分的人数占测试人数的百分比为×100%=44%,故答案为:78.5,44%;(2)不正确,因为甲的成绩77分低于中位数78.5分,所以甲的成绩不可能高于一半学生的成绩;(3)测试成绩不低于80分的人数占测试人数的44%,说明该校学生对“航空航天知识”的掌握情况较好(答案不唯一,合理均可).【点评】本题考查了中位数,频数分布表等知识,掌握中位数的定义及其意义是解决问题的关键.18.(9分)如图,反比例函数y=(x>0)的图象经过点A(2,4)和点B,点B在点A 的下方,AC平分∠OAB,交x轴于点C.(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC的垂直平分线.(要求:不写作法,保留作图痕迹)(3)线段OA与(2)中所作的垂直平分线相交于点D,连接CD.求证:CD∥AB.【分析】(1)直接把点A的坐标代入求出k即可;(2)利用尺规作出线段AC的垂直平分线m即可;(3)证明∠DCA=∠BAC,可得结论.【解答】(1)解:∵反比例函数y=(x>0)的图象经过点A(2,4),∴k=2×4=8,∴反比例函数的解析式为y=;(2)解:如图,直线m即为所求.(3)证明:∵AC平分∠OAB,∴∠OAC=∠BAC,∵直线m垂直平分线段AC,∴DA=DC,∴∠OAC=∠DCA,∴∠DCA=∠BAC,∴CD∥AB.【点评】本题考查作图﹣基本作图,反比例函数的性质,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(9分)开封清明上河图是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得拂云阁顶端D的仰角为34°,沿AC方向前进15m到达B处,又测得拂云阁顶端D的仰角为45°.已知测角仪的高度为1.5m,测量点A,B与拂云阁DC的底部C在同一水平线上,求拂云阁DC的高度(结果精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).【分析】延长EF交DC于点H,根据题意可得:∠DHF=90°,EF=AB=15米,CH =BF=AE=1.5米,设FH=x米,在Rt△DFH中,利用锐角三角函数的定义求出FH的长,然后在Rt△DHE中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答.【解答】解:延长EF交DC于点H,由题意得:∠DHF=90°,EF=AB=15米,CH=BF=AE=1.5米,设FH=x米,∴EH=EF+FH=(15+x)米,在Rt△DFH中,∠DFH=45°,∴DH=FH•tan45°=x(米),在Rt△DHE中,∠DEH=34°,∴tan34°==≈0.67,∴x≈30.1,经检验:x≈30.1是原方程的根,∴DC=DH+CH=30.1+1.5≈32(米),∴拂云阁DC的高度约为32米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.20.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.【分析】(1)设菜苗基地每捆A种菜苗的价格是x元,根据用300元在市场上购买的A 种菜苗比在菜苗基地购买的少3捆,列方程可得菜苗基地每捆A种菜苗的价格是20元;(2)设购买A种菜苗m捆,则购买B种菜苗(100﹣m)捆,根据A种菜苗的捆数不超过B种菜苗的捆数,得m≤50,设本次购买花费w元,有w=20×0.9m+30×0.9(100﹣m)=﹣9m+2700,由一次函数性质可得本次购买最少花费2250元.【解答】解:(1)设菜苗基地每捆A种菜苗的价格是x元,根据题意得:=+3,解得x=20,经检验,x=20是原方程的解,答:菜苗基地每捆A种菜苗的价格是20元;(2)设购买A种菜苗m捆,则购买B种菜苗(100﹣m)捆,∵A种菜苗的捆数不超过B种菜苗的捆数,∴m≤100﹣m,解得m≤50,设本次购买花费w元,∴w=20×0.9m+30×0.9(100﹣m)=﹣9m+2700,∵﹣9<0,∴w随m的增大而减小,∴m=50时,w取最小值,最小值为﹣9×50+2700=2250(元),答:本次购买最少花费2250元.【点评】本题考查分式方程和一次函数的应用,解题的关键是读懂题意,列出方程及函数关系式.21.(9分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.【分析】(1)由抛物线顶点(5,3.2),设抛物线的表达式为y=a(x﹣5)2+3.2,用待定系数法可得抛物线的表达式为y=﹣x2+x+;(2)当y=1.6时,﹣x2+x+=1.6,解得x=1或x=9,即得她与爸爸的水平距离为2m或6m.【解答】解:(1)由题意知,抛物线顶点为(5,3.2),设抛物线的表达式为y=a(x﹣5)2+3.2,将(0,0.7)代入得:0.7=25a+3.2,解得a=﹣,∴y=﹣(x﹣5)2+3.2=﹣x2+x+,答:抛物线的表达式为y=﹣x2+x+;(2)当y=1.6时,﹣x2+x+=1.6,解得x=1或x=9,∴她与爸爸的水平距离为3﹣1=2(m)或9﹣3=6(m),答:当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m或6m.【点评】本题考查二次函数的应用,解题的关键是读懂题意,把实际问题转化为数学问题.22.(10分)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.(1)求证:∠BOC+∠BAD=90°.(2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得cos∠BAD=.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.【分析】(1)本小题难度不大,方法颇多,方法1:如图1,过点B作EF∥CD,分别交AD于点E,交OC于点F.首先证明∠BOC+∠OBF=90°,∠ABE+∠BAD=90°;再根据B是切点得出∠OBA=90°.后面就很简单的证明出结论;方法2:如图2,延长OB交CD于点M.因为AB为⊙O的切线,所以根据切线性质得到,∠OBA=90°,∠ABM=90°.再根据四边形、三角形的内角和即可证明;方法3:如图3,过点B作BN ∥AD,根据两直线平行,内错角相等和切线性质,可以很简单的证明问题;(2)利用(1)中图1的辅助线即可解答.首先根据条件AB=75,cos∠BAD=,得到AE=45.再利用(1)证明出的,∠OBF=∠BAD,能得到四边形CDEF为矩形,所以DE=CF=5,从而得到AD=AE+ED=50cm.【解答】(1)证明:方法1:如图1,过点B作EF∥CD,分别交AD于点E,交OC于点F.∵CD与⊙O相切于点C,∴∠OCD=90°.∵AD⊥CD,∴∠ADC=90°.∵EF∥CD,∴∠OFB=∠AEB=90°,∴∠BOC+∠OBF=90°,∠ABE+∠BAD=90°,∵AB为⊙O的切线,∴∠OBA=90°.∴∠OBF+∠ABE=90°,∴∠OBF=90°.∴∠OBF+∠ABE=90°,∴∠OBF=∠BAD,∴∠BOC+∠BAD=90°;方法2:如图2,延长OB交CD于点M.∵CD与⊙O相切于点C,∴∠OCM=90°,∴∠BOC+∠BMC=90°,∵AD⊥CD,∴∠ADC=90°.∵AB为⊙O的切线,∴∠OBA=90°,∴∠ABM=90°.∴在四边形ABMD中,∠BAD+∠BMD=180°.∵∠BMC+∠BMD=180°,∴∠BMC=∠BAD.∴∠BOC+∠BAD=90°;方法3:如图3,过点B作BN∥AD,∴∠NBA=∠BAD.∵CD与⊙O相切于点C,∴∠OCD=90°,∵AD⊥CD,∴∠ADC=90°.∴AD∥OC,∴BN∥OC,∴∠NBO=∠BOC.∵AB为OO的切线,∴∠OBA=90°,∴∠NBO+∠NBA=90°,∴∠BOC+∠BAD=90°.(2)解:如图1,在Rt△ABE中,∵AB=75,cos∠BAD=,∴AE=45.由(1)知,∠OBF=∠BAD,∴cos∠OBF=,在Rt△OBF中,∵OB=25,∴BF=15,∴OF=20.∵OC=25,∴CF=5.∵∠OCD=∠ADC=∠CFE=90°,∴四边形CDEF为矩形,∴DE=CF=5,∴AD=AE+ED=50cm.【点评】本题重点考查切线的判定和性质,三角函数,解题关键是根据已知和所求问题,合理作出辅助线.是很好的中考题.23.(10分)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:∠EMB或∠CBM或∠ABP或∠CBM(任写一个即可).(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ=15°,∠CBQ=15°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP 的长.。
2022年人教版中考冲刺模拟考试《数学试卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有项是符合题目要求的)1.下列四个数中最小的数是( )A. 1B. 0C. -2D. -1 2.计算:222a a -+=( )A. 2aB. 2a -C. 22aD. 03.如图是五个相同的小正方体搭成的几何体,其俯视图是( )A. B.C. D.4. 2. 5PM 是指大气中直径小于或等于0.0000025m 的颗粒物,是衡量空气污染程度的重要指标.将0.0000025用科学记数法表示为2.510n ⨯,则的值是( )A.B. 6-C.D. 5.如图,130,60,B AB AC ∠=︒∠=︒⊥,则下列说法正确的是( )A. AC CD ⊥B. AB CD ∥C. AD BC ∥D. 180DAB D ∠+∠=︒ 6.已知332(1)x ax bx cx d -=+++,则+++a b c d 的值为( )A. B. 0 C. 1 D. 不能确定 7.如图,在直角坐标系中,菱形OACB 的顶点在原点,点的坐标为(4,0),点的纵坐标是,则菱形OACB 的边长为( )A. 3B. 3C. 5D. 58.已知:关于的一元二次方程220x x a +-=有实数根,则的取值范围是( )A. 1a -B. 1a -C. 1a >D. 1a <9.如图,EF 是ABC 纸片的中位线,将AEF 沿EF 所在的直线折叠,点落在BC 边上的点处,已知AEF 的面积为7,则图中阴影部分的面积为( )A. 7B. 14C. 21D. 2810.如图,四边形 ABCD 是⊙O 的内接四边形,若∠BOD =88°,则∠BCD 的度数是A. 88°B. 92°C. 106°D. 136°11.如图,在正方形ABCD 中,4,AB E =是CD 的中点,点在BC 上,且14FC BC =.则AEF 的面积是( )A. 5B. 6C. 7D. 812.如图,在等腰ABC 中,AB AC =,把ABC 沿EF 折叠,点的对应点为,连接AO ,使AO 平分BAC ∠,若50BAC CFE ∠=∠=︒,则点是( )A. ABC的内心B. ABC的外心C. ABF的内心D. ABF的外心13.已知2410x x--=,则代数314xx x---的值是()A. 7B. 6C. 5D.14.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是( )A. B.C. D.15.如图,是反比例函数3yx=和7yx=-在轴上方的图象,轴的平行线AB分别与这两个函数图象相交于点,A B,点在轴上.则点从左到右的运动过程中,APB△的面积是()A. 10B. 4C. 5D. 从小变大再变小 16.如图,在平面直角坐标系xOy 中()(),3,0,3,0A B -,若在直线y x m =-+上存在点满足60APB ∠=︒,则的取值范围是( )653653m ≤≤B. 653653m -≤≤ 326326m ≤≤ D. 326326m -≤二、填空题(本大题有3个小题,共10分.17、18小题3分;19小题有2个空,每空2分.) 17.分解因式:ax 2-4a = .18.不等式21303x --<的最大整数解是____. 19.在平面直角坐标系xOy 中,点坐标是(3,1)-.当把坐标系绕点顺时针选择30°时,点在旋转后的坐标系中的坐标是____;当把坐标系绕点逆时针选择30°时,点在旋转后的坐标系中的坐标是____.三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.小丽同学准备化简:()()2236826x x x x ----,算式中”□”是”+,-,×,÷”中的某一种运算符号.(1)如果”□”是”×”,请你化简:()()2236826x x x x ----⨯;(2)若2230x x --=,求()()2236826x x x x -----的值;(3)当1x =时,()()2236826x x x x ----的结果是4-,请你通过计算说明”□”所代表的运算符号. 21.如下表,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中仼意三个相邻格子中所填整数之和都相等.(1)可求得x =_____;y =_____;z =_____.(2)第2019个格子中的数为______;(3)前2020个格子中所填整数之和为______.(4)前个格子中所填整数之和是否可能为2020?若能,求出的值,若不能,请说明理由.22.为了迎接体育中考,初三7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如下(1)请补充完成下面的成绩统计分析表:(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请给出两条支持女生观点的理由;(3)体育老师说,咱班合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是:全班优秀率达到50%.如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?23.如图,在ABC 中,90,60,2BAC B AB ∠=︒∠=︒=.AD BC ⊥于.为边BC 上一个(不与、重合)点,且AE EF ⊥于,,E EAF B AF ∠=∠相交于点.(1)填空:AC =______;F ∠=______.(2)当BD DE =时,证明:ABC EAF ≌.(3)EAF △面积的最小值是_______.(4)当EAF △的内心在ABC 的外部时,直接写出AE 的范围______.24.小东从地出发以某一速度向地走去,同时小明从地出发以另一速度向地而行,如图所示,图中的线段1y 、2y 分别表示小东、小明离地的距离1y 、2y (千米)与所用时间 (小时)的关系.(1)写出1y 、2y 与的关系式:_______,_______;(2)试用文字说明:交点所表示的实际意义.(3)试求出、两地之间的距离.(4)求出小东、小明相距4千米时出发时间.25.如图,在AOB 中,90AOB ∠=︒,6AO =,63BO =DE ,交AO 于点,交BO 于点.点M 在优弧DE 上从点开始移动,到达点时停止,连接AM .(1)当42AM =时,判断AM 与优弧DE 的位置关系,并加以证明; (2)当MO AB ∥时,求点M 在优弧DE 上移动的路线长及线段AM 的长.(3)连接BM ,设ABM 的面积为,直接写出的取值范围.备用图26.如图,已知二次函数23y x ax =++的图象经过点(2,3)P -.(1)求的值和图象的顶点坐标;(2)点(,)Q m n 在该二次函数图象上.①当2m =时,求的值;②若点Q 到轴的距离小于2,请根据图象直接写出的取值范围;③直接写出点Q 与直线5y x =+2时的取值范围.答案与解析一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有项是符合题目要求的)1.下列四个数中最小的数是( )A. 1B. 0C. -2D. -1【答案】C【解析】 根据实数的大小关系,正数大于0,负数小于0,两负数相比较,绝对值大的反而小,可知最小的数为-2. 故选C.2.计算:222a a -+=( )A. 2aB. 2a -C. 22aD. 0 【答案】A【解析】【分析】根据合并同类项的法则,即可求解.【详解】222a a -+=2a ,故选A .【点睛】本题主要考查合并同类项的法则,掌握”合并同类项时,系数相加,字母和字母的指数不变”是解题的关键.3.如图是五个相同的小正方体搭成的几何体,其俯视图是( )A. B.C.D.【答案】C【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中. 【详解】解:如图是五个相同的小正方体搭成的几何体,其俯视图是. 故选C .【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4. 2. 5PM 是指大气中直径小于或等于0.0000025m 的颗粒物,是衡量空气污染程度的重要指标.将0.0000025用科学记数法表示为2.510n ⨯,则的值是( )A.B. 6-C.D. 【答案】B【解析】【分析】根据科学记数法的定义,即可得到答案.【详解】∵0.0000025=62.510-⨯,∴n=-6.故选B .【点睛】本题主要考查科学记数法的定义,掌握科学记数法的形式:10n a ⨯(110a ≤<,n 为整数)是解题的关键.5.如图,130,60,B AB AC ∠=︒∠=︒⊥,则下列说法正确的是( )A. AC CD ⊥B. AB CD ∥C. AD BC ∥D. 180DAB D ∠+∠=︒【答案】C【解析】【分析】 根据平行线的判定定理,即可得到结论.【详解】∵130∠=︒,AB AC ⊥,∴∠BAC=90°+30°=120°,∵∠B=60°,∴∠BAC+∠B=120°+60°=180°,∴//AD BC .故C 正确以当前条件,无法得到AC ⊥CD ,AB ∥CD ,∠DAB+∠D=180°,故A 、B 、D 错误,故选C .【点睛】本题主要考查平行线的判定定理,掌握”同旁内角互补,两直线平行”是解题的关键. 6.已知332(1)x ax bx cx d -=+++,则+++a b c d 的值为( )A.B. 0C. 1D. 不能确定【答案】B【解析】【分析】根据多项式乘多项式的法则,求出a ,b ,c ,d 的值,进而即可求解.【详解】∵32(1)(1)(1)x x x -=--=2(21)(1)x x x -+-32331x x x =-+-,∴a=1,b=-3 ,c=3,d=-1,∴+++a b c d =0.故选B .【点睛】本题主要考查多项式乘以多项式的法则,数量掌握运算法则,是解题的关键.7.如图,在直角坐标系中,菱形OACB 的顶点在原点,点的坐标为(4,0),点的纵坐标是,则菱形OACB 的边长为( )A. 3 3 C. 5 5【答案】D【解析】【分析】 连接AB 交OC 于点M ,根据菱形的性质得OM=2,OC ⊥AB ,再根据勾股定理,即可求解.【详解】连接AB 交OC 于点M ,∵四边形OACB 是菱形,∴OM=CM=12OC=12×4=2,OC ⊥AB , ∵点的纵坐标是,∴BM=1,∴OB=22OM BM +=22215+=,即:菱形的边长为5.故选D .【点睛】本题主要考查菱形的性质定理以及勾股定理,掌握”菱形的对角线互相垂直平分”是解题的关键. 8.已知:关于的一元二次方程220x x a +-=有实数根,则的取值范围是( )A. 1a -B. 1a -C. 1a >D. 1a < 【答案】A【解析】 【分析】根据一元二次方程有实数根,可得∆≥0,从而得到关于a 的不等式,进而即可求解. 【详解】∵关于的一元二次方程220x x a +-=有实数根,∴∆=2241()a -⨯⨯-=4+4a ≥0,∴1a -,故选A .【点睛】本题主要考查一元二次方程根的情况与判别式的关系,掌握一元二次方程有实数根等价于∆≥0,是解题的关键.9.如图,EF 是ABC 纸片的中位线,将AEF 沿EF 所在的直线折叠,点落在BC 边上的点处,已知AEF 的面积为7,则图中阴影部分的面积为( )A. 7B. 14C. 21D. 28【答案】B【解析】【分析】根据中位线的性质得:∆AEF~∆ABC ,12EF BC =,进而得到ABC 的面积为28,结合折叠的性质,即可得到答案.【详解】∵EF 是ABC 纸片的中位线,∴EF ∥BC ,12EF BC =, ∴∆AEF~∆ABC ,∴:1:4AEF ABC S S ∆∆=,∵AEF 的面积为7,∴ABC 的面积为28,∵将AEF 沿EF 所在的直线折叠,点落在BC 边上的点处,∴DEF 的面积=AEF 的面积=7,∴阴影部分的面积=28-7-7=14.故选B .【点睛】本题主要考查中位线的性质,折叠的性质以及相似三角形的判定和性质定理,掌握相似三角形的面积比等于相似比的平方,是解题的关键.10.如图,四边形 ABCD 是⊙O 的内接四边形,若∠BOD =88°,则∠BCD 的度数是A. 88°B. 92°C. 106°D. 136°【答案】D【解析】【分析】 首先根据∠BOD=88°,应用圆周角定理,求出∠BAD 的度数;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD 的度数【详解】由圆周角定理可得∠BAD=12∠BOD=44°, 根据圆内接四边形对角互补可得∠BCD=180°-∠BAD=180°-44°=136°,故答案选D .考点:圆周角定理;圆内接四边形对角互补.11.如图,在正方形ABCD 中,4,AB E =是CD 的中点,点在BC 上,且14FC BC =.则AEF 的面积是( )A. 5B. 6C. 7D. 8【答案】A【解析】【分析】 根据正方形的性质和勾股定理,可得EF ,AE ,AF 的长,再根据勾股定理的逆定理,可知∆AEF 是直角三角形,进而即可求解.【详解】∵正方形ABCD 中,4,AB E =是CD 的中点,点在BC 上,且14FC BC =, ∴FC=1,EC=2,DE=2,AD=4,BF=3,∠B=∠C=∠D=90°,∴22125EF =+=222420AE =+22345AF +=,∴222EF AE AF +=,即:∆AEF 是直角三角形,∠AEF=90°,∴AEF 面积=12AE∙EF =12×520. 故选A .【点睛】本题主要考查正方形的性质定理以及勾股定理及其逆定理,掌握勾股定理及其逆定理,是解题的关键.12.如图,在等腰ABC 中,AB AC =,把ABC 沿EF 折叠,点的对应点为,连接AO ,使AO 平分BAC ∠,若50BAC CFE ∠=∠=︒,则点是( )A. ABC的内心B. ABC的外心C. ABF的内心D. ABF的外心【答案】B【解析】【分析】连接BO、CO,由等腰三角形的性质得:AO是BC的垂直平分线,从而得BO=CO,根据根据折叠的性质以及三角形内角和定理得∠FCO=40°,∠ACB=65°,进而得∠OAC=∠OCA=25°,即可得到结论.【详解】连接BO、CO,∵AB=AC,AO平分∠BAC,∠BAC=50°,∴AO是BC的垂直平分线,∠BAO=∠CAO=25°.∴BO=CO,根据折叠的性质,可知:CF=OF,∠OFE=∠CFE=50°,∴∠OFC=50°+50°=100°,∴∠FCO=12(180°-100°)=40°,又∵AB=AC,∠BAC=50°,∴∠ACB=12(180°-50°)=65°,∴∠OCA=∠ACB-∠FCO=65°-40°=25°,∴∠OAC=∠OCA=25°,∴AO=CO,∴AO=BO=CO,∴点O是ABC的外心.故选B.【点睛】本题主要考查等腰三角形的性质,折叠的性质,中垂线的性质以及三角形内角和定理,掌握等腰三角形的性质,是解题的关键.13.已知2410x x--=,则代数314xx x---的值是()A. 7B. 6C. 5D. 【答案】C【解析】【分析】先把方程进行变形得241x x-=,再把代数式314xx x---进行通分化简,然后整体代入求值,即可.【详解】∵2410x x--=,∴241x x-=,∴314xx x---=(3)(4)(4)x x xx x----=22344x x xx x--+-=22444x xx x-+-=1451+=.故选C.【点睛】本题主要考查分式的化简求值,掌握分式的通分以及等式的基本性质,是解题的关键.14.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是( )A. B. C. D.【答案】D【解析】A 、由图示可知应用了垂径定理作图的方法,所以CD 是Rt△ABC 斜边AB 上的高线,不符合题意; B 、由直径所对的圆周角是直角可知∠BDC=90°,所以CD 是Rt△ABC 斜边AB 上的高线,不符合题意; C 、根据相交两圆的公共弦被连接两圆的连心线垂直平分可知,CD 是Rt△ABC 斜边AB 上的高线,不符合题意; D 、无法证明CD 是Rt△ABC 斜边AB 上的高线,符合题意.故选D .点睛:本题主要考查尺规作图,能正确地确定作图的步骤是解决此类问题的关键.15.如图,是反比例函数3y x =和7y x=-在轴上方的图象,轴的平行线AB 分别与这两个函数图象相交于点,A B ,点在轴上.则点从左到右的运动过程中,APB △的面积是( )A. 10B. 4C. 5D. 从小变大再变小【答案】C【解析】【分析】 连接AO 、BO ,由AB ∥x 轴,得ABP ABO S S =,结合反比例函数比例系数的几何意义,即可求解.【详解】连接AO 、BO ,设AB 与y 轴交于点C .∵AB ∥x 轴,∴ABP ABO S S =,AB ⊥y 轴, ∵73522ABO BOC AOC S S S -=+=+=, ∴APB △的面积是:5.故选C .点睛】本题主要考查反比例函数比例系数的几何意义,掌握反比例函数图象上的点与原点的连线,反比例函数图象上的点垂直于坐标轴的垂线段以及坐标轴所围成的三角形面积等于反比例函数比例系数绝对值的一半,是解题的关键.16.如图,在平面直角坐标系xOy 中()(),3,0,3,0A B -,若在直线y x m =-+上存在点满足60APB ∠=︒,则的取值范围是( )653653m ≤≤B. 653653m -≤≤m ≤≤D. m ≤【答案】D【解析】【分析】根据题意可以知道当60APB ∠=︒时,此时以AB 所对的圆心角等于120,而且圆心在AB 的垂直平分线上,只有直线y x m =-+与圆相切的时候,此时取最值,所以根据如图所示可以求出结果.【详解】解:如图所示:当60APB ∠=︒时,此时以AB 所对的圆心角等于120,即120AO B '∠=,只有直线y x m =-+与圆相切的时候,此时取最值,此时60AO O '∠=,设,2,OO x AO x ''==根据勾股定理可以求出AO O P ''==,OO '=,y x m =-+与y 轴夹角为45,CPO '∴∆为等腰直角三角形,O C P ''∴===OO '=OC ∴=+,m ∴+同理在y 轴负半轴和其对称最小值为-m ≤≤故选D.【点睛】本题主要考察圆周角与圆心角的关系,以及临界情况是相切的时候m 取得最值点,本题难度较高,应该认真分析题意.二、填空题(本大题有3个小题,共10分.17、18小题3分;19小题有2个空,每空2分.) 17.分解因式:ax 2-4a = .【答案】【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此, 先提取公因式a 后继续应用平方差公式分解即可:()()()22ax 4a a x 4a x 2x 2-=-=+-. 18.不等式21303x --<的最大整数解是____. 【答案】4x =【解析】【分析】先去分母,移项,合并同类项,未知数化为1,求出不等式的解,进而求出最大的整数解,即可.【详解】21303x --<, 2190x --<,210x <,x <5.∴不等式21303x --<最大整数解是:4x =. 故答案是:4x =.【点睛】本题主要考查求一元一次不等式的整数解,掌握解一元一次不等式的基本步骤,是解题的关键. 19.在平面直角坐标系xOy 中,点坐标是(3,1)-.当把坐标系绕点顺时针选择30°时,点在旋转后的坐标系中的坐标是____;当把坐标系绕点逆时针选择30°时,点在旋转后的坐标系中的坐标是____.【答案】 (1). (2,0)- (2). (1,3)-【解析】【分析】根据题意,画出图形,连接AO ,过点A 作AB ⊥x 轴于点B ,得AO=2,∠AOB=30°,当把坐标系绕点顺时针旋转30°时,相当于把OA 绕点O 逆时针旋转30°,当把坐标系绕点逆时针旋转30°时,相当于把OA 绕点O 顺时针旋转30°,分别进行求解,即可.【详解】连接AO ,过点A 作AB ⊥x 轴于点B ,∵点坐标是(3,1)-,∴AB=1,BO=3,∴AO=221(3)+=2,∠AOB=30°.∵当把坐标系绕点顺时针旋转30°时,相当于把OA 绕点O 逆时针旋转30°,∴点在旋转后的坐标系中x 轴的负半轴上,即:A(-2,0).∵当把坐标系绕点逆时针旋转30°时,相当于把OA 绕点O 顺时针旋转30°,∴∠B ′OA ′=60°,OA ′=OA=2,∴A ′B ′= OA ′×sin60°=2×32=3,OB ′= OA ′×cos60°=2×12=1, ∴(1,3)A -′.故答案是:(2,0)-;(1,3)-.【点睛】本题主要考查旋转的性质,图形与坐标,解直角三角形的应用,掌握点的坐标的定义,锐角三角函数的定义,是解题的关键.三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.小丽同学准备化简:()()2236826x x x x ----,算式中”□”是”+,-,×,÷”中的某一种运算符号.(1)如果”□”是”×”,请你化简:()()2236826x x x x ----⨯; (2)若2230x x --=,求()()2236826x x x x -----的值;(3)当1x =时,()()2236826x x x x ----的结果是4-,请你通过计算说明”□”所代表的运算符号. 【答案】(1)2268x x +-;(2);(3)□处应为” -”. 【解析】 【分析】(1)先去括号,再合并同类项,即可求解;(2)先去括号,再合并同类项,再整体代入求值,即可;(3)把1x =代入原式,化简得:268-=-,进而即可得到答案. 【详解】(1)()()2236826x x x x ----⨯2236812x x x x =---+2268x x =+-;(2)()()2236826x x x x -----2236826x x x x =---++2242x x =--, 2230x x --=, 223x x ∴-=,∴原式=()22242222624x x x x --=--=-=; (3)”□”所代表的运算符号是”-”,当1x =时,原式(368)(126)4=----=-,整理得:11(126)4,1267,268---=--=--=-,即□处应为”-”.【点睛】本题主要考查整式的化简以及求值,掌握去括号法则以及合并同类项法则,是解题的关键. 21.如下表,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中仼意三个相邻格子中所填整数之和都相等.(1)可求得x =_____;y =_____;z =_____. (2)第2019个格子中的数为______;(3)前2020个格子中所填整数之和为______.(4)前个格子中所填整数之和是否可能为2020?若能,求出的值,若不能,请说明理由.【答案】(1)5x =,4y =,8z =-;(2)4;(3)665;(4)能;前6060,6071或6085个格子中所填整数之和为2020. 【解析】 【分析】(1)根据题意,直接求出x ,y ,z 的值,即可;(2)由题意得:表格中的数字是3个以循环,进而即可求解;(3)由”表格中的数字是3个以循环” ,2020÷3=673…1,即可求解; (4)分三种情况,分类讨论,即可求解.【详解】(1)由题意得:-8+x+y=x+y+z ,解得:8z =-, x+y+z= y+z+5,解得:5x =,∴表格中的数字是3个以循环,即:-8,5,4,-8,5,4,…, ∴4y =.故答案是:5x =,4y =,8z =-;(2)∵表格中的数字是3个以循环,即:-8,5,4,-8,5,4,…,2019÷3=673, ∴第2019个格子中的数为:4. 故答案是:4;(3)∵2020÷3=673…1,-8+5+4=1,∴前2020个格子中所填整数之和为:673×1+(-8)=665. 故答案是:665.(4)能,理由如下: ①8541202012020-++=÷=,,202036060∴⨯=;②∵2020+8=2028, ∴2028316085⨯+=; ③∵2020+8-5=2023, ∴2023326071⨯+=;综上所述:前6060或6071或6085个格子中所填整数之和为2020.【点睛】本题主要考查数字的排列规律以及有理数的运算,找出数列的循环规律,是解题的关键. 22.为了迎接体育中考,初三7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如下 (1)请补充完成下面的成绩统计分析表: 平均分 方差 中位数 合格率 优秀率 男生 6.9 2.4 ______ 917% 16.7% 女生 ______1.3______83.3%8.3%(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请给出两条支持女生观点的理由;(3)体育老师说,咱班的合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是:全班优秀率达到50%.如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?【答案】(1)7,7,7;(2)从平均数上看,女生平均分高于男生;从方差上看,女生的方差低于男生,波动性小;(3)男生新增优秀人数为6人,女生新增优秀人数为12人【解析】 【分析】(1)本题需先根据中位数的定义,再结合统计图得出它们的平均分和中位数即可求出答案; (2)本题需先根据以上表格,再结合女生的平均分和方差两方面说出支持女生的观点; (3)根据之前男、女生优秀人数+新增男、女生优秀人数=总人数50%⨯,列方程求解可得.【详解】解:(1)由条形统计图可知,男生一共2+6+8+4+4=24人,其中位数是第12、第13个数的平均数, 第12、13两数均为7,故男生中位数是7; 女生成绩平均分为:5462710869224⨯+⨯+⨯+⨯+⨯=7(分),其中位数是:772+=7(分); 补充完成的成绩统计分析表如下:(2)从平均数上看,女生平均分高于男生;从方差上看,女生的方差低于男生,波动性小; (3)设男生新增优秀人数为x 人, 则:2+4+x+2x=48×50%, 解得:x=6, 故6×2=12(人). 答:男生新增优秀人数为6人,女生新增优秀人数为12人.【点睛】本题考查的是条形统计图的综合运用,熟练进行平均数和中位数的计算是基础,读懂统计图,从统计图中的到必要的信息是解决问题的关键. 23.如图,在ABC 中,90,60,2BAC B AB ∠=︒∠=︒=.AD BC ⊥于.为边BC 上的一个(不与、重合)点,且AE EF ⊥于,,E EAF B AF ∠=∠相交于点.(1)填空:AC =______;F ∠=______. (2)当BD DE =时,证明:ABC EAF ≌. (3)EAF △面积的最小值是_______.(4)当EAF △的内心在ABC 的外部时,直接写出AE 的范围______. 【答案】(1)23,30︒;(2)见解析;(3334)223AE << 【解析】 【分析】(1)根据锐角三角函数的定义以及三角形内角和定理,即可求解; (2)由ASA ,即可证明ABC EAF ≌; (3)由题意得:EAF △面积32,当AE ⊥BC 时,AE 3; (4)当EAF △的内心恰好落在AC 上时,设EAF △的内心为N ,易证ABE △是等边三角形,此时,AE=2,进而即可得到结论.【详解】(1)∵在ABC 中,90,60,2BAC B AB ∠=︒∠=︒=,∴tan 2323AC AB B =⋅== ∵AE EF ⊥,EAF B ∠=∠, ∴F ∠=180°-90°-60°=30°. 故答案是:3︒,; (2)AE EF ⊥于,90AEF ∴∠=︒,又∵90BAC ∠=︒,AEF BAC ∴∠=∠, ,AD BC BD DE ⊥=,AB AE =∴,又∵EAF B ∠=∠,()ABC EAF ASA ∴△≌△;(3)∵EAF B ∠=∠=60°, ∴EF=3AE , ∴EAF △面积=12EF ∙AE=32AE 2, ∴当AE 的长最小时,EAF △面积的最小,即:AE ⊥BC 时,EAF △面积的最小. ∴AE 的最小值=AB∙sin60°=2×32=3,此时,EAF △面积的最小值=332. 故答案是:332. (4)当EAF △的内心恰好落在AC 上时,设EAF △的内心为N ,连接EN , ∵N 是EAF △的内心,∴AN 平分∠EAF ,EN 平分∠AEF , ∴∠EAC=12∠EAF=30°, ∵∠BAC=90°,∴∠BAE=∠BAC-∠EAC=90°-30°=60°, 又∵∠B=60°,∴ABE △是等边三角形, ∴AE=AB=2,∵为边BC 上的一个(不与、重合)点,由(1)可知23AC =, ∴当EAF △的内心在ABC 的外部时,223AE <<. 故答案是:223AE <<.【点睛】本题主要考查解直角三角形的应用,直角三角形的性质以及等边三角形的判定和性质,掌握锐角三角函数的定义,是解题的关键.24.小东从地出发以某一速度向地走去,同时小明从地出发以另一速度向地而行,如图所示,图中的线段1y 、2y 分别表示小东、小明离地的距离1y 、2y (千米)与所用时间 (小时)的关系.(1)写出1y 、2y 与的关系式:_______,_______; (2)试用文字说明:交点所表示的实际意义. (3)试求出、两地之间的距离.(4)求出小东、小明相距4千米时出发的时间.【答案】(1)1520y x =-+, 23y x =;(2)交点所表示的实际意义是:经过2.5小时后,小东与小明在距离地7.5千米处相遇;(3)A B 、两地之间的距离为20千米;(4)小东、小明相距4千米时出发的时间是2小时或3小时. 【解析】 【分析】(1)根据待定系数法,即可得到答案;(2)由点P 的坐标直接写出它的实际意义,即可; (3)把x=0代入1520y x =-+,求出1y 的值,即可;(4)分两种情况:①若相遇前相距4千米,②若相遇后相距4千米,分别求出时间,即可. 【详解】(1)设1y kx b =+, 把(2.5,7.5)代入得: 2.57.540k b k b +=⎧⎨+=⎩,解得:520k b =-⎧⎨=⎩,∴1520y x =-+. 设2y mx =,把(2.5,7.5) 代入得:2.5m=7.5,解得:m=3,∴23y x =.故答案是:1520y x =-+,23y x =;(2)交点P 表示的实际意义为:经过2.5小时后,小东与小明在距离地7.5千米处相遇; (3)令x=0代入1520y x =-+,得:120y =, ∴、两地之间的距离是20千米;(4)由题意得:小东的速度为:20÷4=5(km/h ),小明的速度为:7.5÷3=2.5(km/h ), ①若相遇前相距4千米,则(20-4)÷(5+3)=2(小时), ②若相遇后相距4千米,则(20+4)÷(5+3)=3(小时), 答:小东、小明相距4千米时出发的时间为2小时或3小时.【点睛】本题主要考查一次函数的实际应用,掌握一次函数的图象和性质,理解函数图象上的点的坐标的实际意义,是解题的关键.25.如图,在AOB 中,90AOB ∠=︒,6AO =,63BO =,以点为圆心,以为半径作优弧DE ,交AO 于点,交BO 于点.点M 在优弧DE 上从点开始移动,到达点时停止,连接AM . (1)当42AM =时,判断AM 与优弧DE 的位置关系,并加以证明; (2)当MO AB ∥时,求点M 在优弧DE 上移动的路线长及线段AM 的长. (3)连接BM ,设ABM 的面积为,直接写出的取值范围.备用图【答案】(1)AM 与优弧的相切(2)272133)12312183S +【解析】 【分析】(1)根据勾股定理的得到∠AMO=90°即可得到AM 与优弧DE 的相切;(2)根据题意分MO 在直线AO 的左侧和右侧两种情况讨论,用三角函数及相似三角形的性质进行求解;(3)根据题意作过点作OH AB ⊥于点,交O 于点M 此时ABM S △的面积最大,过点作DH AB ⊥于点,即点M 与点重合,此时ABM S △的面积最小,分别求出ABM S △最大值与最小值即可求解.【详解】在Rt AOB △中,6AO =,63BO =,60BOA ∴∠=︒ 30OBA ∠=︒. (1)AM 与优弧的相切; 如图1,当42AM =时,2OM =,6AO =且()2222242236AM OM AO +=+==AMO ∴△为直角三角形,90AMO ∠=︒,点M 在O 上,OM AM ⊥AM ∴与优弧DE 相切.(2)当MO AB ∥时,第一种情况:如图 2所示,MO 在直线AO 的左侧;60AOM ∠=︒60221803DM ππ⨯== 过点M 作MG AO ⊥于点 在Rt MOG △中,3sin 602MG MO ︒==3MG ∴= ,1OG =,5AG =在Rt AMG △中,据勾股定理可知()22225327AG AG MG =+=+=.第二种情况:如图 3所示,MO 在直线AO 的右侧;连接AM 240281803DM ππ⨯==MO AB ∥ OMH BAH ∴△∽△OH OM BH AB =,OH OMOB OH AB=- 21263OH =-63OH ∴=在Rt AOH △中,据勾股定理得:6527AH = 由OMH ABH △∽△可知7522136AM AH ===.(3)如图4,过点作OH AB ⊥于点,交O 于点M 此时ABM S △的面积最大在Rt AOB △中,6AO =,63BO =63tan 363OA ABO OB ∠===30ABO ∴∠=︒在Rt AMG △中1332OH OB == 233MH OM OH ∴=+=+()11122331218322ABM S AB MH =⨯=⨯⨯+=+△如图5,过点作DH AB ⊥于点,即点M 与点重合,此时ABM S △的面积最小 在Rt AHD △中3sin 604232DH AD =︒=⨯=11122312322ABMFS AB DH ⨯=⨯⨯=△ 12312183S ∴+.【点睛】此题主要考查圆的综合问题,解题的关键熟知切线的判定方法、三角函数的应用及相似三角形的判定与性质.26.如图,已知二次函数23y x ax =++的图象经过点(2,3)P -.(1)求的值和图象的顶点坐标;(2)点(,)Q m n 在该二次函数图象上.①当2m =时,求的值;②若点Q 到轴的距离小于2,请根据图象直接写出的取值范围;③直接写出点Q 与直线5y x =+2时的取值范围.【答案】(1)2a =,图象的顶点坐标为(1,2)-;(2)①当2m =时,11n =;②211n ≤<;1171711,0m m ---<<-<<. 【解析】【分析】(1)根据待定系数法,即可求出a 的值,把二次函数解析式,化为顶点式,即可得到顶点坐标;(2)①把2m =代入二次函数解析式,即可;②设直线x=-2和直线x=2与抛物线的交点为A ,B ,可得:A(-2,3),B(2,11),进而即可求解;③设直线5y x =+交x 轴,y 轴于点D ,C ,过点Q 作QM ⊥CD 于点M ,过点Q 作QN ∥y 轴,交CD 于点N ,可得∆QNM 是等腰直角三角形,当2时,则QN=2,设2(,23)Q m m m ++,N(m ,m+5),列出关于m 的方程,求出m 的值,进而即可得到结论.【详解】(1)把(2,3)P -代入23y x ax =++中,得:23(2)23a =--+2a ∴=,∴2223(1)2y x x x =++=++,∴图象的顶点坐标为(12)-,;(2)①(,)Q m n 在该二次函数图象上,∴当2m =时,2222311n =+⨯+=;②设直线x=-2和直线x=2与抛物线的交点为A ,B ,如图,把x=2或x=-2,代入223y x x =++,得y=11或3,∴A(-2,3),B(2,11),当点Q 到轴的距离小于2时,点Q 在A ,B 之间的抛物线上(不包含A ,B ),211n ∴≤<;③设直线5y x =+交x 轴,y 轴于点D ,C ,则D(-5,0),C(0,5),∴OC=OD ,∠DCO=45°,过点Q 作QM ⊥CD 于点M ,过点Q 作QN ∥y 轴,交CD 于点N ,∴∠QNM=∠DCO=45°,∴∆QNM 是等腰直角三角形,当时,则QN=2,(,)Q m n 在该二次函数图象上,点N 在直线5y x =+上,∴设2(,23)Q m m m ++,N(m ,m+5), ∴22352m m m ++--=,化简得:240m m +-=或20m m +=,解得:123411=0122m m m m --+===-,,∴点Q 与直线5y x =+1,0m m <<-<<.【点睛】本题主要考查二次函数、一次函数与平面几何的综合,掌握二次函数与一次函数的性质和图象,函数图象上点的坐标特征,是解题的关键.。
2022年人教版中考全真模拟考试《数学卷》含答案解析
学校________班级________姓名________成绩________
一、选择题(每小题3分,共30分)
1.下列实数中无理数是()
A.πB. C.-0.7D.
2.郑州已经正式被定为国家中心城市!作为郑州发展的核心,郑州机场2016年全年完成旅客吞吐量2076万次,同比增长20%,强数据2076万用科学记数法表示为()
17.小明随机调查了若干市民租用公共自行车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图.请根据图中信息,解答下列问题:
(1)这次被调查的总人数是多少;
(2)试求表示A组的扇形圆心角的度数,并补全条形统计图;
(3)如果骑自行车的平均速度为12km/h,请估算,在租用公共自行车的市民中,骑车路程不超过6km的人数所占的百分比.
B、a2•a3=a5,原式计算错误,故本选项错误;
C、a3÷a2=a,计算正确,故本选项正确;
D、(a2)3=a6,原式计算错误,故本选项错误.
故选:C.
【点睛】本题考查了同底数幂的乘法、同底数幂的除法、幂的乘方等运算,掌握运算法则是解答本题的关键.
5.已知直线a∥b,一块直角三角板如图所示放置,若∠1=37°,则∠2的度数是()
A. 37°B. 53°C. 63°D. 27°
【答案】B
【解析】
作直线AB∥a,
∵a∥b∴AB∥a∥b,
∵AB∥a,∴∠1=∠3,
∵AB∥b,∴∠2=∠4,
∵∠3+∠4=90°,∴∠1+∠2=90°,
∵∠1=37°,∴∠2=90°﹣37°=53°,
故选B.
6.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是()
2022年中考综合模拟检测《数学试卷》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、填空题1. 2020的相反数是__________.2. 因式分解:24x-=.3. 如图,三角板直角顶点落在长方形纸片的一边上,∠1=35°,则∠2=_____°.4. 函数12yx=-中,自变量的取值范围是.5. 如图,P是反比例函数y=kx的图象第二象限上的一点,且矩形PEOF的面积为8,则k=_____.6. 如图,直线l为y=3x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x 轴于点A3;……,按此作法进行下去,则点A n的坐标为( ).二、选择题7. 下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )A. B. C. D.8. 贯彻落实党和政府扶贫开发方针、政策,负责组织实施和监督扶贫开发项目建设,开远市扶贫办2018年财政拨款收支总预算21800900元.将21800900用科学记数法表示为()A. 2.18009×108B. 0.218009×108C. 2.18009×107D. 21.8009×1069. 下列各式运算正确的是( )A a2+a3=a5 B. a2•a3=a5 C. (ab2)3=ab6 D. a10÷a2=a510. 已知一个多边形的内角和为1080°,则这个多边形是( )A 九边形 B. 八边形 C. 七边形 D. 六边形11. 关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是( )A k≤﹣4 B. k<﹣4 C. k≤4 D. k<412. 如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为( )A. 10cmB. 16 cmC. 24 cmD. 26cm13. 某企业车间有50名工人,某一天他们生产的机器零件个数统计如表:零件个数(个) 6 7 8人数(人) 15 22 10表中表示零件个数的数据中,众数、中位数分别是( )A. 7个、7个B. 6个、7个C. 5个、6个D. 8个、6个14. 如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正确的个数是()A. 2B. 3C. 4D. 5三、解答题15. 计算:(﹣1)2﹣|﹣7|+4×(2013﹣π)016. 点C是AE的中点,∠A=∠ECD,AB=CD,求证:△ABC≌△CDE.17. 某商场正在热销2008年北京奥运会吉祥物”福娃”玩具和徽章两种奥运商品,5个福娃2枚徽章145元,10个福娃3枚徽章280元(5个福娃1套),则:(1)一套”福娃”玩具和一枚徽章的价格各是多少元?(2)买5套”福娃”玩具和10枚徽章共需要多少元?18. 九年级某班同学在庆祝2015年元旦晚会上进行抽奖活动.在一个不透明的口袋中有三个完全相同的小球,把它们分别标号1、2、3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.(1)请用列表或画树形图的方法(只选其中一种),表示两次摸出小球上的标号的所有结果;(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.19. 如图,在平行四边形ABCD中,E、F为对角线AC上两点,且AE=CF,请你从图中找出一对全等三角形,并给予证明.20. 某校组织了一次七年级科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品,C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图①和图②两幅尚不完整的统计图中.(1)B班参赛作品有多少件?(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?21. 某水果批发商经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6080元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?22. 如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE、OE.(1)判断DE与⊙O位置关系并说明理由;(2)求证:22=⋅BC CD OE(3)若tanC=5,DE=2,求AD的长.223. 如图,抛物线y=﹣x2+2mx+m+2的图象与x轴交于A(﹣1,0),B两点,在x轴上方且平行于x轴的直线EF与抛物线交于E,F两点,E在F的左侧,过E,F分别作x轴的垂线,垂足是M,N.(1)求m的值及抛物线的顶点坐标;(2)设BN=t,矩形EMNF的周长为C,求C与t的函数表达式;(3)当矩形EMNF的周长为10时,将△ENM沿EN翻折,点M落在坐标平面内的点记为M',试判断点M'是否在抛物线上?并说明理由.答案与解析一、填空题1. 2020的相反数是__________.【答案】-2020【解析】【分析】根据相反数的代数意义:只有符号不同的两个数互为相反数,即可解答.【详解】解:2020相反数是-2020故答案为:-2020.【点睛】此题考查的是求一个数的相反数,掌握相反数的代数意义是解决此题的关键. 2. 因式分解:24x -= .【答案】(x+2)(x-2)【解析】【详解】解:24x -=222x -=(2)(2)x x +-;故答案(2)(2)x x +-3. 如图,三角板直角顶点落在长方形纸片的一边上,∠1=35°,则∠2=_____°.【答案】55.【解析】【分析】由平角的定义求出∠3=55°,再根据平行线的性质即可解决问题.【详解】解:∵∠1+∠3=90°,∠1=35°,∴∠3=55°,∵AB//CD∴∠2=∠3=55°,故答案是:55.【点睛】此题考查了平行线的性质.两直线平行,同位角相等的应用是解此题的关键.4. 函数12yx=-中,自变量的取值范围是.【答案】x>2【解析】【分析】根据分式有意义和二次根式有意义的条件求解.【详解】解:根据题意得,x﹣2>0,解得x>2.故答案为x>2.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5. 如图,P是反比例函数y=kx的图象第二象限上的一点,且矩形PEOF的面积为8,则k=_____.【答案】﹣8【解析】【分析】利用反比例函数的比例系数k的几何意义得到|k|=8,然后根据反比例函数的性质确定k的值.【详解】根据题意得|k|=8,而反比例函数图象分布在第二、四象限,所以k<0,所以k=﹣8.故答案为﹣8.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.6. 如图,直线l为y=3x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x 轴于点A3;……,按此作法进行下去,则点A n的坐标为( ).【答案】2n﹣1,0【解析】【分析】依据直线l为3,点A1(1,0),A1B1⊥x轴,可得A2(2,0),同理可得,A3(4,0),A4(8,0),…,依据规律可得点A n的坐标为(2n﹣1,0).【详解】∵直线l为3,点A1(1,0),A1B1⊥x轴,∴当x=1时,3即B1(13,∴tan∠A1OB13∴∠A1OB1=60°,∠A1B1O=30°,∴OB1=2OA1=2,∵以原点O为圆心,OB1长为半径画圆弧交x轴于点A2,∴A2(2,0),同理可得,A3(4,0),A4(8,0),…,∴点A n的坐标为(2n﹣1,0),故答案为2n﹣1,0.【点睛】本题考查了规律题——点的坐标,一次函数图象上点的坐标特征等,先根据所给一次函数判断出一次函数与x轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到A1、A2、A3…的点的坐标是解决本题的关键.二、选择题7. 下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )A. B. C. D.【答案】C【解析】试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.8. 贯彻落实党和政府扶贫开发方针、政策,负责组织实施和监督扶贫开发项目建设,开远市扶贫办2018年财政拨款收支总预算21800900元.将21800900用科学记数法表示为()A. 2.18009×108B. 0.218009×108C. 2.18009×107D. 21.8009×106【答案】C【解析】分析:科学计数法是指a×10n,且1≤a<10,n为原数的整数位数减一.详解:21800900= 2.18009×107,故选C.点睛:本题主要考查的是用科学计数法表示较大的数,属于基础题型.明确科学计数法的方法是解题的关键.9. 下列各式运算正确的是( )A. a2+a3=a5B. a2•a3=a5C. (ab2)3=ab6D. a10÷a2=a5【答案】B【解析】【分析】根据同底数幂的乘除法则及幂的乘方与积的乘方法则进行各选项的判断即可.【详解】A、a2与a3不是同类项,不能直接合并,故本选项错误;B、a2•a3=a5,计算正确,故本选项正确;C、(ab2)3=a3b6,原式计算错误,故本选项错误;D、a10÷a2=a8,原式计算错误,故本选项错误;故选B.【点睛】本题考查了同底数幂的除法及幂的乘方与积的乘方运算,掌握同底数幂的乘除法则是解题关键.10. 已知一个多边形的内角和为1080°,则这个多边形是( )A. 九边形B. 八边形C. 七边形D. 六边形【答案】B【解析】【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8,∴这个多边形的边数是8,故选B.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.11. 关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是( )A. k≤﹣4B. k<﹣4C. k≤4D. k<4【答案】C【解析】【分析】根据判别式的意义得△=42﹣4k≥0,然后解不等式即可.【详解】根据题意得△=42﹣4k≥0,解得k≤4.故选C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.12. 如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为( )A. 10cmB. 16 cmC. 24 cmD. 26cm【答案】C【解析】试题分析:过O作OD⊥AB于C,交⊙O于D,先利用勾股定理求出BC的长,进而根据垂径定理得出A B. 解:过O作OD⊥AB于C,交⊙O于D,∴CD=8,OD=13,∴OC=OD-CD=5,又∵OB=13,∴Rt△BCO中,BC=22OB OC=12,∴AB=2BC=24.故选C.13. 某企业车间有50名工人,某一天他们生产的机器零件个数统计如表:零件个数(个) 6 7 8人数(人) 15 22 10表中表示零件个数的数据中,众数、中位数分别是( )A. 7个、7个B. 6个、7个C. 5个、6个D. 8个、6个【答案】A【解析】【分析】根据中位数和众数的定义求众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】由表可知7个出现次数最多,所以众数为7个,因为共有15+22+10=47个数据,所以中位数为第24个数据,即中位数为7个,故选:A.【点睛】本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.14. 如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正确的个数是()A. 2B. 3C. 4D. 5【答案】C【解析】【详解】解:①正确.理由:∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正确.理由:EF=DE=13CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=3.∴BG=3=6﹣3=GC;③正确.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°﹣∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④正确.理由:∵S△GCE=12GC•CE=12×3×4=6,∵S△AFE=12AF•EF=12×6×2=6,∴S△EGC=S△AFE;⑤错误.∵∠BAG=∠FAG,∠DAE=∠FAE,又∵∠BAD=90°,∴∠GAF=45°,∴∠AGB+∠AED=180°﹣∠GAF=135°.故选C.【点睛】本题考查翻折变换(折叠问题);全等三角形的判定与性质;正方形的性质;勾股定理.三、解答题15. 计算:(﹣1)2﹣|﹣7|+4×(2013﹣π)0【答案】﹣4.【解析】【分析】直接利用绝对值性质以及零指数幂的性质分别化简得出答案.【详解】(﹣1)2﹣|﹣4×(2013﹣π)0=1﹣7+2×1=1﹣7+2=﹣4.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.16. 点C是AE的中点,∠A=∠ECD,AB=CD,求证:△ABC≌△CDE.【答案】详见解析【解析】【分析】根据中点的定义和全等三角形的判定解答即可.【详解】证明:∵点C 是AE 的中点,∴AC =CE ,在△ACB 与△CED 中AC CE A ECD AB CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CDE (SAS ).【点睛】此题考查全等三角形的判定,关键是根据全等三角形的判定方法解答.17. 某商场正在热销2008年北京奥运会吉祥物”福娃”玩具和徽章两种奥运商品,5个福娃2枚徽章145元,10个福娃3枚徽章280元(5个福娃为1套),则:(1)一套”福娃”玩具和一枚徽章的价格各是多少元?(2)买5套”福娃”玩具和10枚徽章共需要多少元?【答案】(1)一套”福娃”玩具的价格为125元,一枚徽章的价格为10元;(2)买5套”福娃”玩具和10枚徽章共需要725元.【解析】【分析】(1)设一套”福娃”玩具的价格为x 元,一枚徽章的价格为y 元,根据”5个福娃2个徽章145元,10个福娃3个徽章280元(5个福娃为1套)”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量,即可求出结论.【详解】(1)设一套”福娃”玩具的价格为x 元,一枚徽章的价格为y 元,依题意,得:214523280x y x y +=⎧⎨+=⎩,解得:12510xy=⎧⎨=⎩.答:一套”福娃”玩具的价格为125元,一枚徽章的价格为10元.(2)125×5+10×10=725(元).答:买5套”福娃”玩具和10枚徽章共需要725元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.18. 九年级某班同学在庆祝2015年元旦晚会上进行抽奖活动.在一个不透明的口袋中有三个完全相同的小球,把它们分别标号1、2、3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.(1)请用列表或画树形图的方法(只选其中一种),表示两次摸出小球上的标号的所有结果;(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.【答案】(1)详见解析;(2)1 3【解析】【分析】(1)根据题意列出表格即可;(2)根据概率的计算方法进行求解【详解】(1)列表得:1 2 31 (1,1) (2,1) (3,1)2 (1,2) (2,2) (3,2)3 (1,3) (2,3) (3,3)(2)∵取出的两个小球上标号相同有:(1,1),(2,2),(3,3)∴P(中奖的概率为)=31 93 =19. 如图,在平行四边形ABCD中,E、F为对角线AC上两点,且AE=CF,请你从图中找出一对全等三角形,并给予证明.【答案】△AED≌△CFB,详见解析【分析】根据平行四边形的性质可得DA=BC,DA∥BC,根据平行线的性质可得∠DAC=∠BCA,进而可判定△AED≌△CFB.然后可得DE=BF,再证明△DEC≌△BFA,再利用SSS证明△ADC≌△CBA即可.【详解】△AED≌△CFB;∵四边形ABCD是平行四边形,∴DA=BC,DA∥BC,CD=AB,∴∠DAC=∠BCA,在△AED和△CFB中DA BCDAE BCF AE CF=⎧⎪∠=∠⎨⎪=⎩,∴△AED≌△CFB(SAS).∴DE=BF,∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,在△DEC和△BF A中DE BF AF CE AB CD=⎧⎪=⎨⎪=⎩,∴△DEC≌△BF A(SSS),在△ADC和△CBA中AD BC AC AC CD AB=⎧⎪=⎨⎪=⎩,∴△ADC≌△CBA(SSS).【点睛】此题主要考查了平行四边形的性质,以及全等三角形的判定,关键是掌握平行四边形的对边相等且平行.20. 某校组织了一次七年级科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品,C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图①和图②两幅尚不完整的(1)B 班参赛作品有多少件?(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?【答案】(1)B 班参赛作品有25件;(2)补图见解析;(3)C 班的获奖率高.【解析】【分析】(1)直接利用扇形统计图中百分数,求出B 班所占的百分比,进而求出B 班参赛作品数;(2)利用C 班提供的参赛作品的获奖率为50%,结合C 班参赛数量得出获奖数量,从而补全统计图;(3)分别求出各班的获奖率,进行比较从而得出答案.【详解】解:(1)B 班参赛作品有()()100135%20%20%25⨯---=件;(2)C 班参赛作品获奖数量为()10020%50%)10⨯⨯=件,补图如下: ;(3)A 班的获奖率为14100%40%10035%⨯=⨯ , B 班的获奖率为11100%44%25⨯=, C 班的获奖率为50%,D 班的获奖率为8100%40%10020%⨯=⨯, 故C 班的获奖率高.21. 某水果批发商经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6080元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?【答案】(1)应该上涨6元;(2)每千克这种水果涨价7.5元,能使商场获利最多.【解析】【分析】(1)设每千克水果涨了x元,那么就少卖了20x千克,根据市场每天销售这种水果盈利了6 080元,同时顾客又得到了实惠,可列方程求解;(2)利用总利润y=销量×每千克利润,进而求出最值即可.【详解】(1)设每千克水果涨了x元,(10+x)(500﹣20x)=6080,解得:x1=6,x2=9.因为要顾客得到实惠,所以应该上涨6元.(2)设总利润为y,则:y=(10+x)(500﹣20x)=﹣20x2+300x+5000=﹣20(x﹣152)2+6125,即每千克这种水果涨价7.5元,能使商场获利最多.【点睛】此题主要考查了二次函数的应用以及一元二次方程的解法,正确得出y与x的函数关系式是解题关键.22. 如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE、OE.(1)判断DE与⊙O的位置关系并说明理由;(2)求证:22BC CD OE=⋅(3)若tanC5,DE=2,求AD的长.【答案】(1)DE与⊙O相切,理由见解析;(2)证明见解析;(3)10 3【解析】【详解】解:(1) DE 与⊙O 相切理由如下:连接OD ,BD ,∵AB 是直径,∴∠ADB =∠BDC =90°∵E 是BC 的中点,∴DE =BE =CE ,∴∠EDB =∠EBD ,∵OD =OB ,∴∠OBD =∠ODB .∴∠EDO =∠EBO =90°∴DE 与⊙O 相切(2)证明:由题意得OE 是的△ABC 的中位线,∴AC=2OE∵∠ABC=∠BDC=900,∠C=∠C ,∴△ABC ∽△BDC ∴BC AC CD BC =,∴BC 2=CD·AC ,∴BC 2=2CD·OE (3) ∵DE =2 BC =4 AB =4. tanC 25=tanA =12tan 5C =, 设BD =AD 2tan 5A AD =, 222205AD AD ⎛⎫+= ⎪⎝⎭103AD = 【点睛】本题考查直线与圆相切,相似三角形,三角函数,要求学生掌握直线与圆相切,会证明直线与圆相切,熟悉相似三角形的判定方法,会证明两个三角形相似23. 如图,抛物线y =﹣x 2+2mx +m +2图象与x 轴交于A (﹣1,0),B 两点,在x 轴上方且平行于x 轴的直线EF 与抛物线交于E ,F 两点,E 在F 的左侧,过E ,F 分别作x 轴的垂线,垂足是M ,N .(1)求m 的值及抛物线的顶点坐标;(2)设BN=t,矩形EMNF的周长为C,求C与t的函数表达式;(3)当矩形EMNF的周长为10时,将△ENM沿EN翻折,点M落在坐标平面内的点记为M',试判断点M'是否在抛物线上?并说明理由.【答案】(1)y=﹣(x﹣1)2+4,顶点坐标为(1,4);(2)C=﹣2t2+4t+8;(3)点M'不在抛物线上.【解析】【分析】(1)因为抛物线上的点的坐标符合解析式,将A的坐标代入解析式即可求得m的值,进而求出解析式,即可求得顶点坐标;(2)求出A、B两点坐标,可表示出MN的长,求出F点纵坐标,可知NF的长,利用矩形面积公式即可求出C与t的函数表达式;(3)根据翻折变换的性质(翻折前后图形全等),结合勾股定理,求出M’点坐标,代入二次函数解析式验证.【详解】(1)由于抛物线过点A(﹣1,0),于是将A代入y=﹣x2+2mx+m+2得﹣1﹣2m+m+2=0,解得m=1,函数解析式为y=﹣x2+2x+3,解析式可化为y=﹣(x﹣1)2+4,顶点坐标为(1,4).(2)因为函数解析式为y=﹣x2+2x+3,所以当y=0时可得﹣x2+2x+3=0,解得x1=﹣1,x2=3,则AB=3﹣(﹣1)=4.又因为BN=t,M、N关于对称轴对称,所以AM=t.于是MN=4﹣2t,N点横坐标为3﹣t,代入抛物线得:y F=﹣t2+4t.于C=2(4﹣2t)﹣2(t﹣2)2+8,整理得C=﹣2t2+4t+8;(3)当﹣2t2+4t+8=10时,解得t=1,MN=4﹣2t=4﹣2=2;FN=﹣12+4=3,因为t=1,所以M与O点重合,连接MM'、EN,且MM'和EN相交于K,根据翻折变换的性质,MK=M'K.根据同一个三角形面积相等,2×3MK于是MK =61313,MM '=121313作M 'H ⊥MN 的延长线于H .设NH =a ,HM ′=b ,于是在Rt △NHM '和RT △MHM '中,2222241213(2)13a b a b ⎧+=⎪⎪⎛⎫⎨++= ⎪⎪ ⎪⎪⎝⎭⎩, 解得a =1013,b =2413. 于是MH =2+1013=3613. M '点坐标为(3613,2413), 代入函数解析式y =﹣x 2+2x +3,y =﹣x 2+2x +3=﹣(3613)2+2×3613+3=147169≠2413, ∴点M '不在抛物线上. 【点睛】此题考查了利用代入法求函数解析式、根据矩形的性质列函数表达式以及结合翻变换折判断点是否在函数图象上,有一定的难度.。
2022年中考模拟检测《数学试题》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、单选题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.16-的倒数是( )A.6 B.﹣6 C.16D.16-2.下列四个图案中,不是轴对称图案的是()A.B.C.D.3.地球上陆地的面积约为150 000 000km2.把”150 000 000”用科学记数法表示为() A.1.5×108B.1.5×107C.1.5×109D.1.5×1064.如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是( )A.B.C.D.5.某射击俱乐部将11名成员在某次射击训练中取得的成绩制成如图所示的条形统计图,由图可知,11名成员射击成绩的众数和中位数分别是()A.8,9 B.8,8 C.8,10 D.9,86.下列计算中正确的是( ) A .a 2+a 3=2a 5B .a 4÷a =a 4C .a 2·a 4=a 8D .(-a 2)3=-a 67.已知关于x 的不等式组2323(2)5x a x x >-⎧⎨≥-+⎩仅有三个整数解,则a 的取值范围是( ).A .12≤a <1 B .12≤a≤1 C .12<a≤1 D .a <18.如图,ABC 内接于O ,EF 为O 直径,点是BC 弧的中点,若40B ∠=︒,60C ∠=°,则AFE∠的度数( )A .10︒B .20︒C .30D .40︒9.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m 2+3m+n=( ) A .﹣5B .9C .5D .710.甲乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙出发沿同一路线行走.设甲乙两人相距 (米),甲行走的时间为 (分),关于的函数函数图像的一部分如图所示,下列说法:①甲行走的速度是30米/分; ②乙出发12.5分钟后追上甲; ③甲比乙晚到图书馆20分钟;④甲行走30.5分钟或38分钟时,甲、乙两人相距360米; 其中正确的个数是( ) A .1个B .2个C .3个D .4个11.如图,在平行四边形ABCD 中,AC 、BD 相交于点,点是OA 的中点,连接BE 并延长交AD 于点,4AEF S =△,则下列结论:①2FD AF =;②36BCE S =△;③12ABE S =△;④AEF ACD ∽△△,其中一定正确的是( )A .①②③④B .①②C .②③④D .①②③12.已知:二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论中:①abc >0;②2a +b <0;③a +b <m (am +b )(m ≠1的实数);④(a +c )2<b 2;⑤a >1,其中正确的项是( )A .①⑤B .①②⑤C .②⑤D .①③④二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中的横线上. 13.计算11x x x+-的结果为___________. 14.不等式x 3x 12--+>的解集是___________.15.布袋中装有3个红球和n 个白球,它们除颜色外其它都相同,如果从布袋里随机摸出一个球,所摸到的球恰好是红球的概率是13,那么布袋中白球有___________个. 16.如图,在⊙中,半径OA 垂直于弦BC ,点在圆上且30ADC ∠=,则AOB ∠的度数为___________.17.如图,在Rt ABC ∆中,90ABC ∠=,3AB =,4BC = ,Rt MPN ∆,90MPN ∠=,点在AC 上,PM 交AB 于点,PN 交BC 于点,当2PE PF =时,AP =___________.18.如图,抛物线2y ax c =+与直线y mx n =+交于A(-1,P),B(3,q)两点,则不等式2ax mx c n ++>的解集是___________.三、解答题:本大题共7小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤. 19.(9分)计算:(1)02181(3)()|25|2π---+-+-.(2)解方程组:34225x y y x +=⎧⎨-=-⎩20.(10分)某校为了解本校八年级学生数学学习情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A 、B 、C 、D ,并将统计结果绘制成两幅不完整的统计图,请根据图中的信息解答下列问题(1)补全条形统计图(2)等级为D 等的所在扇形的圆心角是 度(3)如果八年级共有学生1800名,请你估算我校学生中数学学习A 等和B 等共多少人?21.(11分)现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如表:运往地、车型 甲地(元/辆)乙地(元/辆)大货车 720 800 小货车500650(1)求这两种货车各用多少辆;(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与a 的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.22.(12分)如图,在△ABC 中,AD 是BC 边上的高,BE 平分∠ABC 交AC 边于E ,两线相交于F 点.(1)若∠BAC=60°,∠C=70°,求∠AFB 的大小;(2)若D 是BC 的中点,∠ABE=30°,求证:△ABC 是等边三角形.23.(12分)已知:如图,为了躲避台风,一轮船一直由西向东航行,上午点,在处测得小岛的方向是北偏东75,以每小时海里的速度继续向东航行,中午点到达处,并测得小岛的方向是北偏东60,若小岛周围25海里内有暗礁,问该轮船是否能一直向东航行?24.(12分)如图,ABC ∆内接于O ,点在OC 的延长线上,30, 30B CAD ︒︒∠=∠=.(1)求证;AC CD =;(2)若,5OD AB BC ⊥=,求AD 的长.25.(12分)如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.答案与解析三、单选题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.16-的倒数是( )A.6 B.﹣6 C.16D.16-【答案】B【分析】根据两个数乘积是1的数互为倒数的定义,即可求解. 【解析】求一个数的倒数即用1除以这个数.∴16-的倒数为1÷(16-)=-6.故选B.2.下列四个图案中,不是轴对称图案的是()A.B.C.D.【答案】C【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【解析】A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选:C.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.地球上陆地的面积约为150 000 000km2.把”150 000 000”用科学记数法表示为() A.1.5×108B.1.5×107C.1.5×109D.1.5×106【答案】A【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解析】150 000 000=1.5×108,【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是( )A.B.C.D.【答案】B【解析】主视图是从正面看得到的视图,从正面看上面圆锥看见的是:三角形,下面两个正方体看见的是两个正方形.故选B.5.某射击俱乐部将11名成员在某次射击训练中取得的成绩制成如图所示的条形统计图,由图可知,11名成员射击成绩的众数和中位数分别是()A.8,9 B.8,8 C.8,10 D.9,8【答案】B【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的那个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解析】由条形统计图知8环的人数最多,所以众数为8环,由于共有11个数据,所以中位数为第6个数据,即中位数为8环,【点睛】本题主要考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个,则找中间两个数的平均数. 6.下列计算中正确的是( ) A .a 2+a 3=2a 5 B .a 4÷a =a 4C .a 2·a 4=a 8D .(-a 2)3=-a 6【答案】D【解析】A 、不是同类项,不能合并,故错误;B 、a 4÷a=a 3, 故错误; C 、a 2×a 4=a 2+4=a 6, 故错误; D 、(—a 2)3=—a 6,正确 故选D7.已知关于x 的不等式组2323(2)5x a x x >-⎧⎨≥-+⎩仅有三个整数解,则a 的取值范围是( ).A .12≤a <1 B .12≤a≤1 C .12<a≤1 D .a <1【答案】A【分析】根据解不等式组,可得不等式组的解,根据不等式组的解是整数,可得答案. 【解析】由2x >3(x-2)+5,解得:x≤1, 由关于x 的不等式组()232325x a x x >-⎧⎨≥-+⎩仅有三个整数:解得-2≤2a -3<-1, 解得12≤a <1, 故选A .【点睛】本题考查了一元一次不等式组,利用不等式的解得出关于a 的不等式是解题关键. 8.如图,ABC 内接于O ,EF 为O 直径,点是BC 弧的中点,若40B ∠=︒,60C ∠=°,则AFE∠的度数( )A .10︒B .20︒C .30D .40︒【分析】设AB与EF交于点D,首先利用三角形内角和定理求出∠BAC=80°,然后根据等弧所对的圆周角相等可得,∠BAF=40°,再由垂径定理易得EF⊥BC,进而得到∠BDF=50°,最后利用三角形外角性质即可求出∠AFE的度数.【解析】如图,设AB与EF交于点D,∵∠B=40°,∠C=60°∴∠BAC=180°-40°-60°=80°∵EF为直径,F为BC的中点∴EF⊥BC,∠BAF=12∠BAC=40°∴∠BDF=90°-∠B=90°-40°=50°∵∠BDF为△ADF的外角∴∠BDF=∠BAF+∠AFE∴∠AFE=∠BDF-∠BAF=50°-40°=10°故选A.【点睛】本题考查了圆中的角度计算,熟练掌握等弧所对的圆周角相等,利用垂径定理得到EF⊥BC是解题的关键.9.设m、n是一元二次方程x2+2x﹣7=0的两个根,则m2+3m+n=()A.﹣5 B.9 C.5 D.7【答案】C【分析】根据根与系数的关系可知m+n=-2,又知m是方程的根,所以可得m2+2m-7=0,最后可将m2+3m+n变成m2+2m+m+n,最终可得答案.【解析】∵设m、n是一元二次方程x2+2x−7=0的两个根,∴m+n=−2,∵m是原方程的根,∴m2+2m−7=0,即m2+2m=7,∴m2+3m+n=m2+2m+m+n=7−2=5,故答案为5.【点睛】本题考查根与系数的关系,解题的关键是熟练应用韦达定理.10.甲乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙出发沿同一路线行走.设甲乙两人相距(米),甲行走的时间为(分),关于的函数函数图像的一部分如图所示,下列说法:①甲行走的速度是30米/分;②乙出发12.5分钟后追上甲;③甲比乙晚到图书馆20分钟;④甲行走30.5分钟或38分钟时,甲、乙两人相距360米;其中正确的个数是( )A.1个B.2个C.3个D.4个【答案】B【解析】①甲行走的速度:150÷5=30(米/分);故正确;②由图象知,第12.5分钟时乙追上甲,甲出发5分钟后,乙出发沿同一路线行走,所以乙出发7.5分钟后追上甲,故不正确;③由图象知,第12.5分钟时乙追上甲,所以乙出发7.5分钟后追上甲,此时甲走了375米,故乙的速度为375÷7.5=50米/分,当t=35时,甲行走的路程为:30×35=1050(米),乙行走的路程为:(35-5)×50=1500(米),∴当t=35时,乙已经到达图书馆,甲距图书馆的路程还有(1500-1050)=450米,∴甲到达图书馆还需时间;450÷30=15(分),所以甲比乙晚到图书馆20分钟不正确;④当乙追上甲时点的坐标为(12.5,0),当12.5≤t≤35时,设解析式为:s=kt+b,把(35,450),(12.5,0)代入可得:12.5k+b=0,35k+b=450,解得:k=20,b=-250,∴s=20t-250,当35<t≤50时,由于甲比乙晚到图书馆15分钟,所以函数图象过点(50,0),补全函数图象如图,设解析式为s=k1x+b1,把(50,0),(35,450)代入得:50k1+b1=0,35k1+b1=450,解得:k1=-30,b1=1500,∴s=-30t+1500,∵甲、乙两人相距360米,即s=360,解得:t=30.5,t1=38,∴当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.故正确,故选 B.11.如图,在平行四边形ABCD 中,AC 、BD 相交于点,点是OA 的中点,连接BE 并延长交AD 于点,4AEF S =△,则下列结论:①2FD AF =;②36BCE S =△;③12ABE S =△;④AEF ACD ∽△△,其中一定正确的是( )A .①②③④B .①②C .②③④D .①②③【答案】D【分析】①根据平行四边形的性质可得出CE =3AE ,由AF ∥BC 可得出△AEF ∽△CEB ,根据相似三角形的性质可得出BC =3AF ,进而可得出DF =2AF ,结论①正确;②根据相似三角形的性质结合S △AEF =4,即可求出S △BCE =9S △AEF =36,结论②正确;③由△ABE 和△CBE 等高且BE =3AE ,即可得出S △BCE =3S △ABE ,进而可得出S △ABE =12,结论③正确;④假设△AEF ∽△ACD ,根据相似三角形的性质可得出∠AEF =∠ACD ,进而可得出BF ∥CD ,根据平行四边形的性质可得出AB ∥CD ,由AB 、BF 不共线可得出假设不成立,即AEF 和△ACD 不相似,结论④错误.综上即可得出结论.【解析】①∵四边形ABCD 为平行四边形, ∴OA OC =,AD BC ∥,AD BC =. ∵点是OA 的中点,∴3CE AE =. ∵AF BC ,∴AEF CEB △∽△,∴3BC CEFA AE==,∴3BC AF =, ∴2DF AF =,结论①正确;②∵AEF CEB △∽△,3CE AE =,∴23BCEFAES S =△△,∴936BCE AEF S S ==△△,结论②正确;③∵ABE △和CBE △等高,且3BE AE =,∴3BCE ABE S S =△△, ∴12ABE S =△,结论③正确;④假设AEF ACD ∽△△,则AEF ACD ∠=∠, ∴EF CD ∥,即BFCD .∵AB CD ∥,∴BF 和AB 共线. ∵点为OA 的中点,即BE 与AB 不共线,∴假设不成立,即AEF 和ACD 不相似,结论④错误. 综上所述:正确的结论有①②③. 故选:D .【点睛】本题考查了相似三角形的判定与性质以及平行四边形的性质,逐一分析四条结论的正误是解题的关键.12.已知:二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论中:①abc >0;②2a +b <0;③a +b <m (am +b )(m ≠1的实数);④(a +c )2<b 2;⑤a >1,其中正确的项是( )A .①⑤B .①②⑤C .②⑤D .①③④【答案】A【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【解析】①∵抛物线的开口向上,∴a >0, ∵与y 轴的交点为在y 轴的负半轴上,∴c <0, ∵对称轴为x=-2ba>0,∴a 、b 异号,即b <0,又∵c <0,∴abc >0,故本选项正确; ②∵对称轴为x=-2b a >0,a >0,-2b a<1,∴-b <2a ,∴2a+b >0;故本选项错误; ③当x=1时,y 1=a+b+c;当x=m 时,y 2=m(am+b)+c ,当m >1,y 2>y 1;当m <1,y 2<y 1,所以不能确定; 故本选项错误;④当x=1时,a+b+c=0;当x=-1时,a-b+c >0;∴(a+b+c)(a-b+c)=0,即(a+c)2-b 2=0,∴(a+c)2=b 2,故本选项错误; ⑤当x=-1时,a-b+c=2;当x=1时,a+b+c=0, ∴a+c=1,∴a=1+(-c)>1,即a >1;故本选项正确; 综上所述,正确的是①⑤. 故选A .四、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中的横线上. 13.计算11x x x+-的结果为___________. 【答案】1【分析】根据分式的加减法法则计算即可得答案. 【解析】11x x x+-=11x x +-=1. 故答案为:1【点睛】本题考查分式的加减,同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母分式,再加减;熟练掌握运算法则是解题关键. 14.不等式x 3x 12--+>的解集是___________.【答案】x 0<【解析】解:x <-1时,-x+3-x-1>2,∴x <0,-1≤x≤3时,-x+3-x-1>2,x<0;x >3时,x-3-x-1>6,不成立. 故答案是:x<0【点睛】考查绝对值不等式的解法,考查学生的计算能力,比较基础.15.布袋中装有3个红球和n 个白球,它们除颜色外其它都相同,如果从布袋里随机摸出一个球,所摸到的球恰好是红球的概率是13,那么布袋中白球有___________个. 【答案】6.【分析】根据概率的概念建立等量关系:1133n ,解方程即可. 【解析】∵布袋中有n 个白球,∴1133n ,解得:n =6,则布袋中白球有6个; 故答案为:6.【点睛】本题考查了概率的概念:所有等可能的结果有n 个,其中某事件占m 个,则这个事件的概率m P n=. 16.如图,在⊙中,半径OA 垂直于弦BC ,点在圆上且30ADC ∠=,则AOB ∠的度数为___________.【答案】60【分析】利用圆周角与圆心角的关系即可求解. 【解析】OA BC ⊥,AB AC ∴=,2AOB ADC ∴∠=∠,30ADC ∠=,60AOB ∴∠=,故答案为60.【点睛】此题考查圆周角与圆心角,解题关键在于求出2AOB ADC ∠=∠17.如图,在Rt ABC ∆中,90ABC ∠=,3AB =,4BC = ,Rt MPN ∆,90MPN ∠=,点在AC 上,PM 交AB 于点,PN 交BC 于点,当2PE PF =时,AP =___________.【答案】3【分析】如图作PQ ⊥AB 于Q ,PR ⊥BC 于R .由△QPE ∽△RPF ,推出PQ PR =PEPF=2,可得PQ =2PR =2BQ ,由PQ ∥BC ,可得AQ :QP :AP =AB :BC :AC =3:4:5,设PQ =4x ,则AQ =3x ,AP =5x ,BQ =2x ,可得2x +3x =3,求出x 即可解决问题.【解析】如图,作PQ ⊥AB 于Q ,PR ⊥BC 于R .∵∠PQB =∠QBR =∠BRP =90°,∴四边形PQBR 是矩形, ∴∠QPR =90°=∠MPN ,∴∠QPE =∠RPF , ∴△QPE ∽△RPF ,∴PQ PR =PEPF=2,∴PQ =2PR =2BQ . ∵PQ ∥BC ,∴AQ :QP :AP =AB :BC :AC =3:4:5, 设PQ =4x ,则AQ =3x ,AP =5x ,BQ =2x ,∴2x +3x =3,∴x =35,∴AP =5x =3. 故答案为:3.【点睛】本题考查了相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.18.如图,抛物线2y ax c =+与直线y mx n =+交于A(-1,P),B(3,q)两点,则不等式2ax mx c n ++>的解集是___________.【答案】3x <-或1x >.【分析】由2ax mx c n ++>可变形为2ax c mx n +>-+,即比较抛物线2y ax c =+与直线y mx n =-+之间关系,而直线PQ :y mx n =-+与直线AB :y mx n =+关于与y 轴对称,由此可知抛物线2y ax c =+与直线y mx n =-+交于()1,P p ,()3,Q q -两点,再观察两函数图象的上下位置关系,即可得出结论.【解析】∵抛物线2y ax c =+与直线y mx n =+交于()1,A p -,()3,B q 两点,∴m n p -+=,3m n q +=,∴抛物线2y ax c =+与直线y mx n =-+交于()1,P p ,()3,Q q -两点, 观察函数图象可知:当3x <-或1x >时,直线y mx n =-+在抛物线2y ax bx c =++的下方,∴不等式2ax mx c n ++>的解集为3x <-或1x >. 故答案为3x <-或1x >.【点睛】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.三、解答题:本大题共7小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤. 19.(9分)计算:2181(3)()|252π---+-+.(2)解方程组:34225x y y x +=⎧⎨-=-⎩【答案】521x y =⎧⎨=-⎩.【分析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值;(2)方程组整理后,利用代入消元法求出解即可. 【解析】(1)原式=9﹣52=5(2)方程组整理得:34225x y y x +=⎧⎨=-⎩①②把②代入①得:3x+8x ﹣20=2,解得:x =2,把x=2代入②得:y=﹣1,则方程组的解为:21 xy=⎧⎨=-⎩.【点睛】此题考查了解二元一次方程组,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(10分)某校为了解本校八年级学生数学学习情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图,请根据图中的信息解答下列问题(1)补全条形统计图(2)等级为D等的所在扇形的圆心角是度(3)如果八年级共有学生1800名,请你估算我校学生中数学学习A等和B等共多少人?【答案】(1)补全条形统计图如,见解析;(2)28.8;(3)八年级1800名共有学生,请你估算我校学生中数学学习A等和B等共1224人.【分析】(1)从统计图中可以得到A组的有14人,占调查人数的28%,可求出调查人数,B组占40%,可求出B组人数,即可补全条形统计图,(2)用360°乘以D组所占的百分比,即可求出度数,(3)样本估计总体,样本中A组、B组共占(28%+40%)总人数为50人,即可求出A、B两组的人数.【解析】(1)14÷28%=50人,50×40%=20人,补全条形统计图如图所示:(2)360°×450=28.8°,故答案为:28.8;(3)1800×(28%+40%)=1224人,答:八年级1800名共有学生,请你估算我校学生中数学学习A等和B等共1224人.【点睛】考查条形统计图、扇形统计图的意义和制作方法,从两个统计图中获取数量和数量关系式解决问题的关键.21.(11分)现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如表:(1)求这两种货车各用多少辆;(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.【答案】(1)大货车用8辆,小货车用10辆;(2)w=70a+11550(0≤a≤8且为整数);(3)使总运费最少的调配方案是:5辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为11900元.【分析】(1)设大货车用x辆,小货车用(18–x)辆,根据大、小两种货车共18辆,运输228吨物资,列方程组求解;(2)设前往甲地的大货车为a辆,则前往乙地的大货车为(8−a)辆,前往甲地的小货车为(9−a)辆,前往乙地的小货车为[10−(9−a)]辆,根据表格所给运费,求出w与a的函数关系式;(3)结合已知条件,求a的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【解析】(1)设大货车用x辆,则小货车用(18–x)辆,根据题意得16x+10(18–x)=228,解得x=8,∴18–x=18–8=10.答:大货车用8辆,小货车用10辆;(2)w=720a+800(8–a)+500(9–a)+650[10–(9–a)]=70a+11550,∴w=70a+11550(0≤a≤8且为整数);(3)由16a+10(9–a)≥120,解得a≥5.又∵0≤a≤8,∴5≤a≤8且为整数.∵w=70a+11550,且70>0,所以w随a的增大而增大,∴当a=5时,w最小,最小值为70×5+11550=11900(元).答:使总运费最少的调配方案是:5辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为11900元.【点睛】本题考查了一次函数的应用,二元一次方程组的应用.关键是根据题意,得出安排各地的大、小货车数与前往甲地的大货车数a的关系.22.(12分)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,两线相交于F点.(1)若∠BAC=60°,∠C=70°,求∠AFB的大小;(2)若D是BC的中点,∠ABE=30°,求证:△ABC是等边三角形.【答案】(1)115°;(2)证明见解析【分析】(1)根据∠ABF=∠FBD+∠BDF,想办法求出∠FBD,∠BDF即可;(2)只要证明AB=AC,∠ABC=60°即可;【解析】(1)∵∠BAC=60°,∠C=70°,∴∠ABC=180°﹣60°﹣70°=50°,∵BE平分∠ABC,∴∠FBD=12∠ABC=25°,∵AD⊥BC,∴∠BDF=90°,∴∠AFB=∠FBD+∠BDF=115°.(2)证明:∵∠ABE=30°,BE平分∠ABC,∴∠ABC=60°,∵BD=DC,AD⊥BC,∴AB=AC,∴△ABC是等边三角形.【点睛】本题考查等边三角形的判定、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(12分)已知:如图,为了躲避台风,一轮船一直由西向东航行,上午点,在处测得小岛的方向是北偏东75,以每小时海里的速度继续向东航行,中午点到达处,并测得小岛的方向是北偏东60,若小岛周围25海里内有暗礁,问该轮船是否能一直向东航行【答案】继续向东航行则有触礁的危险,不能一直向东航行.【分析】先作出辅助线构造出直角三角形,求出BP ,进而得出PD ,最后和25进行判断即可.【解析】过P 作PD ⊥AB 于点D .∵∠PBD =90°﹣60°=30°,且∠PBD =∠P AB +∠APB ,∠P AB =90﹣75=15°,∴∠P AB =∠APB ,∴BP =AB =15×2=30(海里).在直角△BPD 中,∵∠PBD =∠P AB +∠APB =30°,∴PD =12BP =15海里<25海里, 故若继续向东航行则有触礁的危险,不能一直向东航行.【点睛】本题是解直角三角形﹣﹣方向角问题,主要考查了直角三角形的性质,解答本题的关键是构造出直角三角形,用锐角三角函数是解决此类题目的关键.24.(12分)如图,ABC ∆内接于O ,点在OC 的延长线上,30, 30B CAD ︒︒∠=∠=.(1)求证;AC CD =;(2)若,5OD AB BC ⊥=,求AD 的长.【答案】(1)见详解;(2)53【分析】(1)连接OA ,由圆周角定理得∠AOC=60°,则△OAC 为等边三角形,则OA ⊥AD ,得到∠D=30°,即可得到结论成立;(2)由⊥OD AB ,得到∠BAC=30°,则CD=AC=BC=5,然后得到半径OA=OC=5,根据勾股定理,即可求出AD 的长度.【解析】(1)如图,连接OA ,∵30B ∠=︒,∴60AOC ∠=︒,∴△AOC 是等边三角形,∴OA=OC=AC ,∠OAC=60°,∵ 30CAD ∠=︒,∴∠OAD=90°,∴∠D=30°,∴ CAD D ∠=∠,∴AC CD =;(2)∵⊥OD AB ,∴∠BAD+∠D=90°,∴∠BAD=60°,∵ 30CAD ∠=︒,∴∠BAC=30°=∠B ,∴AC=BC=CD=5,∴OA=OC=AC=5,∴OD=10,在Rt △OAD 中,由勾股定理,得2210553AD =-=.【点睛】本题考查了圆周角定理,等边三角形的判定和性质,勾股定理,等角对等边,余角的性质,解题的关键是熟练掌握所学的知识正确得到边的关系和角的关系.25.(12分)如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.【答案】(1)抛物线的表达式为:223y x x =--;(2)POD S ∆有最大值,当14m =时,其最大值为4916;(3)点(3,23)Q -或113113,22⎛⎫-+- ⎪ ⎪⎝⎭. 【分析】(1)函数的表达式为:y=a(x+1)(x-3),将点D 坐标代入上式,即可求解;(2)()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,即可求解; (3)分∠ACB=∠BOQ 、∠BAC=∠BOQ ,两种情况分别求解,通过角的关系,确定直线OQ 倾斜角,进而求解.【解析】(1)函数的表达式为:(1)(3)y a x x =+-,将点D 坐标代入上式并解得:1a =,故抛物线的表达式为:223y x x =--…①;(2)设直线PD 与y 轴交于点G ,设点()2,23P m m m --,将点P 、D 的坐标代入一次函数表达式:y sx t =+并解得:直线PD 的表达式为:32y mx m =--,则32OG m =+,()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++, ∵10-<,故POD S ∆有最大值,当14m =时,其最大值为4916; (3)∵3OB OC ==,∴45OCB OBC ︒∠=∠=,∵ABC OBE ∠=∠,故OBE ∆与ABC ∆相似时,分为两种情况:①当ACB BOQ ∠=∠时,4AB =,32BC =,10AC =,过点A 作AH ⊥BC 与点H ,1122ABC S AH BC AB OC ∆=⨯⨯=⨯,解得:22AH =, 则sin 5AH ACB AC ∠==,则tan 2ACB ∠=, 则直线OQ 的表达式为: 2 y x =-…②,联立①②并解得:3x =±舍去负值),故点3,23)Q -②BAC BOQ ∠=∠时,3tan 3tan 1OC BAC BOQ OA ∠====∠, 则直线OQ 的表达式为: 3 y x =-…③,联立①③并解得:1132x -+=,故点1122Q ⎛-+- ⎝⎭;综上,点Q -或⎝⎭. 【点睛】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.。
河南省新乡市中考数学二模试卷
河南省新乡市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分) (2020七下·江津月考) 下列计算正确的是()A .B .C .D .2. (2分) (2018七上·黄陂月考) 从左面看物体W得到的平面图形是()A .B .C .D .3. (2分) (2018七上·临河期中) 下列算式:(1);(2);(3);(4),其中正确的有()A . 0个B . 1个C . 2个D . 3个4. (2分)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有()A . 2B . 3C . 4D . 55. (2分)(2020·河南模拟) 某班统计一次数学测验成绩的平均分与方差,计算完毕以后才发现有位同学的分数还未登记,只好重新算一次.已知原平均分和原方差分别为,,新平均分和新方差分别为,,若此同学的得分恰好为,则()A . ,B . ,C . ,D . ,6. (2分)不等式x+1>2x-4的解集是()A . x<5B . x>5C . x<1D . x>17. (2分)下列事件是必然事件的是()A . 打开电视机,正在播放动画片B . 2018年世界杯德国队一定能夺得冠军C . 某彩票中奖率是1%,买100张一定会中奖D . 投掷一枚普通的正方体骰子,连续投掷3次,出现的点数之和不可能等于198. (2分)如图,在Rt△ABC中,∠ACB=90°,D,E分别是AB,AC的中点,连接CD,过E作EF∥DC交BC 的延长线于F,若四边形DCFE的周长为25cm,AC的长5cm,则AB的长为()A . 13cmB . 12cmC . 10cmD . 8cm9. (2分)(2011·温州) 某校开展形式多样的“阳光体育”活动,七(3)班同学积极响应,全班参与.晶晶绘制了该班同学参加体育项目情况的扇形统计图(如图所示),由图可知参加人数最多的体育项目是()A . 排球B . 乒乓球C . 篮球D . 跳绳10. (2分)(2020·石家庄模拟) 已知,则代数的值是()A . 7B . 6C . 5D . -511. (2分) (2019九上·泸县月考) 把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为()A .B .C .D .12. (2分)(2014·杭州) 已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC对称,点E与点F关于BD对称,AC与BD相交于点G,则()A . 1+tan∠ADB=B . 2BC=5CFC . ∠AEB+22°=∠DEFD . 4cos∠AGB=13. (2分) (2020九上·遂宁期末) 矩形ABCD中,边长AB=4,边BC=2,M、N分别是边BC、CD上的两个动点,且始终保持AM⊥MN.则CN的最大为()A . 1B .C .D . 214. (2分) (2017九上·襄城期末) 二次函数的图象如图所示,对称轴为x=1,给出下列结论:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正确的结论有()A . 4个B . 3个C . 2个D . 1个15. (2分)一个正多边形的每个内角都是144°,那么这个正多边形的内角和是()A . 1440°B . 1260°C . 1080°D . 900°二、填空题 (共6题;共6分)16. (1分) (2020七下·北仑期末) 如图,把四张大小相同的长方形卡片(如图①)按图2、图③两种方式放在一个底面为长方形(长比宽多5cm)的盒底上,底面未被卡片覆盖的部分用阴影表示,若记图②中阴影部分的周长为C1 ,图3中阴影部分的周长为C2 ,那么C1比C2大________cm.17. (1分)(2020·南岗模拟) 把多项式m2n﹣2mn2+n3分解因式的结果是________.18. (1分)(2018·南通) “辽宁舰”最大排水量为67500吨,将67500用科学记数法表示为________.19. (1分) (2018九上·扬州月考) 如图,四边形内接于,,则等于________°.20. (1分)如图,直线y=﹣ x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为________.21. (1分)(2017·海陵模拟) 如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y= (x>0)的图象经过A点,则k=________.三、解答题 (共9题;共81分)22. (5分) (2020七下·韩城期末) 计算: .23. (5分)(2011·南京) 解不等式组,并写出不等式组的整数解.24. (5分) (2019八上·西城期中) 如图,△ABC中,D为BC中点,BF∥CE.求证:BF=CE25. (5分) (2019八下·瑞安期末) 在▱ABCD中,对角线AC,BD相交于点O,点E,F在AC上且AE=CF,证明:DE=BF.26. (10分)(2017·埇桥模拟) 如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字1,2,3,4,5,6,如图2,正方形ABCD的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落在圈D;若第二次掷得2,就从圈D开始顺时针连续跳2个边长,落得圈B;…设游戏者从圈A起跳.(1)小贤随机掷一次骰子,求落回到圈A的概率P1 .(2)小南随机掷两次骰子,用列表法求最后落回到圈A的概率P2 ,并指出他与小贤落回到圈A的可能性一样吗?27. (12分) (2020八上·阳泉期末) 下面是学习“分式方程应用”时,老师板书的例题和两名同学所列的方程例:有甲、乙两个工程队,甲队修路400米与乙队修路600米所用时间相等乙队每天比甲队多修20米,求甲队每天修路的长度.冰冰:庆庆:根据以上信息,解答下列问题:(1)冰冰同学所列方程中的x表示________,庆庆同学所列方程中的y表示________;(2)两个方程中任选一个,写出它的等量关系;(3)解(2)中你所选择的方程,并解答老师的例题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2022年河南省新乡市中考数学第二次模拟试题 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟 2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上 3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、如图,在ABC中,点D,E,F分别在三边上,E是AC的中点,AD,BE,CF交于一点G,2BDDC,8BGDS,3AGES,则ABC的面积是( )
A.16 B.19 C.22 D.30 2、已知四边形ABCD是平行四边形,下列结论中不正确的是( ) A.当ABBC时,它是菱形 B.当ACBD时,它是正方形 C.当90ABC时,它是矩形 D.当ACBD时,它是菱形 3、用正三角形和正六边形铺成一个平面,则在同一个顶点处,正三角形和正六边形的个数之比为( )
A.4:1 B.1:1 C.1:4 D.4:1或1:1
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · 号学 级年 名姓 · · · · · · 线 · · · · · · ○
· · · · · · 封
· · · · · · ○ · · · · · · 密 · · · · · · ○
· · · · · · 内 · · · · 4、某中学制作了108件艺术品,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装5件艺术品,单独使用B型包装箱比单独使用A型包装箱可少用2个.设B型包装箱每个可以装x件艺术品,根据题意列方程为( )
A.10810825xx B.10810825xx C.10810825xx D.10810825xx 5、如图,ABC与ABC关于O成中心对称,不一定成立的结论是( )
A.OAOA B.OCOC C.BCBC D.ABCACB 6、若2个单项式23abxy与42abxy的和仍是单项式,则ab的值为 A.8 B.3 C.-3 D.2 7、如果553a,444b,335c,那么a,b,c的大小关系是( ) A.abc B.cba C.bac D.bca 8、如图,将四根长度相等的细木棍首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图①,测得AC=2;当∠B=60°时,如图②,则AC的长为( )
A.1 B.2 C.3 D.4 9、四边形ABCD中,AD∥BC,要判别四边形ABCD是平行四边形,还需满足条件( ) A.∠A+∠C=180° B.∠B+∠D=180° C.∠A+∠B=180° D.∠A+∠D=180° 10、如图,直线l和双曲线y=kx(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则( )
A.S1<S2<S3 B.S1>S2>S3 C.S1=S2>S3 D.S1=S2<S3 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、如果不等式组841xxxm 的解集是3x,那么m的取值范围是______. 2、已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是_____.(请用“>”连接排序)
3、若22ymmmmx是二次函数,则m的值为________. 4、已知4ma,3na,则2mna__________.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · 号学 级年 名姓 · · · · · · 线 · · · · · · ○
· · · · · · 封
· · · · · · ○ · · · · · · 密 · · · · · · ○
· · · · · · 内 · · · · 5、如图,矩形ABCD中,2AD,3AB,过点A、C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是__________.
三、解答题(5小题,每小题10分,共计50分) 1、解下列一元一次方程和二元一次方程组 (1)12136xxx
(2)20328xyxy 2、431[4(2)]6 3、如图,数轴上有三个点A、B、C,它们可以沿着数轴左右移动,请回答: (1)点A、B、C分别表示的数是______________________. (2)将点B 向右移动三个单位长度后到达点D,点D表示的数是_____________. (3)移动点A到达点E,使B、C、E三点的其中任意一点为连接另外两点之间线段的中点,请直接写出所有点A 移动的距离和方向.
4、在5×5的正方形网格中,每个小正方形的边长均为1,点A、B在网格格点上,若点C也在网格格点上,分别在下面的3个图中画出△ABC使其面积为2(形状完全相同算一种). 5、如图1,在矩形ABCD中,12cmAB,6cmBC,点P从A点出发,沿ABCD路线运动,到D点停止;点Q从D点出发,沿DCBA运动,到A点停止,若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每
秒cmb,点Q的速度变为每秒cmc,如图2是点P出发x秒后APD△的面积21cmS与sx的函数
关系图象,图3是点Q出发x秒后AQD的面积22cmS与sx的函数关系图象,根据图象:
(1)点P经过______秒运动到B点,此时APD△的面积为______;点Q经过______秒运动到C点; (2)a______秒,b______cm/s,c______cm/s; (3)设点P离开点A的路程为1cmy,点Q到点A还需要走的路程为2cmy,请分别写出改变速度后1y、2y与出发后的运动时间x(秒)的函数关系式; (4)直接写出P与Q相遇时x的值.
-参考答案- 一、单选题 1、D
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · 号学 级年 名姓 · · · · · · 线 · · · · · · ○
· · · · · · 封
· · · · · · ○ · · · · · · 密 · · · · · · ○
· · · · · · 内 · · · · 【分析】 根据部分三角形的高相等,由这些三角形的底边的比例关系可求三角形ABC的面积. 【详解】 三角形BDG和CDG中,BD=2DC.根据这两个三角形在BC边上的高相等, 那么S△BDG=2S△GDC,因此S△GDC=4, 同理S△AGE=S△GEC=3,S△BEC=S△BGC+S△GEC=8+4+3=15, ∴三角形ABC的面积=2S△BEC=30. 故选D. 【点睛】 此题考查三角形的面积,解题关键在于由这些三角形的底边的比例关系来求面积 2、B 【分析】 根据菱形、正方形、矩形的判定方法一一判断即可. 【详解】 解:A、正确.根据邻边相等的平行四边形是菱形; B、错误.对角线相等的四边形是矩形,不一定是正方形. C、正确.有一个角是直角的平行四边形是矩形. D、正确.对角线垂直的平行四边形是菱形. 故选:B. 【点睛】 此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,属于基础题.
3、D