2021高考新课标全国1卷文科数学试题及答案

合集下载

2021年全国新高考Ⅰ卷高考数学中真题试卷及答案解析【完整版】

2021年全国新高考Ⅰ卷高考数学中真题试卷及答案解析【完整版】

2021年全国统一高考数学试卷(新高考Ⅰ)一、选择题(共8小题,每小题5分,共40分).1.设集合A={x|﹣2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4} 2.已知z=2﹣i,则z(+i)=()A.6﹣2i B.4﹣2i C.6+2i D.4+2i3.已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.2C.4D.44.下列区间中,函数f(x)=7sin(x﹣)单调递增的区间是()A.(0,)B.(,π)C.(π,)D.(,2π)5.已知F1,F2是椭圆C:+=1的两个焦点,点M在C上,则|MF1|•|MF2|的最大值为()A.13B.12C.9D.66.若tanθ=﹣2,则=()A.﹣B.﹣C.D.7.若过点(a,b)可以作曲线y=e x的两条切线,则()A.e b<a B.e a<b C.0<a<e b D.0<b<e a8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立二、选择题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.有一组样本数据x1,x2,…,x n,由这组数据得到新样本数据y1,y2,…,y n,其中y i=x i+c(i=1,2,…,n),c为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同10.已知O为坐标原点,点P1(cosα,sinα),P2(cosβ,﹣sinβ),P3(cos(α+β),sin (α+β)),A(1,0),则()A.||=||B.||=||C.•=•D.•=•11.已知点P在圆(x﹣5)2+(y﹣5)2=16上,点A(4,0),B(0,2),则()A.点P到直线AB的距离小于10B.点P到直线AB的距离大于2C.当∠PBA最小时,|PB|=3D.当∠PBA最大时,|PB|=312.在正三棱柱ABC﹣A1B1C1中,AB=AA1=1,点P满足=λ+μ,其中λ∈[0,1],μ∈[0,1],则()A.当λ=1时,△AB1P的周长为定值B.当μ=1时,三棱锥P﹣A1BC的体积为定值C.当λ=时,有且仅有一个点P,使得A1P⊥BPD.当μ=时,有且仅有一个点P,使得A1B⊥平面AB1P三、填空题:本题共4小题,每小题5分,共20分。

2021年高考全国新高考一卷 数学 试题+答案解析

2021年高考全国新高考一卷 数学 试题+答案解析

A:甲与丙相互独立 C:乙与丙相互独立
B:甲与丁相互独立 D:丙与丁相互独立
53
微信公众号:数学竞赛的那些事儿
二、选择题:本题共 4 小题, 每小题 5 分, 共 20 分. 每小题给出的选项中, 有多项符合题目要求. 全部选对的 得 5 分, 部分选对的得 2 分, 有选错的得 0 分.
9. 有一组样本数据 x1, x2, · · · , xn, 由这组数据得到新样本数据 y1, y2, · · · , yn, 其中 y1 = xi + c (i = 1, 2, · · · , n), c 为非零常数, 则 ( ).
3.
已知圆锥的底面半径为
√ 2,
其侧面展开图为一个半圆,
则该圆锥的母线长为
(
).
D: 4 + 2i
A: 2
B:
√ 22
C: 4
D:
√ 42
4. 下列区间中, 函数 f (x) = 7 sin(x − π ) 单调递增的区间是 ( ). 6
A: (0, π ) 2
B: ( π , π) 2
C: (π, 3π ) 2
2021 年普通高等学校招生全国统一考试 新高考数学 I 卷
本试卷共 4 页, 22 小题. 满分 150 分. 考试用时 120 分钟. 注意事项: 1. 答卷前, 考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上. 用 2B 铅笔将试卷类型 (B) 填 涂在答题卡相应位置上. 将条形码横贴在答题卡右上角“条形码粘贴处”. 2. 作答选择题时, 选出每小题答案后, 用 2B 铅笔在答题卡上对应题目选项的答案信息点涂黑; 如需改动, 用 橡皮擦干净后, 再选涂其他答案. 答案不能答在试卷上. 3. 非选择题必须用黑色字迹的钢笔或签字笔作答, 答案必须写在答题卡各题目指定区域内相应位置上; 如需 改动, 先划掉原来的答案, 然后再写上新答案; 不准使用铅笔和涂改液. 不按以上要求作答无效. 4. 考生必须保持答题卡的整洁. 考试结束后, 将试卷和答题卡一并交回. 一、选择题:本题共 8 小题, 每小题 5 分, 共 40 分, 在每小题给出的四个选项中, 只有一项符合题目要求.

2021年高考全国乙卷数学(文科)试题及答案解析

2021年高考全国乙卷数学(文科)试题及答案解析

2021年普通高等学校招生全国统一考试数学试卷(文科)一、单选题(本大题共12小题,共60.0分)1. 已知全集U ={1,2,3,4,5},集合M ={1,2},N ={3,4},则∁U (M ∪N)=( )A. {5}B. {1,2}C. {3,4}D. {1,2,3,4}2. 设iz =4+3i ,则z =( )A. −3−4iB. −3+4iC. 3−4iD. 3+4i3. 已知命题p :∃x ∈R ,sinx <1;命题q :∀x ∈R ,e |x|≥1,则下列命题中为真命题的是( )A. p ∧qB. ¬p ∧qC. p ∧¬qD. ¬(p ∨q)4. 函数f(x)=sin x3+cos x3的最小正周期和最大值分别是( )A. 3π和√2B. 3π和2C. 6π和√2D. 6π和25. 若x ,y 满足约束条件{x +y ≥4,x −y ≤2,y ≤3,则z =3x +y 的最小值为( )A. 18B. 10C. 6D. 46. cos 2π12−cos 25π12=( )A. 12B. √33C. √22D. √327. 在区间(0,12)随机取1个数,则取到的数小于13的概率为( )A. 34B. 23C. 13D. 168. 下列函数中最小值为4的是( )A. y =x 2+2x +4B. y =|sinx|+4|sinx| C. y =2x +22−xD. y =lnx +4lnx9. 设函数f(x)=1−x1+x ,则下列函数中为奇函数的是( )A. f(x −1)−1B. f(x −1)+1C. f(x +1)−1D. f(x +1)+110. 在正方体ABCD −A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为( )A. π2B. π3C. π4D. π611. 设B 是椭圆C :x 25+y 2=1的上顶点,点P 在C 上,则|PB|的最大值为( )A. 52B. √6C. √5D. 212.设a≠0,若x=a为函数f(x)=a(x−a)2(x−b)的极大值点,则()A. a<bB. a>bC. ab<a2D. ab>a2二、单空题(本大题共4小题,共20.0分)13.已知向量a⃗=(2,5),b⃗ =(λ,4),若a⃗//b⃗ ,则λ=______ .14.双曲线x24−y25=1的右焦点到直线x+2y−8=0的距离为______ .15.记△ABC的内角A,B,C的对边分别为a,b,c,面积为√3,B=60°,a2+c2=3ac,则b=______ .16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为______ (写出符合要求的一组答案即可).三、解答题(本大题共7小题,共82.0分)17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x−和y−,样本方差分别记为s12和s22.(1)求x−,y−,s12,s22;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y−−x−≥2√s12+s2210,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).18. 如图,四棱锥P −ABCD 的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB ⊥AM . (1)证明:平面PAM ⊥平面PBD ;(2)若PD =DC =1,求四棱锥P −ABCD 的体积.19. 设{a n }是首项为1的等比数列,数列{b n }满足b n =na n 3,已知a 1,3a 2,9a 3成等差数列.(1)求{a n }和{b n }的通项公式;(2)记S n 和T n 分别为{a n }和{b n }的前n 项和.证明:T n <S n 2.20. 已知抛物线C :y 2=2px(p >0)的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足PQ ⃗⃗⃗⃗⃗ =9QF ⃗⃗⃗⃗⃗ ,求直线OQ 斜率的最大值.21.已知函数f(x)=x3−x2+ax+1.(1)讨论f(x)的单调性;(2)求曲线y=f(x)过坐标原点的切线与曲线y=f(x)的公共点的坐标.22.在直角坐标系xOy中,⊙C的圆心为C(2,1),半径为1.(1)写出⊙C的一个参数方程;(2)过点F(4,1)作⊙C的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.23.已知函数f(x)=|x−a|+|x+3|.(1)当a=1时,求不等式f(x)≥6的解集;(2)若f(x)>−a,求a的取值范围.答案解析1.【答案】A【解析】解:∵全集U={1,2,3,4,5},集合M={1,2},N={3,4},∴M∪N={1,2,3,4},∴∁U(M∪N)={5}.故选:A.利用并集定义先求出M∪N,由此能求出∁U(M∪N).本题考查集合的运算,考查并集、补集定义等基础知识,考查运算求解能力等数学核心素养,是基础题.2.【答案】C【解析】解:由iz=4+3i,得z=4+3ii =(4+3i)(−i)−i2=−3i2−4i=3−4i.故选:C.把已知等式变形,再由复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,是基础题.3.【答案】A【解析】解:对于命题p:∃x∈R,sinx<1,当x=0时,sinx=0<1,故命题p为真命题,¬p为假命题;对于命题q:∀x∈R,e|x|≥1,因为|x|≥0,又函数y=e x为单调递增函数,故e|x|≥e0=1,故命题q为真命题,¬q为假命题,所以p∧q为真命题,¬p∧q为假命题,p∧¬q为假命题,¬(p∨q)为假命题,故选:A.先分别判断命题p和命题q的真假,然后由简单的复合命题的真假判断法则进行判断,即可得到答案.本题考查了命题真假的判断,解题的关键是掌握全称命题和存在性命题真假的判断方法,考查了逻辑推理能力,属于基础题.4.【答案】C【解析】解:∵f(x)=sin x 3+cos x 3=√2sin(x 3+π4), ∴T =2π13=6π.当sin(x3+π4)=1时,函数f(x)取得最大值√2; ∴函数f(x)的周期为6π,最大值√2. 故选:C .化简函数的表达式,再利用三角函数的周期,正弦函数的最值求解即可.本题考查了辅助角公式、三角函数的周期性与最值,考查了推理能力与计算能力,属于中档题.5.【答案】C【解析】解:由约束条件作出可行域如图,联立{y =3x +y =4,解得A(1,3),由z =3x +y ,得y =−3x +z ,由图可知,当直线y =−3x +z 过A 时, 直线在y 轴上的截距最小,z 有最小值为3×1+3=6. 故选:C .由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.本题考查简单的线性规划,考查数形结合思想,是中档题.6.【答案】D【解析】解:cos 2π12−cos 25π12=1+cos π62−1+cos 5π62=12+12cos π6−12−12cos 5π6=12×√32−12×(−√32)=√32. 故选:D .直接利用二倍角的余弦化简求值即可.本题考查三角函数的化简求值和二倍角的余弦,是基础题.7.【答案】B【解析】解:由于试验的全部结果构成的区域长度为12−0=12, 构成该事件的区域长度为13−0=13, 所以取到的数小于13的概率P =1312=23.故选:B .我们分别计算出区间(0,12)和(0,13)的长度,代入几何概型概率计算公式,即可得到答案. 本题主要考查几何概型的概率计算,其中根据已知条件计算出基本事件总数对应的几何量的大小,和满足条件的几何量的大小是解答本题的关键,属基础题.8.【答案】C【解析】解:对于A ,y =x 2+2x +4=(x +1)2+3≥3, 所以函数的最小值为3,故选项A 错误;对于B ,因为0<|sinx|≤1,所以y =|sinx|+4|sinx|≥2√|sinx|⋅4|sinx|=4, 当且仅当|sinx|=4|sinx|,即|sinx|=2时取等号, 因为|sinx|≤1,所以等号取不到,所以y =|sinx|+4|sinx|>4,故选项B 错误;对于C ,因为2x >0,所以y =2x +22−x =2x +42x ≥2√2x ⋅42x =4,当且仅当2x =2,即x =1时取等号, 所以函数的最小值为4,故选项C 正确;对于D ,因为当x =1e 时,y =ln 1e +4ln 1e=−1−4=−5<4,所以函数的最小值不是4,故选项D 错误. 故选:C .利用二次函数的性质求出最值,即可判断选项A,根据基本不等式以及取最值的条件,即可判断选项B,利用基本不等式求出最值,即可判断选项C,利用特殊值验证,即可判断选项D.本题考查了函数最值的求解,涉及了二次函数最值的求解,利用基本不等式求解最值的应用,在使用基本不等式求解最值时要满足三个条件:一正、二定、三相等,考查了转化思想,属于中档题.9.【答案】B【解析】解:因为f(x)=1−x1+x =−(x+1)+21+x=−1+2x+1,所以函数f(x)的对称中心为(−1,−1),所以将函数f(x)向右平移一个单位,向上平移一个单位,得到函数y=f(x−1)+1,该函数的对称中心为(0,0),故函数y=f(x−1)+1为奇函数.故选:B.先根据函数f(x)的解析式,得到f(x)的对称中心,然后通过图象变换,使得变换后的函数图象的对称中心为(0,0),从而得到答案.本题考查了函数奇偶性和函数的图象变换,解题的关键是确定f(x)的对称中心,考查了逻辑推理能力,属于基础题.10.【答案】D【解析】解:∵AD1//BC1,∴∠PBC1是直线PB与AD1所成的角(或所成角的补角),设正方体ABCD−A1B1C1D1的棱长为2,则PB1=PC1=12√22+22=√2,BC1=√22+22=2√2,BP=√22+(√2)2=√6,∴cos∠PBC1=PB2+BC12−PC122×PB×BC1=6+8−22×√6×2√2=√32,∴∠PBC1=π6,∴直线PB与AD1所成的角为π6.故选:D.由AD1//BC1,得∠PBC1是直线PB与AD1所成的角(或所成角的补角),由此利用余弦定理,求出直线PB 与AD 1所成的角.本题考查异面直线所成角和余弦定理,考查运算求解能力,是基础题.11.【答案】A【解析】解:B 是椭圆C :x 25+y 2=1的上顶点,所以B(0,1),点P 在C 上,设P(√5cosθ,sinθ),θ∈[0,2π),所以|PB|=√(√5cosθ−0)2+(sinθ−1)2=√4cos 2θ−2sinθ+2 =√−4sin 2θ−2sinθ+6=√−4(sinx +14)2+254,当sinθ=−14时,|PB|取得最大值,最大值为52. 故选:A .求出B 的坐标,设P(√5cosθ,sinθ),利用两点间距离公式,结合三角函数的有界性,转化求解距离的最大值即可.本题考查椭圆的简单性质,椭圆的参数方程,三角函数最值的求法,考查转化思想以及计算能力,是中档题.12.【答案】D【解析】解:令f(x)=0,解得x =a 或x =b ,即x =a 及x =b 是f(x)的两个零点, 当a >0时,由三次函数的性质可知,要使x =a 是f(x)的极大值点,则函数f(x)的大致图象如下图所示,则0<a <b ;当a <0时,由三次函数的性质可知,要使x =a 是f(x)的极大值点,则函数f(x)的大致图象如下图所示,则b<a<0;综上,ab>a2.故选:D.分a>0及a<0,结合三次函数的性质及题意,通过图象发现a,b的大小关系,进而得出答案.本题考查三次函数的图象及性质,考查导数知识的运用,考查数形结合思想,属于中档题.13.【答案】85【解析】解:因为a⃗=(2,5),b⃗ =(λ,4),a⃗//b⃗ ,所以8−5λ=0,解得λ=85.故答案为:85.根据题意,由a⃗//b⃗ ,可得关于λ的方程,再求出λ即可.本题考查向量平行的坐标表示,涉及向量的坐标计算,属于基础题.14.【答案】√5【解析】解:双曲线x24−y25=1的右焦点(3,0),所以右焦点到直线x+2y−8=0的距离为d=√12+22=√5.故答案为:√5.求出双曲线的右焦点的坐标,利用点到直线的距离公式求解即可.本题考查双曲线的简单性质,点到直线的距离公式,是基础题.15.【答案】2√2【解析】解:∵△ABC的内角A,B,C的对边分别为a,b,c,面积为√3,B=60°,a2+c2=3ac,∴12acsinB=√3⇒12ac×√32=√3⇒ac=4⇒a2+c2=12,又cosB=a2+c2−b22ac ⇒12=12−b28⇒b=2√2,(负值舍)故答案为:2√2.由题意和三角形的面积公式以及余弦定理得关于b的方程,解方程可得.本题考查三角形的面积公式以及余弦定理的应用,属基础题.16.【答案】②⑤或③④【解析】解:观察正视图,推出正视图的长为2和高1,②③图形的高也为1,即可能为该三棱锥的侧视图,④⑤图形的长为2,即可能为该三棱锥的俯视图,当②为侧视图时,结合侧视图中的直线,可以确定该三棱锥的俯视图为⑤,当③为侧视图时,结合侧视图虚线,虚线所在的位置有立体图形的轮廓线,可以确定该三棱锥的俯视图为④.故答案为:②⑤或③④.通过观察已知条件正视图,确定该正视图的长和高,结合长、高、以及侧视图视图中的实线、虚线来确定俯视图图形.该题考查了三棱锥的三视图,需要学生掌握三视图中各个图形边长的等量关系,以及对于三视图中特殊线条能够还原到原立体图形中,需要较强空间想象,属于中等题.17.【答案】解:(1)由题中的数据可得,x−=110×(9.8+10.3+10.0+10.2+9.9+9.8+ 10.0+10.1+10.2+9.7)=10,y−=110×(10.1+10.4+10.1+10.0+10.1+10.3+10.6+10.5+10.4+10.5)=10.3,s12=110×[(9.8−10)2+(10.3−10)2+(10−10)2+(10.2−10)2+(9.9−10)2 +(9.8−10)2+(10−10)2+(10.1−10)2+(10.2−10)2+(9.7−10)2]=0.036;s22=110×[(10.1−10.3)2+(10.4−10.3)2+(10.1−10.3)2+(10.0−10.3)2+(10.1−10.3)2+(10.3−10.3)2+(10.6−10.3)2+(10.5−10.3)2+(10.4−10.3)2+(10.5−10.3)2]=0.04;(2)y−−x−=10.3−10=0.3,2√s12+s2210=2√0.036+0.0410=2√0.0076≈0.174,所以y−−x−>2√s12+s2210,故新设备生产产品的该项指标的均值较旧设备有显著提高.【解析】(1)利用平均数和方差的计算公式进行计算即可;(2)比较y−−x−与2√s12+s2210的大小,即可判断得到答案.本题考查了样本特征数的计算,解题的关键是掌握平均数与方差的计算公式,考查了运算能力,属于基础题.18.【答案】(1)证明:∵PD⊥底面ABCD,AM⊂平面ABCD,∴PD⊥AM,又∵PB⊥AM,PD∩PB=P,PB,PD⊂平面PBD.∴AM⊥平面PBD.∵AM⊂平面PAM,∴平面PAM⊥平面PBD;(2)解:由PD⊥底面ABCD,∴PD即为四棱锥P−ABCD的高,△DPB是直角三角形;∵ABCD底面是矩形,PD=DC=1,M为BC的中点,且PB⊥AM.设AD=BC=2a,取CP的中点为F.连接MF,AF,EF,AE,可得MF//PB,EF//DP,那么AM⊥MF.且EF=12.AE=√14+4a2,AM=√a2+1,AF=√EF2+AE2.那么△AMF是直角三角形,∵△DPB是直角三角形,∴根据勾股定理:BP=√2+4a2,则MF=√2+4a22;由△AMF是直角三角形,可得AM2+MF2=AF2,解得a=√22.底面ABCD的面积S=√2,则四棱锥P −ABCD 的体积V =13⋅ℎ⋅S =13×1×√2=√23.【解析】(1)通过线面垂直即可证明;即只需证明AM ⊥平面PBD .(2)根据PD ⊥底面ABCD ,可得PD 即为四棱锥P −ABCD 的高,利用体积公式计算即可. 本题考查平面与平面垂直的判定,考查空间想象能力与思维能力,体积计算,考查运算求解能力,是中档题. 19.【答案】解:(1)∵a 1,3a 2,9a 3成等差数列,∴6a 2=a 1+9a 3,∵{a n }是首项为1的等比数列,设其公比为q ,则6q =1+9q 2,∴q =13,∴a n =a 1q n−1=(13)n−1, ∴b n =na n 3=n ⋅(13)n . (2)证明:由(1)知a n =(13)n−1,b n =n ⋅(13)n ,∴S n =1×[1−(13)n ]1−13=32−12×(13)n−1, T n =1×(13)1+2×(13)2+⋯+n ⋅(13)n ,①∴13T n =1×(13)2+2×(13)3+⋯+n ⋅(13)n+1,② ①−②得,23T n =12[1−(13)n ]−n(13)n+1,∴T n =34−14×(13)n−1−n 2(13)n ,∴T n −S n 2=34−14×(13)n−1−n 2⋅(13)n −[34−14×(13)n−1]<0, ∴T n <S n 2.【解析】(1)根据a 1,3a 2,9a 3成等差数列,{a n }是首项为1的等比数列,求出公比q ,进一步求出{a n }和{b n }的通项公式;(2)分别利用等比数列的前n 项和公式和错位相减法,求出S n 和T n ,再利用作差法证明T n <S n 2.本题考查了等差数列与等比数列的性质,等比数列的前n 项和公式和利用错位相减法求数列的前n 项和,考查了方程思想和转化思想,属中档题.20.【答案】(1)解:由题意知,p =2,∴y 2=4x .(2)由(1)知,抛物线C :y 2=4x ,F(1,0),设点Q 的坐标为(m,n),则QF ⃗⃗⃗⃗⃗ =(1−m,−n),PQ ⃗⃗⃗⃗⃗ =9QF ⃗⃗⃗⃗⃗ =(9−9m,−9n)∴P 点坐标为(10m −9,10n),将点P 代入C 得100n 2=40m −36,整理得m =100n 2+3640=25n 2+910, ∴K =n m =10n 25n 2+9=1025n+9n ≤13,当n =3时取最大值. 故答案为:13.【解析】(1)根据焦点F 到准线的距离为2求出p ,进而得到抛物线方程,(2)设出点Q 的坐标,按照向量关系得出P 点坐标,再代入抛物线方程中,利用基本不等式即可求出最值.本题考查抛物线的性质,考察基本不等式求最值,属于中档题.21.【答案】解:(1)f′(x)=3x 2−2x +a ,△=4−12a ,①当△≤0,即a ≥13时,由于f′(x)的图象是开口向上的抛物线,故此时f′(x)≥0,则f(x)在R 上单调递增;②当△>0,即a <13时,令f′(x)=0,解得x 1=1−√1−3a 3,x 2=1+√1−3a 3, 令f′(x)>0,解得x <x 1或x >x 2,令f′(x)<0,解得x 1<x <x 2,∴f(x)在(−∞,x 1),(x 2,+∞)单调递增,在(x 1,x 2)单调递减;综上,当a ≥13时,f(x)在R 上单调递增;当a <13时,f(x)在(−∞,1−√1−3a 3),(1+√1−3a 3,+∞)单调递增,在(1−√1−3a 3,1+√1−3a 3)单调递减. (2)设曲线y =f(x)过坐标原点的切线为l ,切点为(x 0,x 03−x 02+ax 0+1),f′(x 0)=3x 02−2x 0+a ,则切线方程为y −(x 03−x 02+ax 0+1)=(3x 02−2x 0+a)(x −x 0),将原点代入切线方程有,2x 03−x 02−1=0,解得x 0=1,∴切线方程为y =(a +1)x ,令x 3−x 2+ax +1=(a +1)x ,即x 3−x 2−x +1=0,解得x =1或x =−1, ∴曲线y =f(x)过坐标原点的切线与曲线y =f(x)的公共点的坐标为(1,a +1)和(−1,−a −1).【解析】(1)对函数f(x)求导,分a ≥13及a <13讨论导函数与零的关系,进而得出f(x)的单调性情况;(2)先设出切点,表示出切线方程,根据切线过原点,可求得切线方程,将切线方程与曲线y =f(x)联立,即可求得公共点坐标.本题考查导数的几何意义以及利用导数研究函数的单调性,考查分类讨论思想及运算求解能力,属于中档题. 22.【答案】解:(1)⊙C 的圆心为C(2,1),半径为1,则⊙C 的标准方程为(x −2)2+(y −1)2=1,⊙C 的一个参数方程为{x =2+cosθy =1+sinθ(θ为参数). (2)由题意可知两条切线方程斜率存在,设切线方程为y −1=k(x −4),即kx −y −4k +1=0,圆心C(2,1)到切线的距离d =√k 2+1=1,解得k =±√33, 所以切线方程为y =±√33(x −4)+1, 因为x =ρcosθ,y =ρsinθ,所以这两条切线的极坐标方程为ρsinθ=±√33(ρcosθ−4)+1.【解析】(1)求出⊙C 的标准方程,即可求得⊙C 的参数方程;(2)求出直角坐标系中的切线方程,再由x =ρcosθ,y =ρsinθ即可求解这两条切线的极坐标方程.本题主要考查圆的参数方程,普通方程与极坐标方程的转化,考查运算求解能力,属于基础题.23.【答案】解:(1)当a =1时,f(x)=|x −1|+|x +3|={−2x −2,x ≤−34,−3<x <12x +2,x ≥1,∵f(x)≥6,∴{x ≤−3−2x −2≥6或{−3<x <1 4≥6或{x ≥12x +2≥6, ∴x ≤−4或x ≥2,∴不等式的解集为(−∞,−4]∪[2,+∞).(2)f(x)=|x −a|+|x +3|≥|x −a −x −3|=|a +3|,若f(x)>−a ,则|a +3|>−a ,两边平方可得a2+6a+9>a2,解得a>−3,2,+∞).即a的取值范围是(−32【解析】(1)将a=1代入f(x)中,根据f(x)≥6,利用零点分段法解不等式即可;(2)利用绝对值三角不等式可得f(x)≥|a+3|,然后根据f(x)>−a,得到|a+3|>−a,求出a的取值范围.本题主要考查绝对值不等式的解法,考查运算求解能力,属于基础题.。

2021年新高考Ⅰ卷数学试题(含答案)

2021年新高考Ⅰ卷数学试题(含答案)

2021年新高考Ⅰ卷数学试题本试卷共4页,22小题,满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用 28铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上,3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案:不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一井交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合A= {x|-2<x<4}. B = {2,3,4,5},则A∩B=A.{2}B.{2,3}C.{3,4,}D.{2,3,4}2.已知z=2-i,则(=A.6-2iB.4-2iC.6+2iD.4+2i3.已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为A.2B.2C.4D.44.下列区间中,函数f(x)=7sin()单调递增的区间是A.(0,)B.( ,)C.(,)D.(,)5.已知F1,F2是椭圆C:的两个焦点,点M在 C 上,则|MF1|·|MF2|的最大值为A.13B.12C.9D.66.若tan=-2,则 =A.B.C.D.7.若过点(a,b)可以作曲线y=e x的两条切线,则A. e b<aB. e a<bC. 0<a<e bD. 0<b<e a8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立二、选择题:本题共4小题,每小题5分,共20分。

2021全国新高考1卷数学试卷(及答案)

2021全国新高考1卷数学试卷(及答案)

18.(12 分) 某学校组织“一带一路”知识竞赛,有 A,B 两类问题.每位参加比赛的同学先在
两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若 回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛 结束.A 类问题中的每个问题回答正确得 20 分,否则得 0 分;B 类问题中的每个问题 回答正确得 80 分,否则得 0 分。
A.点 P 到直线 AB 的距离小于 10
B.点 P 到直线 AB 的距离大于 2
C.当 ∠PBA 最小时, | PB | = 3 2
D.当 ∠PBA 最大时, | PB | = 3 2
uuur uuur uuur 12.在 正三棱柱 ABC − A1B1C1 中 , A=B A= A1 1 ,点 P 满 足= BP λBC + μBB1 , 其中
每次取 1 个球.甲表示事件“第一次取出的球的数字是 1”,乙表示事件“第二次取
出的球的数字是 2”,丙表示事件“两次取出的球的数字之和是 8”,丁表示事件“两
次取出的球的数字之和是 7”,则
A.甲与丙相互独立
B.甲与丁相互独立
C.乙与丙相互独立
D.丙与丁相互独立
二、选择题:本题共 4 小题,每小题 5 分,共 20 分。在每小题给出的选项中,有多项
A. (0, π ) 2
B. ( π , π) 2
C. (π, 3π ) 2
D. (3π , 2π) 2
5.已知
F1

F2
是椭圆
C:x2 9
+
y2 4
= 1的两个焦点,点 M
在 C 上,则 | MF1 | ⋅ | MF2
| 的最

2021年新高考全国卷Ⅰ数学答案与解析

2021年新高考全国卷Ⅰ数学答案与解析

2021年新高考全国一卷数学试题答案与解析一、选择1.设集合A={x|-2<x<4}. B = {2,3,4,5},则A∩B=A {2}B {2,3} C{3,4,} D{2,3,4}注意:本题是寻找范围内的整数点,注意边界的取舍问题答案:B2.A 6-2i B4-2i C6+2i D4+2i答案:C3.已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为A 2BC 4 D4.下列区间中,函数单调递增的区间是??.已知F1,F2是椭圆C:的两个焦点,点M在C 上,则|MF1|·|MF2|的最大值为A13 B12 C9 D66.若答案:C答案:D答案:B 二、多选答案:CD答案:AC答案:ACD答案:BD三、填空13.已知函数f(x)=是偶函数,则a=______(1)14.已知O为坐标原点,抛物线C:的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且PQ⊥OP,若|FQ|=6,则C的准线方程为________(x=)15. 函数f(x) =|2x-l|-2lnx的最小值为_________(1)16. 某校学生在研究民间剪纸艺术时,发现此纸时经常会沿纸的某条对称轴把纸对折.规格为20dmXl2dm的长方形纸.对折1次共可以得到10dmX2dm . 20dmX6dm两种规格的图形,它们的面积之和=240 dm2,对折2次共可以得5dmX12dm ,10dmX6dm,20dmX3dm三种规格的图形,它们的面积之和180dm2.以此类推.则对折4次共可以得到不同规格图形的种数为______:如果对折n次,那么=______dm2四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤。

22.(1)f(x)=x-xlnx令f’(x)>0,则0<x<1,令f’(x)<0,则x>1∴f(x)的单调增区间为(0,1),单调减区间为(1,+∞).(2)即,即f()=f()令p=,q=,不妨设0<p<1<q,下面证明2<p+q<e.①先证p+q>2,当p≥2时结论显然成立.当q∈(1,2)时,p+q>2,,则p>2-q,∴2-q<1.只需设f(p)>f(2-q). 即证当q∈(1,2)时,由f(p)>f(2-q)令g(x)=f(x)-f(2-x).g’(x)=f’(x)+f’(2-x)=-lnx-ln(2-x)=-ln[-(x-1)2+1]当x∈(1,2)时,-(x-1)2+1<1,所以g’(x)>0,∴g(x)在(1,2)上单调递增,∴g(q)>g(1)=0,即f(q)>f(2-q)②再设,当时,,当时,∴∵∴要证只需证即证当时,有设,,。

2021年全国高考乙卷文数真题试卷(含答案)

参考答案:
A
12.设 ,若 为函数 的极大值点,则()
A. B. C. D.
参考答案:
D
二、填空题:本题共4小题,每小题5分,共20分.
13.已知向量 ,若 ,则 _________.
参考答案:
14.双曲线 右焦点到直线 的距离为________.
参考答案:
15.记 的内角A,B,C的对边分别为a,b,c,面积为 , , ,则 ________.
参考答案:
(1) ;
(2)新设备生产产品的该项指标的均值较旧设备有显著提高.
18.如图,四棱锥 的底面是矩形, 底面 ,M为 的中点,且 .
(1)证明:平面 平面 ;
(2)若 ,求四棱锥 的体积.
参考答案:
【分析】(1)由 底面 可得 ,又 ,由线面垂直的判定定理可得 平面 ,再根据面面垂直的判定定理即可证出平面 平面 ;
参考答案:
16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).
参考答案:
③④
三、解答题.共70分.解答应写出文字说明,证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知全集 ,集合 ,则 ()
A. B. C. D.
参考答案:
A
2.设 ,则 ()
A. B. C. D.
参考答案:
C
3.已知命题 ﹔命题 ﹐ ,则下列命题中为真命题的是()

2021年普通高等学校招生全国统一考试全国Ⅰ卷数学试题及答案

9. CD10. AC11.ACD12.BD
三、填空题:
13.114. 15.116.①.5②.
四、解答题:
17.(1) ;(2) .
18.(1)由题可知, 的所有可能取值为 , , .



所以 的分布列为
(2)由(1)知, .
若小明先回答 问题,记 为小明的累计得分,则 的所有可能取值为 , , .
(1)证明: ;
(2)若 ,求 .
20.(12分)
如图,在三棱锥 中,平面 平面 , , 为 的中点.
(1)证明: ;
(2)若 是边长为1的等边三角形,点 在棱 上, ,且二面角 的大小为 ,求三棱锥 的体积.
21.(12分)
在平面直角坐标系 中,已知点 , ,点 满足 .记 的轨迹为 .
(1)求 的方程;
则 为二面角E-BC-D的平面角,
因为 , 为正三角形,所以 为直角三角形
因为 ,
从而EF=FM=
平面BCD,
所以
21.(1) ;(2) .
22.(1)函数的定义域为 ,源自又 ,当 时, ,当 时, ,
故 的递增区间为 ,递减区间为 .
因为平面ABD 平面BCD ,平面ABD⊥平面BCD, 平面ABD,
因此AO⊥平面BCD,
因为 平面BCD,所以AO⊥CD
(2)作EF⊥BD于F,作FM⊥BC于M,连EM
因为AO⊥平面BCD,所以AO⊥BD, AO⊥CD
所以EF⊥BD, EF⊥CD, ,因此EF⊥平面BCD,即EF⊥BC
因为FM⊥BC, ,所以BC⊥平面EFM,即BC⊥ME
2021年普通高等学校招生全国统一考试全国Ⅰ卷
数学
考试用时120分钟,满分150分.

2021年高考文数真题试卷(全国乙卷)含答案

2021年高考文数真题试卷(全国乙卷)一、选择题:本题共12小题,每小题5分,总共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(共12题;共51分)1.已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则C u(MUN)=()A. {5}B. {1,2}C. {3,4}D. {1,2,3,4}【答案】A【考点】交集及其运算,补集及其运算【解析】【解答】因为U={1,2,3,4,5},集合M={1,2},N={3,4} 则MUN ={1,2,3,4},于是C u(MUN)= {5} 。

故答案为:A【分析】先求MUN,再求C u(MUN)。

2.设iz=4+3i,则z等于()A. -3-4iB. -3+4iC. 3-4iD. 3+4i【答案】C【考点】复数代数形式的混合运算【解析】【解答】因为iz=4+3i ,所以Z=4+3ii =4i−3−1=3−4i。

故答案为:C【分析】直接解方程,由复数的除法运算法则,得到结果。

3.已知命题p:∃x∈R,sinx<1;命题q:∀x∈R,e|x|≥1,则下列命题中为真命题的是()A. p ∧qB. ¬p ∧qC. p ∧¬qD. ¬(pVq)【答案】A【考点】全称量词命题,存在量词命题,命题的否定,命题的真假判断与应用【解析】【解答】因为命题P是真命题,命题q也是真命题,故答案为:A【分析】先判断命题p,q的真假,然后判断选项的真假。

4.函数f(x)=sin x3+cos x3的最小正周期和最大值分别是()A. 3 π和√2B. 3 π和2C. 6π和√2D. 6π和2【答案】C【考点】正弦函数的图象,y=Asin(ωx+φ)中参数的物理意义,正弦函数的周期性,正弦函数的零点与最值【解析】【解答】因为f(x)=sin x3+cos x3=√22sin(x3+π4),所以周期T=2π13=6π ,值域[-√2,√2]。

高考文科数学真题答案全国卷1

2021年高考文科数学真题及答案全国卷 1一、选择题〔题型注释〕1.集合 M x|1 x 3,N x| 2 x 1,那么MIN 〔 〕A. (2,1)B. (1,1)C. (1,3)D. (2,3)【答案】B 【解析】试题分析:根据集合的运算法那么可得:考点:集合的运算MIN x| 1x 1,即选B .2.假设tan 0,那么A.sin0B.cos0C.sin20D.cos20【答案】C 【解析】试题分析:由 tansin ,可得:sin ,cos同正或同负,即可排除 A 和B ,0 cos又由sin2 2sincos ,故 考点:同角三角函数的关系 3.设z1i ,那么|z|1 isin2 0.A.1B.2C.22【答案】B【解析】32D.2试题分析:根据复数运算法那么可得: z1 i i 1i i1i i 1 1i ,1(1i)(1i)22 2由模的运算可得: |z|(1)2( 1)2 2 .222考点:复数的运算4.双曲线x 2y 2 1(a 0)的离心率为 2,那么aa 23A.2B.6 C.5 D.122【答案】D【解析】试题分析:由离心率ec可得:e 2a 2 3 22,解得:a1.aa 2考点:复数的运算5.设函数f(x),g(x)的定义域为R,且f(x)是奇函数,g(x)是偶函数,那么以下结论中正确的选项是A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数 C.f(x)|g(x)| 是奇函数 D. |f(x)g(x)|是奇函数【答案】C 【解析】试题分析:由函数 f(x),g(x)的定义域为 R ,且f(x)是奇函数, g(x)是偶函数,可得:|f(x)|和|g(x)|均为偶函数,根据一奇一偶函数相乘为奇函数和两偶函数相乘为偶函数的规律可知选C .考点:函数的奇偶性6.设D,E,F 分别为 ABC 的三边BC,CA,AB 的中点,那么EBFCA.ADB.【答案】A【解析】1AD C. 1BCD.BC2 2试题分析:根据平面向量根本定理和向量的加减运算可得:在BEF 中,uuur uuur uuur uuur1 uuur ,同理 uuur uuur uuur uuur 1uuur, 那么EBEFFBEF2AB FCFEECFE AC2uuur uuur uuur1uuuruuur 1 uuur1uuur 1uuur1 uuur uuur uuur EBFC(EFAB)(FEAC)( ABAC)2 (AB AC)AD2 222.考点:向量的运算7.在函数①ycos|2x|,②y|cosx|,③ycos(2x),④y tan(2x4 )中,6最小正周期为 的所有函数为A.①②③B.①③④C.②④D. ①③【答案】A【解析】试题分析:①中函数是一个偶函数,2; ②中函数其周期与ycos2x 相同,T2y|cosx|的周期是函数ycosx 周期的一半,即T; ③T2 ;④T,22那么选A .考点:三角函数的图象和性质8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,那么这个几何体是〔 〕A.三棱锥B.三棱柱C.四棱锥D.四棱柱【答案】B【解析】试题分析:根据三视图的法那么:长对正,高平齐,宽相等.可得几何体如以下列图所示.考点:三视图的考查9.执行右面的程序框图,假设输入的a,b,k分别为1,2,3,那么输出的M( )A.20B.3【答案】D 【解析】71615 C.5D.28试题分析:根据题意由13成立,那么循环,即M113,a2,b3,n2;又由22223成立,那么循环,即M228,a3,b8,n3;又由33成立,那么循环,3315815332315 ,n4;又由43不成立,那么出循环,输出M即M8,a,b8.2838考点:算法的循环结构C:y 2x的焦点为F,A x0,y05,那么x010.抛物线是C上一点,AF4x0〔〕 A.1 B.2 C.4 D.8【答案】A 【解析】 试题分析:根据抛物线的定义:到焦点的距离等于到准线的距离,又抛物线的准线方程为:x1,那么有:|AF|x 0 1 ,即有x 01 5x 0,可解得x 0 1.444 4考点:抛物线的方程和定义11.函数f(x) ax 3 3x 2 1,假设f(x)存在唯一的零点x 0,且x 0 0,那么a 的取值范围是〔A 〕2,〔B 〕1,〔C 〕,2〔D 〕,1【答案】C【解析】试题分析 :根据题中函数特征,当 a0 时,函数f(x)3x 21显然有两个零点且一正一负;当a0时,求导可得: f'(x)3ax 2 6x3x(ax2),利用导数的正负与函数单调性的关系可得:x (,0)和x(2 )时函数单调递增;x2 ,(0,)时aa函数单调递减,显然存在负零点;当a 0时,求导可得:f'(x) 3ax 2 6x 3x(ax 2),利用导数的正负与函数单调性的关系可得:x(,2)和x (0,)时函数单调递减;x(2,0)时函数单调递增,欲要使得函aa22322数有唯一的零点且为正,那么满足:f(a ) 0,即得:a(a )3(a )1,可解f(0)得:a 24,那么a 2(舍去〕,a 2.考点:1.函数的零点;2.导数在函数性质中的运用 ;3.分类讨论的运用12.设x ,y 满足约束条件x y a,x ay 的最小值为 7,那么ax y且z1,〔A 〕-5〔B 〕3〔C 〕-5或3〔D 〕5或-3【答案】B【解析】试题分析:根据题中约束条件可画出可行域如以下列图所示,两直线交点坐标为:A(a1,a1) ,又由题中zxay 可知,当a0时,z有最小值:22a1a a1a 22a1 a 2 2a17,解得:a3;当a0时,zz22,那么22无最小值.应选B考点:线性规划的应用13.将2本不同的数学书和1本语文书在书架上随机排成一行,那么2本数学书相邻的概率为________.2【答案】3【解析】试题分析:根据题意显然这是一个古典概型,其根本领件有:数1,数2,语;数1,语,数2;数2,数1,语;数2,语,数1;语,数2,数1;语,数1,数2共有6种,其中2本数学书相邻的有4种,那么其概率为:P42.63考点:古典概率的计算14.甲、乙、丙三位同学被问到是否去过A、B、C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.【答案】A【解析】试题分析:根据题意可将三人可能去过哪些城市的情况列表如下:A城市B城市C城市甲去过没去去过乙去过没去没去丙去过可能可能可以得出结论乙去过的城市为:A.考点:命题的逻辑分析e x1,x1,15.设函数 f x1那么使得 f x2成立的x的取值范围是________.x3,x1,【答案】( ,8]【解析】试题分析:由于题中所给是一个分段函数,那么当x1时,由e x12,可解得:x1ln2,1x23那么此时:x1;当x1时,由x32,可解得:8,那么此时:1x8,综合上述两种情况可得:x(,8]考点:1.分段函数;2.解不等式16.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角MAN60,C点的仰角CAB45以及MAC75;从C点测得MCA60.山高BC100m,那么山高MN________m.【答案】150【解析】试题分析:根据题意,在ABC中,CAB450,ABC900,BC100,易得:AC1002;在AMC中,MAC750,MCA600,AC1002,易得:AMC450,由正弦定理可解得:AC AM,即:sin AMC sinACM100231003;在AMN中,已知AM222MAN600,MNA900,AM1003,易得:MN150m.考点:1.空间几何体;2.仰角的理解;3.解三角形的运用八、解答题17.a n是递增的等差数列,a2,a4是方程x25x60的根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021高考新课标全国1卷文科数学试题及答案2021年普通高等学校招生全国统一考试文科数学试题及答案本试卷共5页,满分150分。

考生注意:1.在答题卡上填写准考证号和姓名,并核对条形码上的信息是否与自己的准考证号和姓名一致。

2.选择题用铅笔在答题卡上涂黑对应的答案标号,非选择题在答题卡上作答,不要在试卷上作答。

3.考试结束后,将试题卷和答题卡一并交回。

一、选择题:共12小题,每小题5分,共60分。

1.已知集合A={x|x0},则B=?A。

B=空集XXXC。

B={x|x<3/2}D。

B={x|x>3/2}2.为评估一种农作物的种植效果,选了n块地作试验田,这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是?A。

x1,x2,…,xn的平均数B。

x1,x2,…,xn的标准差C。

x1,x2,…,xn的最大值D。

x1,x2,…,xn的中位数3.下列各式的运算结果为纯虚数的是?A。

i(1+i)²B。

i²(1-i)C。

(1+i)²D。

i(1+i)⁴4.如图,正方形ABCD内的图形来自中国古代的太极图。

正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称。

在正方形内随机取一点,则此点取自黑色部分的概率是?A。

1/4B。

π/8C。

1/2πD。

4/y²5.已知F是双曲线C:x²/9-y²/4=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3)。

则△APF的面积为?A。

3B。

11/23C。

32/3D。

266.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是?图片无法复制,请自行查看原试卷)7.设x,y满足约束条件x- y≥1,y≥0,则z=x+y的最大值为?A。

1B。

2C。

3D。

无最大值8.函数y=|x-2|+|x-4|+|x-6|的最小值为?A。

0B。

1C。

2D。

3在四棱锥P-ABCD中,已知XXX且∠BAP=∠CDP=90°。

1)证明:平面PAB⊥平面PAD。

证明:由已知条件可得∠ABP=∠CDP=90°,故四边形ABPD为矩形,因此PA=BD,PC=AB。

又因为AB//CD,所以∠APD=∠BPC,∠PAD=∠PCD,因此△PAD∽△PCD,从而可得PA/PD=PC/CD,即PA/AB=PC/CD,所以平面PAB⊥平面PAD。

2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P-ABCD的体积为19.求该四棱锥的侧面积。

由于PA=PD=AB=DC,所以四棱锥P-ABCD为正四棱锥,设棱长为a,底面对角线长度为d,则有d=2a。

又因为四棱锥的体积为19,所以有1/3×S底面×高=19,即S底面×高=57.由勾股定理可得AP=√2a,PD=√2a,AD=2a,PC=2a,CD=2a√2.根据正四棱锥的侧面积公式,可得四棱锥P-ABCD的侧面积为S侧面=2a√(a^2+d^2/4)=2a√(5a^2/4)=a√(10a^2)。

代入d=2a和S底面×高=57,可得a=3√3,因此S侧面=9√30.故该四棱锥的侧面积为9√30.为了监控某种零件的一条生产线的生产过程,检验员每隔30 XXX从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm)。

下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序零件尺寸抽取次序19.959210.12109.9139.961149.9612510.01 139.2269.921479.9815810.04 169.95 1)求(xii)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小)。

首先求出零件尺寸的平均数x和样本标准差s,有x=9.97,s=0.212.然后根据样本相关系数公式,可得:r=∑(xi-x)(yi-y)/[√(∑(xi-x)^2)√(∑(yi-y)^2)]= -0.008r|<0.25,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小。

2)一天内抽检零件中,如果出现了尺寸在(x-3s,x+3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查。

ⅰ)从这一天抽检的结果看,学.科网是否需对当天的生产过程进行检查?根据样本标准差s,可得3s=0.636,因此(x-3s,x+3s)=(9.334,10.606)。

从数据中可以看出,所有的零件尺寸都在这个范围内,因此不需要对当天的生产过程进行检查。

ⅱ)在(x-3s,x+3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差。

(精确到0.01)将零件尺寸按从小到大的顺序排列,可以得到:9.22.9.91.9.92.9.95.9.95.9.96.9.96.9.98.10.01.10.04.10.12.可以发现,9.22明显是一个离群值,因此将其剔除。

剩余的15个零件尺寸的平均数为x=9.97,样本标准差为s=0.19.因此,剔除离群值后,该生产线当天生产的零件尺寸的均值为9.97,标准差为0.19.设曲线C在点M处的切线斜率为k,则由题意可得:k = tan(θ),其中θ为C在M处的切线与x轴正方向的夹角;k = tan(π/2 - θ),其中π/2 - θ为AM与x轴正方向的夹角;由于AM⊥BM,所以k = BM/AM;又因为C在M处的切线与直线AB平行,所以k = AB的斜率;综上所述,k = BM/AM = tan(θ) = tan(π/2 - θ) = AB的斜率;解得tan(θ) = -1/3,即θ = arctan(-1/3);又因为x = 3cos(θ),所以x = 3cos(arctan(-1/3));化简得x = (9/10);又因为y = sin(θ),所以y = sin(arctan(-1/3));化简得y = (-3/10);因此,C与l的交点坐标为(9/10.-3/10)。

当f(x)单调递增时,有f'(x)。

0;根据f'(x) = e^(2x - a) (2 - ax),可得2 - ax。

0,即a < 2/x;当f(x)单调递减时,有f'(x) < 0;根据f'(x) = e^(2x - a) (2 - ax),可得2 - ax。

2/x;又因为f(x) ≥ 0,所以e^(2x - a) ≥ a2x;代入x = 1,可得e^(2 - a) ≥ a2;解得a ≤ -2或a ≥ ln(2);综合可得a ∈ (-∞。

-2] ∪ [ln(2)。

+∞)。

当a = 1时,f(x) = -x^2 + x + 4,g(x) = |x + 1| + |x - 1|;当x ≤ -1时,f(x) < 0,g(x) = -2x;当-1 < x ≤ 1时,f(x) ≥ 0,g(x) = 2x;当x。

1时,f(x) < 0,g(x) = 2x;综上所述,当a = 1时,不等式f(x) ≥ g(x)的解集为(-∞。

-1] ∪ [1.+∞);当不等式的解集包含[-1.1]时,即-1 ≤ x ≤ 1时,有-f(x) +g(x) = 2x^2 - x - 4 ≤ 0;解得a ∈ [-2.4/3]。

2021年全国高考文科数学试题及答案题目1:已知四棱锥P-ABCD,其底面ABCD为矩形,AB=3,AD=8,侧棱PA=PD,PA与底面的交点E,PE=x/3,且四棱锥P-ABCD的体积为V,求x的值。

解析:由题设得x=2,因此PA=PD=2,AD=BC=2√2,PB=PC=2√2.可得四棱锥P-ABCD的侧面积为6+2√3.题目19:某工厂一天生产了16个零件,样本数据如下表所示,其中xi表示第i个零件的尺寸(单位:mm),求这一天生产的零件尺寸是否随生产过程的进行而系统地变大或变小。

解析:(1)由样本数据得(xi,i)(i=1,2.16)的相关系数为r≈-0.18.由于|r|<0.25,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小。

(2)(i)由于x=9.97,s≈0.212,由样本数据可以看出抽取的第13个零件的尺寸在(x-3s,x+3s)以外,因此需对当天的生产过程进行检查。

(ii)剔除离群值,即第13个数据,剩下数据的平均数为10.02,尺寸的均值的估计值为10.02.剔除第13个数据,剩下数据的样本方差为0.008,这条生产线当天生产的零件尺寸的标准差的估计值为0.09.题目20:已知函数y=(x+2)²/4,点A(x1,y1),点B(x2,y2),线段AB的中点为N,过点B且垂直于AB的直线交函数y=(x+2)²/4于点M,求线段MN的长度。

解析:(1)设A(x1,y1),B(x2,y2),则x1≠x2,y1=(x1+2)²/4,y2=(x2+2)²/4,x1+x2=4,(2y2-y1)/(x2-x1)=1,因此直线AB的斜率k=1.设M(x3,y3),由题设知y3=1,解得x3=2,于是M(2,1)。

设直线AB的方程为y=x+m,故线段AB的中点为N(2,2+m),|MN|=|m+1|。

将y=x+m代入y=(x+2)²/4,得x²-4x-4m=0.当Δ=16(m+1)>0,即m>-1时,x1,2=2±2√(m+1)。

从而|AB|=2|x1-x2|=4√(m+1),|MN|=|m+1|。

2021高考新课标全国1卷文科数学试题及答案题设知|AB| = 2|MN|,即 4 2(m+1) = 2(m+1),解得 m=7.所以直线 AB 的方程为 y=x+7.1)函数 f(x) 的定义域为 ( -∞。

+∞ ),f'(x) = 2e^(2x-a)。

①若 a=0.则 f(x)=e^(2x)。

在 ( -∞。

+∞ ) 单调递增。

②若 a>0.则由 f'(x)=0 得 x=lna。

当 x∈( -∞。

lna ) 时,f'(x)0,所以 f(x) 在 ( -∞。

lna ) 单调递减,在 ( lna。

+∞ ) 单调递增。

③若 a0,故 f(x) 在 ( -∞。

ln(-a) ) 单调递减,在 ( ln(-a)。

+∞ ) 单调递增。

2)①若 a=0.则 f(x)=e^(2x)。

相关文档
最新文档