深度学习--深度信念网络(Deep-Belief-Network)

深度学习--深度信念网络(Deep-Belief-Network)
深度学习--深度信念网络(Deep-Belief-Network)

深度学习--深度信念网络(Deep Belief Network)

概述

深度信念网络(Deep Belief Network, DBN) 由Geoffrey Hinton 在2006 年提出。它是一种生成模型,通过训练其神经元间的权重,我们可以让整个神经网络按照最大概率来生成训练数据。我们不仅可以使用DBN 识别特征、分类数据,还可以用它来生成数据。下面的图片展示的是用DBN 识别手写数字:

图 1 用深度信念网络识别手写数字。图中右下角是待识别数字的黑白位图,它的上方有三层隐性神经元。每一个黑色矩形代表一层神经元,白点代表处于开启状态的神经元,黑色代表处于关闭状态的神经元。注意顶层神经元的左下方即使别结果,与画面左上角的对应表比对,得知这个DBN 正确地识别了该数字。

下面是展示了一个学习了大量英文维基百科文章的DBN 所生成的自然语言段落:

In 1974 Northern Denver had been overshadowed by CNL, and several Irish intelligence agencies in the Mediterranean region. However, on the Victoria, Kings Hebrew stated that Charles decided to escape during an

alliance. The mansion house was completed in 1882, the second in its bridge are omitted, while closing is the proton reticulum composed below it aims, such that it is the blurring of appearing on any well-paid type of box printer.

DBN 由多层神经元构成,这些神经元又分为显性神经元和隐性神经元(以下简称显元和隐元)。显元用于接受输入,隐元用于提取特征。因此隐元也有个别名,叫特征检测器 (feature detectors)。最顶上的两层间的连接是无向的,组成联合内存 (associative memory)。较低的其他层之间有连接上下的有向连接。最底层代表了数据向量 (data vectors),每一个神经元代表数据向量的一维。

DBN 的组成元件是受限玻尔兹曼机(Restricted Boltzmann Machines, RBM)。训练DBN 的过程是一层一层地进行的。在每一层中,用数据向量来推断隐层,再把这一隐层当作下一层(高一层) 的数据向量。

受限玻尔兹曼机

如前所述,RBM 是DBN 的组成元件。事实上,每一个RBM 都可以单独用作聚类器。

RBM 只有两层神经元,一层叫做显层(visible layer),由显元 (visible units) 组成,用于输入训练数据。另一层叫做隐层 (Hidden layer),相应地,由隐元 (hidden units) 组成,用作特征检测器 (feature detectors)。

图 2 受限玻尔兹曼机的结构。图中的较上一层神经元组成隐层,较下的神经元组成显元。每一层都可以用一个向量来表示,每一维表示每个神经元。注意这两

层间的对称(双向) 连接。

神经元之间的条件独立性

应注意到,显层和隐层内部的神经元都没有互连,只有层间的神经元有对称的连接线。这样的好处是,在给定所有显元的值的情况下,每一个隐元取什么值是互不相关的。也就是说,

同样,在给定隐层时,所有显元的取值也互不相关:

有了这个重要性质,我们在计算每个神经元的取值情况时就不必每次计算一个,而是同时并行地计算整层神经元。

使用RBM 的过程

假设我们现在已经得到一个训练好的RBM,每个隐元与显元间的权重用矩阵W表示,且:

其中Wij代表从第i个显元到第j个隐元的权重,M代表显元的个数,N代表

隐元的个数。那么,当我们把一条新来的数据附给(clamp to) 显层后,RBM 将会依照权值W来决定开启或关闭隐元。具体的操作如下:

首先,将每个隐元的激励值(activation) 计算出来:

注意,这里用到了前面提到的神经元之间的条件独立性。

然后,将每个隐元的激励值都用S 形函数进行标准化,变成它们处于开启

状 (用 1 表示) 的概率值:

此处的S 形函数我们采用的是Logistic 函数:

(完整版)深度神经网络及目标检测学习笔记(2)

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(Deep Neural Network,NN)实现了对图片的识别,包 括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术 的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来“这是苹在父母一遍遍的重复中学习训练的过程就好像是刚出生的婴儿,设置。.果”、“那是汽车”。有人说,人工智能很傻嘛,到现在还不如三岁小孩。其实可以换个角度想:刚出生婴儿就好像是一个裸机,这是经过几十万年的进化才形成的,然后经过几年的学习,就会认识图片和文字了;而深度学习这个“裸机”用了几十年就被设计出来,并且经过几个小时的“学习”,就可以达到这个水平了。 1.2 BP算法 神经网络的训练就是它的参数不断变化收敛的过程。像父母教婴儿识图认字一样,给神经网络看一张图并告诉它这是苹果,它就把所有参数做一些调整,使得它的计算结果比之前更接近“苹果”这个结果。经过上百万张图片的训练,它就可以达到和人差不多的识别能力,可以认出一定种类的物体。这个过程是通过反向传播(Back Propagation,BP)算法来实现的。 建议仔细看一下BP算法的计算原理,以及跟踪一个简单的神经网络来体会训练的过程。

BP网络以及深度学习讲解

神经网络 1 BP 网 图:三层BP 网 信号正向传播和误差反向传播 )(k k net f o = ∑==m j j jk k y net 0 ω k=1,2……l 有l 个输出(l 常常为1)。 中间隐层有m 层: )(j j net f y = ∑==n i i ij j x net 0 υ i=1,2,……m n 个输入。j=1,2……m 其中Sigmoid 函数:x e x f -+= 11 )( (单极性) k o k net E ??- =δ 1.1 计算流程

不同样本误差:2 1 )(∑=-= l k M k M k M o d E E=((T-Ok)'*(T-Ok))/2; 一般使用2 1 1 )(21∑∑ ==-=l k p k p k M p o d E 总 1.2 影响参数: 1.2.1 隐层节点数 nn=n m + +a ,其中 m 为输出神经元数, n 为输入神经元数, a 为[1,10]之间的常数。 nn=n 2log nn=2n+1; nn=mn 1.2.2 学习率 学习率η,太大会影响训练稳定性,太小使训练收敛速度慢。一般在0.01--0.8之间。我取0.2 E min 一般在0.1--之间。 1.3 样本/输入 1.3.1 训练样本 训练样本数:M ε w n ≈ ,w n 为权值阈值总数,一般为连接权总数的5~10倍。 训练数据必须作平衡处理,不同类别的样本需要交叉输入,轮流输入--时间延长。 1.3.2 输入形式 字符:形状格填充、边缘距离 曲线:采样 变化大可以密集采样 输出: 不同的输出用不同的码表示 1.3.3 归一化: 样本分布比较均匀 [0,1]区间:min max min x x x x x i i --=

趋势分析之深度神经网络

趋势分析之深度神经网络 深度神经网络(Deepl Neural Networks, DNN)从字面上理解就是深层次的神经网络。自从Hinton和Salakhutdinov在《Science》上发表的论文解决了多层神经网络训练的难题后,随着研究的深入,各种深度神经网络模型如雨后春笋般涌现出来。 2012年Krizhevsky等人设计的包含5个卷积层和3个全连接层的AlexNet,并将卷积网络分为两个部分在双CPU上进行训练;2014年Google研发团队设计的22层GoogleNet;同年牛津大学的Simonyan和Zisserman设计出深度为16-19层的VGG网络;2015年微软亚洲研究院的何凯明等人提出了152层的深度残差网络ResNet,最新改进后的ResNet网络深度可达1202层;2016年生成式对抗网络GAN获得广泛关注。 深度神经网络热度变化图 下面我们将用Trend analysis分析深度神经网络领域内的研究热点。 (点击链接即可进入Deep Neural Networks Trend Analysis: https://https://www.360docs.net/doc/e510358475.html,/topic/trend?query=Deep%20Neural%20Network%20) 通过Trend analysis的分析挖掘结果我们可以看到,当前该领域的热点研究话题有feature

extraction、speech recognition、face recognition、information retrieval、object recognition、cell cycle等。近年来,深度神经网络由于优异的算法性能,已经广泛应用于图像分析、语音识别、目标检测、语义分割、人脸识别、自动驾驶、生物医学等领域,而根据分析结果可知语音识别是该领域热门研究话题top 1。 深度神经网络在工业界也得到了广泛的应用,Google、Facebook、Microsoft、IBM、百度、阿里巴巴、腾讯、科大讯飞等互联网巨头也纷纷开展深度神经网络的研究工作,并且成功应用于谷歌Now、微软OneNote手写识别、Cortana语音助手、讯飞语音输入法等。 附一. 深度神经网络领域5位代表学者 Dong Yu (俞栋) Tara N. Sainath

深度学习系列(7):神经网络的优化方法

机器?学习中,梯度下降法常?用来对相应的算法进?行行训练。常?用的梯度下降法包含三种不不同的形式,分别是BGD 、SGD 和MBGD ,它们的不不同之处在于我们在对?目标函数进?行行梯度更更新时所使?用的样本量量的多少。 以线性回归算法来对三种梯度下降法进?行行?比较。 ?一般线性回归函数的假设函数为: (即有n 个特征)对应的损失函数为下图即为?一个?二维参数和组对应的损失函数可视化图像:批量量梯度下降法(Batch Gradient Descent ,简称BGD )是梯度下降法最原始的形式,它的具体思路路是在更更新每?一参数时都使?用所有的样本来进?行行更更新,其数学形式如下: 深度学习系列列(7):神经?网络的优化?方法?一、Gradient Descent [Robbins and Monro, 1951,Kiefer et al., 1952] = h θ∑j =0n θj x j L (θ)=12m ∑i =1 m (h ()?)x i y i 2θ0θ11.1 BGD (Batch Gradient Descent )

还是以上?面?小球的例例?子来看,momentum ?方式下?小球完全是盲?目被动的?方式滚下的。这样有个缺 三、NAG (Nesterov accelerated gradient )[Nesterov, 1983]

点就是在邻近最优点附近是控制不不住速度的。我们希望?小球可以预判后?面的“地形”,要是后?面地形还是很陡峭,那就继续坚定不不移地?大胆?走下去,不不然的话就减缓速度。 当然,?小球?自?己也不不知道真正要?走到哪?里里,这?里里以 作为下?一个位置的近似,将动量量的公式更更改为: 相?比于动量量?方式考虑的是上?一时刻的动能和当前点的梯度,?而NAG 考虑的是上?一时刻的梯度和近似下?一点的梯度,这使得它可以先往前探探路路,然后慎重前进。 Hinton 的slides 是这样给出的: 其中两个blue vectors 分别理理解为梯度和动能,两个向量量和即为momentum ?方式的作?用结果。?而靠左边的brown vector 是动能,可以看出它那条blue vector 是平?行行的,但它预测了了下?一阶段的梯度是red vector ,因此向量量和就是green vector ,即NAG ?方式的作?用结果。 momentum 项和nesterov 项都是为了了使梯度更更新更更加灵活,对不不同情况有针对性。但是,?人?工设置?一些学习率总还是有些?生硬,接下来介绍?几种?自适应学习率的?方法 训练深度?网络的时候,可以让学习率随着时间退?火。因为如果学习率很?高,系统的动能就过?大,参数向量量就会?无规律律地变动,?无法稳定到损失函数更更深更更窄的部分去。对学习率衰减的时机把握很有技巧:如果慢慢减?小,可能在很?长时间内只能浪费计算资源然后看着它混沌地跳动,实际进展很少;但如果快速地减少,系统可能过快地失去能量量,不不能到达原本可以到达的最好位置。通常,实现学习率退?火有三种?方式: θ?γv t ?1 =γ+ηJ (θ?γ) v t v t ?1?θv t ?1θ=θ?v t 四、学习率退?火

(完整版)深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署DNN 的关键。 论文地址:https://https://www.360docs.net/doc/e510358475.html,/pdf/1703.09039.pdf 本文旨在提供一个关于实现DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出了一个DNN 综述——讨论了支持DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低DNN 计算成本。本文也会对帮助研究者和从业者快速上手DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解DNN 的关键设计考量;通过基准和对比指标评估不同的DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础[1]。由于DNN 在语音识别[2] 和图像识别[3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些DNN 被部署到了从自动驾驶汽车[4]、癌症检测[5] 到复杂游戏[6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是GPU),已经成为许多DNN 处理的砥柱,但提供对DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对DNN、理解DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下:

基于深度卷积神经网络的图像分类

SHANGHAI JIAO TONG UNIVERSITY 论文题目:基于卷积神经网络的自然图像分类技术研究 姓名: 高小宁 专业:控制科学与工程

基于卷积神经网络的自然图像分类技术研究 摘要:卷积神经网络已在图像分类领域取得了很好的效果,但其网络结构及参数的选择对图像分类的效果和效率有较大的影响。为改善卷积网络的图像分类性能,本文对卷积神经网络模型进行了详细的理论分析,并通过大量的对比实验,得出了影响卷积网络性能的因素。结合理论分析及对比实验,本文设计了一个卷积层数为8层的深度卷积网络,并结合Batch Normalization、dropout等方法,在CIFAR-10数据集上取得了88.1%的分类精度,有效地提高了卷积神经网络的分类效果。 关键词:卷积神经网络,图像分类,Batch Normalization,Dropout Research on Natural Image Classification Based on Convolution Neural Network Abstract: Convolution neural network has achieved very good results in image classification, but its network structure and the choice of parameters have a greater impact on image classification efficiency and efficiency. In order to improve the image classification performance of the convolution network, a convolutional neural network model is analyzed in detail, and a large number of contrastive experiments are conducted to get the factors that influence the performance of the convolution network. Combining the theory analysis and contrast experiment, a convolution layer depth convolution network with 8 layers is designed. Combined with Batch Normalization and dropout, 88.1% classification accuracy is achieved on CIFAR-10 dataset. Which improves the classification effect of convolution neural network. Key Words:Convolution neural network(CNN), image classification, Batch Normalization,Dropout

神经网络及深度学习

可用于自动驾驶的神经网络及深度学习 高级辅助驾驶系统(ADAS)可提供解决方案,用以满足驾乘人员对道路安全及出行体验的更高要求。诸如车道偏离警告、自动刹车及泊车辅助等系统广泛应用于当前的车型,甚至是功能更为强大的车道保持、塞车辅助及自适应巡航控制等系统的配套使用也让未来的全自动驾驶车辆成为现实。 作者:来源:电子产品世界|2017-02-27 13:55 收藏 分享 高级辅助驾驶系统(ADAS)可提供解决方案,用以满足驾乘人员对道路安全及出行体验的更高要求。诸如车道偏离警告、自动刹车及泊车辅助等系统广泛应用于当前的车型,甚至是功能更为强大的车道保持、塞车辅助及自适应巡航控制等系统的配套使用也让未来的全自动驾驶车辆成为现实。 如今,车辆的很多系统使用的都是机器视觉。机器视觉采用传统信号处理技术来检测识别物体。对于正热衷于进一步提高拓展ADAS功能的汽车制造业而言,深度学习神经网络开辟了令人兴奋的研究途径。为了实现从诸如高速公路全程自动驾驶仪的短时辅助模式到专职无人驾驶旅行的自动驾驶,汽车制造业一直在寻求让响应速度更快、识别准确度更高的方法,而深度学习技术无疑为其指明了道路。 以知名品牌为首的汽车制造业正在深度学习神经网络技术上进行投资,并向先进的计算企业、硅谷等技术引擎及学术界看齐。在中国,百度一直在此技术上保持领先。百度计划在2019 年将全自动汽车投入商用,并加大全自动汽车的批量生产力度,使其在2021 年可广泛投入使用。汽车制造业及技术领军者之间的密切合作是嵌入式系统神经网络发展的催化剂。这类神经网络需要满足汽车应用环境对系统大小、成本及功耗的要求。 1轻型嵌入式神经网络 卷积式神经网络(CNN)的应用可分为三个阶段:训练、转化及CNN在生产就绪解决方案中的执行。要想获得一个高性价比、针对大规模车辆应用的高效结果,必须在每阶段使用最为有利的系统。 训练往往在线下通过基于CPU的系统、图形处理器(GPU)或现场可编程门阵列(FPGA)来完成。由于计算功能强大且设计人员对其很熟悉,这些是用于神经网络训练的最为理想的系统。 在训练阶段,开发商利用诸如Caffe(Convolution Architecture For Feature Extraction,卷积神经网络架构)等的框架对CNN 进行训练及优化。参考图像数据库用于确定网络中神经元的最佳权重参数。训练结束即可采用传统方法在CPU、GPU 或FPGA上生成网络及原型,尤其是执行浮点运算以确保最高的精确度。 作为一种车载使用解决方案,这种方法有一些明显的缺点。运算效率低及成本高使其无法在大批量量产系统中使用。 CEVA已经推出了另一种解决方案。这种解决方案可降低浮点运算的工作负荷,并在汽车应用可接受的功耗水平上获得实时的处理性能表现。随着全自动驾驶所需的计算技术的进一步发展,对关键功能进行加速的策略才能保证这些系统得到广泛应用。 利用被称为CDNN的框架对网络生成策略进行改进。经过改进的策略采用在高功耗浮点计算平台上(利用诸如Caffe的传统网络生成器)开发的受训网络结构和权重,并将其转化为基于定点运算,结构紧凑的轻型的定制网络模型。接下来,此模型会在一个基于专门优化的成像和视觉DSP芯片的低功耗嵌入式平台上运行。图1显示了轻型嵌入式神经网络的生成

深度学习与全连接神经网络

统计建模与R语言 全连接神经网络 学院航空航天学院 专业机械电子工程 年级 2019级 学生学号 19920191151134 学生姓名梅子阳

一、绪论 1、人工智能背景 信息技术是人类历史上的第三次工业革命,计算机、互联网、智能家居等技术的普及极大地方便了人们的日常生活。通过编程的方式,人类可以将提前设计好的交互逻辑交给机器重复且快速地执行,从而将人类从简单枯燥的重复劳动工作中解脱出来。但是对于需要较高智能水平的任务,如人脸识别、聊天机器人、自动驾驶等任务,很难设计明确的逻辑规则,传统的编程方式显得力不从心,而人工智能(Artificial Intelligence,简称 AI)是有望解决此问题的关键技术。 随着深度学习算法的崛起,人工智能在部分任务上取得了类人甚至超人的智力水平,如围棋上 AlphaGo 智能程序已经击败人类最强围棋专家之一柯洁,在 Dota2 游戏上OpenAI Five 智能程序击败冠军队伍 OG,同时人脸识别、智能语音、机器翻译等一项项实用的技术已经进入到人们的日常生活中。现在我们的生活处处被人工智能所环绕,尽管目前能达到的智能水平离通用人工智能(Artificial General Intelligence,简称 AGI)还有一段距离,但是我们仍坚定地相信人工智能的时代已经来临。 怎么实现人工智能是一个非常广袤的问题。人工智能的发展主要经历过三个阶段,每个阶段都代表了人们从不同的角度尝试实现人工智能的探索足迹。早期,人们试图通过总结、归纳出一些逻辑规则,并将逻辑规则以计算机程序的方式实现,来开发出智能系统。但是这种显式的规则往往过于简单,并且很难表达复杂、抽象的概念和规则。这一阶段被称为推理期。 1970 年代,科学家们尝试通过知识库加推理的方式解决人工智能,通过建庞大复杂的专家系统来模拟人类专家的智能水平。这些明确指定规则的方式存在一个最大的难题,就是很多复杂、抽象的概念无法用具体的代码实现。比如人类对图片的识别、对语言的理解过程,根本无法通过既定规则模拟。为了解决这类问题,一门通过让机器自动从数据中学习规则的研究学科诞生了,称为机器学习,并在 1980 年代成为人工智能中的热门学科。在机器学习中,有一门通过神经网络来学习复杂、抽象逻辑的方向,称为神经网络。神经网络方向的研究经历了两起两落。2012 年开始,由于效果极为显著,应用深层神经网络技术在计算机视觉、自然语言处理、机器人等领域取得了重大突破,部分任务上甚至超越了人类智能水平,开启了以深层神经网络为代表的人工智能的第三次复兴。深层神经网络有了一个新名字:深度学习。一般来讲,神经网络和深度学习的本质区别并不大,深度学习特指基于深层神经网络实现的模型或算法。 2、神经网络与深度学习 将神经网络的发展历程大致分为浅层神经网络阶段和深度学习阶段,以2006 年为分割点。2006 年以前,深度学习以神经网络和连接主义名义发展,

深度神经网络及目标检测学习笔记

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(DeepNeural Network,NN)实现了对图片的识别,包括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来设置。训练的过程就好像是刚出生的婴儿,在父母一遍遍的重复中学习“这是苹

BP神经网络及深度学习研究-综述(最新整理)

BP神经网络及深度学习研究 摘要:人工神经网络是一门交叉性学科,已广泛于医学、生物学、生理学、哲学、信息学、计算机科学、认知学等多学科交叉技术领域,并取得了重要成果。BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。本文将主要介绍神经网络结构,重点研究BP神经网络原理、BP神经网络算法分析及改进和深度学习的研究。 关键词:BP神经网络、算法分析、应用 1 引言 人工神经网络(Artificial Neural Network,即ANN ),作为对人脑最简单的一种抽象和模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是20世纪80 年代以来人工智能领域兴起的研究热点。人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,旨在模仿人脑结构及其功能的信息处理系统。 人工神经网络最有吸引力的特点就是它的学习能力。因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用[1]人工神经网络模型对问题进行研究优化解决。 人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。现在分别介绍人工神经元模型及人工神经网络模型。 1.1 人工神经元模型 仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的仿生模拟,用来模拟人工神经网络[2]。人们提出的神经元模型有很多,其中最早提出并且影响较大的是1943年心理学家McCulloch和数学家W. Pitts 在分析总结神经元基本特性的基础上首先提出的MP模型。该模型经过不断改进后,形成现在广泛应用的BP神经元模型。人工神经元模型是由人量处理单元厂泛互连而成的网络,是人脑的抽象、简化、模拟,反映人脑的基本特性。一般来说,作为人工神经元模型应具备三个要素: (1)具有一组突触或连接,常用表示神经元i和神经元j之间的连接强度。 w ij (2)具有反映生物神经元时空整合功能的输入信号累加器。

深度学习与神经网络

CDA数据分析研究院出品,转载需授权 深度学习是机器学习的一个子领域,研究的算法灵感来自于大脑的结构和功能,称为人工神经网络。 如果你现在刚刚开始进入深度学习领域,或者你曾经有过一些神经网络的经验,你可能会感到困惑。因为我知道我刚开始的时候有很多的困惑,我的许多同事和朋友也是这样。因为他们在20世纪90年代和21世纪初就已经学习和使用神经网络了。 该领域的领导者和专家对深度学习的观点都有自己的见解,这些具体而细微的观点为深度学习的内容提供了很多依据。 在这篇文章中,您将通过听取该领域的一系列专家和领导者的意见,来了解什么是深度学习以及它的内容。 来让我们一探究竟吧。 深度学习是一种大型的神经网络 Coursera的Andrew Ng和百度研究的首席科学家正式创立了Google Brain,最终导致了大量Google服务中的深度学习技术的产品化。 他已经说了很多关于深度学习的内容并且也写了很多,这是一个很好的开始。 在深度学习的早期讨论中,Andrew描述了传统人工神经网络背景下的深度学习。在2013年的题为“ 深度学习,自学习和无监督特征学习”的演讲中“他将深度学习的理念描述为: 这是我在大脑中模拟的对深度学习的希望: - 使学习算法更好,更容易使用。 - 在机器学习和人工智能方面取得革命性进展。 我相信这是我们迈向真正人工智能的最好机会

后来他的评论变得更加细致入微了。 Andrew认为的深度学习的核心是我们现在拥有足够快的计算机和足够多的数据来实际训练大型神经网络。在2015年ExtractConf大会上,当他的题目“科学家应该了解深度学习的数据”讨论到为什么现在是深度学习起飞的时候,他评论道: 我们现在拥有的非常大的神经网络......以及我们可以访问的大量数据 他还评论了一个重要的观点,那就是一切都与规模有关。当我们构建更大的神经网络并用越来越多的数据训练它们时,它们的性能会不断提高。这通常与其他在性能上达到稳定水平的机器学习技术不同。 对于大多数旧时代的学习算法来说......性能将达到稳定水平。......深度学习......是第一类算法......是可以扩展的。...当你给它们提供更多的数据时,它的性能会不断提高 他在幻灯片中提供了一个漂亮的卡通片: 最后,他清楚地指出,我们在实践中看到的深度学习的好处来自有监督的学习。从2015年的ExtractConf演讲中,他评论道: 如今的深度学习几乎所有价值都是通过有监督的学习或从有标记的数据中学习 在2014年的早些时候,在接受斯坦福大学的题为“深度学习”的演讲时,他也发出了类似的评论。 深度学习疯狂发展的一个原因是它非常擅长监督学习

神经网络11大常见陷阱及应对方法

深度学习的这些坑你都遇到过吗?神 经网络11 大常见陷阱及应对方法【新智元导读】如果你的神经网络不工作,该怎么办?本文作者列举了搭建神经网络时可能遇到的11个常见问题,包括预处理数据、正则化、学习率、激活函数、网络权重设置等,并提供解决方法和原因解释,是深度学习实践的有用资料。 如果你的神经网络不工作,该怎么办?作者在这里列出了建神经网络时所有可能做错的事情,以及他自己的解决经验。 1.忘记规范化数据 2.忘记检查结果 3.忘记预处理数据 4.忘记使用正则化 5.使用的batch太大 6.使用了不正确的学习率 7.在最后层使用了错误的激活函数 8.你的网络包含了Bad Gradients 9.初始化网络权重不正确 10.你使用的网络太深了 11.使用隐藏单元的数量不对 忘记规范化数据了

问题描述 在使用神经网络时,思考如何正确地规范化数据是非常重要的。这是一个无法改变的步骤——假如这一步骤没有小心、正确地做,你的网络就几乎不可能工作。由于这个步骤非常重要,在深度学习社区中也是众所周知的,所以它很少在论文中被提及,因此初学者常常在这一步出错。 怎样解决? 一般来说,规范化(normalization)的意思是:将数据减去均值,再除以其方差。通常这是对每个输入和输出特征单独做的,但你可能经常会希望对特征组做或特别主翼处理某些特征的规范化。 为什么? 我们需要对数据进行规范化的主要原因是大部分的神经网络流程假设输入和输出数据都以一个约是1的标准差和约是0的均值分布。这些假设在深度学习文献中到处都是,从权重初始化、激活函数到训练网络的优化算法。 还需要注意 未训练的神经网络通常会输出约在-1到1范围之间的值。如果你希望输出其他范围的值(例如RBG图像以0-255范围的字节存储)会出现一些问题。在开始训练时,网络会非常不稳定,因为比如说预期值是255,网络产生的值是-1或1——这会被大多数用于训练神经网络的优化算法认为是严重的错误。这会产生过大的梯度,可能导致梯度爆炸。如果不爆炸,那么训练的前几个阶段就是浪费的,因为网络首先学习的是将输出值缩小到大致是预期的范围。如果规范化了数据(在这种情况下,你可以简单地将数值除以128再减去1),就不会发生这些问题。 一般来说,神经网络中特征的规模也决定了其重要性。如果输出中的有一个特征规模很大,那么与其他特征相比它会产生更大的错误。类似地,输入中的大规模特征将主导网络并导致下游发生更大的变化。因此,使用神经网络库的自动规范化往往是不够的,这些神经网络库会在每个特征的基础上盲目地减去平均值并除以方差。你可能有一个输入特征,通常范围在0.0到0.001之间——这个特征的范围如此之小,因为它是一个不重要的特征(在这种情况下,你可能不想重新scale),或者因为与其他特征相比它有一些小的单元(在这种情

深度学习

敏感性Sensitivity 又称真阳性率,就是发病之后,你的诊断方法对疾病的敏感程度(识别能力)。 敏感性越高,漏诊概率越低。 特异性Specificity 特异性又称真阴性率,不发病(我们这里称之为健康)的特征是有别于发病的特征的,我们利用这些差异避免误诊,那么诊断标准对于这些差异利用的如何就用特异性来表示。 特异性越高,确诊概率越高。 train是训练集,val是验证集,test是测试集。train是网络模型在训练的时候用的,而 val是网络模型在训练过程中测试用的,如楼上所说,val是不影响训练的。在训练的时候可以得到train和val这两个数据集的误差率,利用这个误差率可以绘制出学习曲线,通过观察学习曲线,你可以发现一些网络模型的问题,然后再根据这些问题去调整网络参数。test就是网络模型训练完毕测试用的。 你要知道val是validation的简称。 training dataset 和validation dataset都是在训练的时候起作用。而因为valida tion数据集和training没有交集,所以这部分数据对最终训练出的模型没有贡献。 validation的主要作用是来验证是否过拟合、以及用来调节训练参数等。 比如你训练0-10000次迭代过程中,train和validation的loss都是不断降低,但是从10000-20000过程中train loss不断降低,validation的loss不降反升。那么就证明继续训练下去,模型只是对training dataset这部分拟合的特别好,但是泛化能力很差。所以与其选取20000次的结果,不如选择10000次的结果。这个过程的名字叫做Early Stop,validation数据在此过程中必不可少。 如果你去跑caffe自带的训练demo,你会用到train_val.prototxt,这里面的val 其实就是validation。而网络输入的TEST层,其实就是validation,而不是test。你可以通过观察validation的loss和train的loss定下你需要的模型。 但是为什么现在很多人都不用validation了呢? 我的理解是现在模型中防止过拟合的机制已经比较完善了,Dropout\BN等做的很好了。而且很多时候大家都用原来的模型进行fine tune,也比从头开始更难过拟合。所以大家一般都定一个训练迭代次数,直接取最后的模型来测试。

深度学习--深度信念网络

【转】深度学习--深度信念网络(Deep Belief Network) ―深度学习‖学习笔记之深度信念网络 本篇非常简要地介绍了深度信念网络的基本概念。文章先简要介绍了深度信念网络(包括其应用实例)。接着分别讲述了:(1) 其基本组成结构——受限玻尔兹曼机的的基本情况,以及,(2) 这个基本结构如何组成深度信念网络。本文仅仅能使读者了解深度信念网络这一概念,内容非常浅显,甚至有许多不严密的地方。如果有愿意深入了解受限玻尔兹曼机、深度信念网络的,想对深度学习有更多了解的,请访问深度学习官方网站。或者读者可以参考文末的―推荐阅读‖一节。 ―深度学习‖学习笔记之深度信念网络 本篇非常简要地介绍了深度信念网络的基本概念。文章先简要介绍了深度信念网络(包括其应用实例)。接着分别讲述了:(1) 其基本组成结构——受限玻尔兹曼机的的基本情况,以及,(2) 这个基本结构如何组成深度信念网络。本文仅仅能使读者了解深度信念网络这一概念,内容非常浅显,甚至有许多不严密的地方。如果有愿意深入了解受限玻尔兹曼机、深度信念网络的,想对深度学习有更多了解的,请访问深度学习官方网站。或者读者可以参考文末的―推荐阅读‖一节。 目录 概述 (2) 受限玻尔兹曼机 (3) 神经元之间的条件独立性 (3) 使用RBM 的过程 (4) 训练RBM (5) 深度信念网络 (5) 训练过程: (6) 调优过程(Fine-Tuning) : (6) 使用过程 (7) 推荐阅读 (8) 论文 (8) 博文和网络教程 (8) 概述 深度信念网络(Deep Belief Network, DBN) 由Geoffrey Hinton 在2006 年提出。它是一种生成模型,通过训练其神经元间的权重,我们可以让整个神经网络按照最大概率来生成训练数据。我们不仅可以使用DBN 识别特征、分类数据,还可以用它来生成数据。下面的图片展示的是用DBN 识别手写数字:

基于深度卷积神经网络模型的文本情感分类

第45卷第$期V o l.45 N o.3计算机工程 C o m p u te r E n g in e e rin g 2019年3月 M a rc h2019 ?开发研究与工程应用?文章编号:1000#428(2019)0$-0$00-09文献标志码:A中图分类号:TP183 基于深度卷积神经网络模型的文本情感分类 周锦峰,叶施仁,王晖 (常州大学信息科学与工程学院,江苏常州213164) 摘要:为高效提取不同卷积层窗口的文本局部语义特征,提出一种深度卷积神经网络(C N N)模型。通过堆叠多 个卷积层,提取不同窗口的局部语义特征。基于全局最大池化层构建分类模块,对每个窗口的局部语义特征计算 情感类别得分,综合类别得分完成情感分类标注。实验结果表明,与现有C N N模型相比,该模型具有较快的文本 情感分类速度。 关键词:情感分析;情感分类标注;深度学习;卷积神经网络;词向量 中文引用格式:周锦峰,叶施仁,王晖.基于深度卷积神经网络模型的文本情感分类[J].计算机工程,2019,45(3):300-308. 英文引用格式:Z H O U J in fe n g,Y E S h ire n,W A N G H u i. T ext sentim ent classification based on deep con volution al neural netw ork m o d e l*J].Com puter E n g in e e rin g,2019,45 (3) :300-308. Text Sentiment Classification Based on Deep Convolutional Neural Network Model Z H O U J in fe n g,Y E S h ire n,W A N G H u i (School of Inform ation Science and E ngineering,Changzhou Universit;^,C hangzhou,Jiangsu 213164,C hina) [A b s tr a c t]This paper proposes a d e e p C o nvo lutio na l N eural N e tw ork(C N N)m odel to e ffic ie n tly extract semantic features o f d iffe re n t con volution al layer w indow s fo r te x t.The m odel avoids m anually specifying m u ltip le w indo w sizes and retains local semantic features o f diffe re n t w indow s by stacking a n u m b e r o f con volution al l C lassification m odules are b u ilt based on t he G lobal M a x P ooling(G M P)layer to calculate the category score f local semantic features o f each w in d o w.The m odel synthesizes these category scores to com plete the sentiment classification annotation.E xperim ental results show that the m odel has faster text sentim ent classificat o f other C N N m odels. [K e y w o r d s]sentim ent analysis;sentim ent classification a n n o ta tion;deep le a rn in g;C o nvo lutio na l N eural N e tw ork (C N N) ;w ord vector D O I:10.19678/j.issn.1000-3428.0050043 〇概述 情感分析主要通过人类书写的文本分析和研究 人的意见、情感、评价、态度和情绪,是自然语言处理 (N a tu ra l La ng ua ge P ro c e ss in g,N L P)中最热门的研究 领域之一,并在数据挖掘、W e b挖掘和文本挖掘等应 用范畴得到广泛研究[16]。例如,分析电商平台上对 已购商品的点评,群众对政府新颁布的政策法规的 讨论以及消费者对新产品或服务的反馈等。每天数 以亿计的用户文本信息包含了丰富的用户观点和情 感极性,从中可以挖掘和分析出大量的知识和模式。 深度学习为经典数据挖掘任务提供了新的手 段。卷积神经网络(C o n v o lu tio n a l N e u ra l N e tw o rk,C N N)是一种用于处理具有网状拓扑结构数据的深度神经网络(D eep N e u ra l N e tw o r k,D N N)。C N N 通过卷积操作,组合低层特征形成更加抽象的高层特 征,使模型能够针对目标问题,自动学习特征。在文 本情感分类应用中,C N N能够有效避免传统机器学 习方法所面临的样本特征表达稀疏、计算复杂等问题[4]。 目前,以C N N为基础的文本情感分类方法多数 是通过学习文本的一种窗口或多种窗口局部语义信 息,然后提取文本最大语义特征进行情感划分。此 类方法在文本情感分类标注领域已取得较好的效 果。但是目前在文本情感分类标注领域[56],甚至在 N L P的其他分类问题中[860],使用的C N N模型多数 采用一个或多个卷积层并行的结构。C N N模型解 决情感分类标注问题时,为了充分捕捉语义的距离 基金项目:国家自然科学基金(61272367);江苏省科技厅项目(BY2015027-12)。 作者简介:周锦峰(1978—),男,硕士,主研方向为机器学习、自然语言处理;叶施仁,副教授、博士;王晖(通信作者),讲师、博士。收稿日期:2018-01-10修回日期:2018-02-27E-m a i l:zhouzhou9076@ https://www.360docs.net/doc/e510358475.html,

相关文档
最新文档