单边直线感应电机法向力牵引力解耦控制
异步电机反馈线性化解耦控制

wa e l e , es se s o o dd n mi n tt ef r a c s s ai d t y tm h ws o y a ca dsai p rom n e . r z h g c
Ke r s a y c o o s o o ; e d a k l e rz t n d c u l g c n r l p l s i n e t y wo d : s h n u t r f e b c n a ia i ; e o p i o t , o e a sg n r m i o n o m n
1 引言
实现 异步 电机高 性能 控 制 的关 键 是对 其 时变参 数 的准 确识 别 和获得 转 速 、磁 链 两个 子 系统 间 的完 全解
性 能 ,满 足预 先所 期望 的要 求 。仿 真 研究 表 明 ,这种
处理方案达到了期望效果 ,证卖了该方案在理论上的
正 确 性 ,并具 有 可行性 。
l e rz . wo s p ae 2 o d rr t rf x a d r t rs e d s b y t msa e p e e t d f r h r r , i a i ei T e a t . r e o o u n o o p e u s se r s n e u t e mo e n t r l r t e i p to t u ft e a y c r n u t r s se wa i e r e . h n a ie y t m sC e h n u — u p to s n h o o s mo o y t m s l a i d T e l e rz d s s h n z i e a b n s l e t el e tm t t a ib ef e b c o e a sg me t h o . n t e smu ai n t e o v d wi t n a s e sa ev ra l e d a k p l s i n n e r I i l t , h h h i r ys t y h o s e d k e s c n t n i l h o o u h n e . h y a cd c u l g o e t o s b y tm s p e e p o sa tWh e t e r t rf x c a g s t e d n mi e o p i fm l n w u s se
电机矢量控制中电流前馈解耦的作用

电机矢量控制中电流前馈解耦的作用
电机矢量控制是现代交流电机控制技术的一种高级控制方法。
在电机矢量控制中,控制器需要对电机的电流和电压进行精确控制,以使电机输出所需的力矩和速度。
而电流前馈解耦技术是电机矢量控制中的一种重要技术,它可以去除电机电流中的交叉耦合影响,提高电机控制精度。
电流前馈解耦技术利用矩阵变换对电流进行解耦处理。
在电流前馈解耦之前,电机控制中的电流控制通常是通过PI控制器进行的。
然而,在实际应用中,电机的电流往往会出现交叉耦合的情况,这会导致控制精度降低,甚至会导致系统失控。
而使用电流前馈解耦技术可以解决这个问题,将电流解耦后进行控制,提高了电机控制的精度和稳定性。
总之,电流前馈解耦技术是电机矢量控制中非常重要的技术之一,它可以有效地解决电流交叉耦合的问题,提高电机控制的精度和稳定性。
在实际应用中,不同的电机控制系统需要根据具体情况选择合适的电流前馈解耦技术,以达到更好的控制效果。
- 1 -。
线性电机的工作原理详解

线性电机的工作原理详解导语:直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。
它可以看成是一台旋转电机按径向剖开,并展成平面而成。
什么是线性电机?直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。
它可以看成是一台旋转电机按径向剖开,并展成平面而成。
直线电机也称线性电机,线性马达,直线马达,推杆马达。
最常用的直线电机类型是平板式和U型槽式,和管式。
线圈的典型组成是三相,有霍尔元件实现无刷换相。
线性电机结构组成该图直线电机明确显示动子(forcer,rotor)的内部绕组。
磁鉄和磁轨。
动子是用环氧材料把线圈压成的。
而且,磁轨是把磁铁固定在钢上。
直线电机经常简单描述为旋转电机被展平,而工作原理相同。
动子(forcer,rotor)是用环氧材料把线圈压缩在一起制成的;磁轨是把磁铁(通常是高能量的稀土磁铁)固定在钢上。
电机的动子包括线圈绕组,霍尔元件电路板,电热调节器(温度传感器监控温度)和电子接口。
在旋转电机中,动子和定子需要旋转轴承支撑动子以保证相对运动部分的气隙(airgap)。
同样的,直线电机需要直线导轨来保持动子在磁轨产生的磁场中的位置。
和旋转伺服电机的编码器安装在轴上反馈位置一样,直线电机需要反馈直线位置的反馈装置--直线编码器,它可以直接测量负载的位置从而提高负载的位置精度。
直线电机的控制和旋转电机一样。
象无刷旋转电机,动子和定子无机械连接(无刷),不像旋转电机的方面,动子旋转和定子位置保持固定,直线电机系统可以是磁轨动或推力线圈动(大部分定位系统应用是磁轨固定,推力线圈动)。
用推力线圈运动的电机,推力线圈的重量和负载比很小。
然而,需要高柔性线缆及其管理系统。
用磁轨运动的电机,不仅要承受负载,还要承受磁轨质量,但无需线缆管理系统。
相似的机电原理用在直线和旋转电机上。
相同的电磁力在旋转电机上产生力矩在直线电机产生直线推力作用。
因此,直线电机使用和旋转电机相同的控制和可编程配置。
永磁同步电机交直轴电流解耦控制方法综述

永磁同步电机交直轴电流解耦控制方法综述永磁同步电机(Permanent Magnet Synchronous Motor,简称PMSM)具有高功率密度、高效率和优良的动态特性等优点,因此在许多领域得到广泛应用。
其中,交直轴电流的解耦控制是PMSM控制的关键问题之一。
在本文中,将对永磁同步电机交直轴电流解耦控制方法进行综述。
1.引言永磁同步电机的电动方程是一个非线性时变系统,其交直轴电流之间存在耦合关系。
传统的PMSM控制方法会造成交轴电流和直轴电流之间相互影响,从而影响电机的性能和效率。
因此,解耦控制方法成为提高PMSM性能的重要手段。
2.交直轴电流解耦控制方法2.1 dq坐标系控制方法dq坐标系控制方法是一种常用的交直轴电流解耦控制方法。
该方法将三相交流电机转换为dq轴坐标系下的定子和转子电流,通过控制dq轴电流实现交直轴电流解耦。
dq坐标系控制方法可以分为直接转矩控制和间接转矩控制两种。
直接转矩控制在dq轴电流中直接加入转矩指令,实现了电流与转矩的耦合控制;间接转矩控制则通过输出位置和速度信号来计算转矩指令,再将转矩指令加入到dq轴电流控制中。
2.2基于滑模变结构控制方法滑模变结构控制方法是一种常用的非线性控制方法,可以实现交直轴电流的解耦控制。
该方法通过构建一个滑模面来实现交直轴电流的耦合控制,从而提高电机的性能和鲁棒性。
滑模变结构控制方法对电机参数的变化具有较好的鲁棒性,对于系统的非线性特性也能较好地适应。
2.3间谐电流抑制控制方法PMSM中存在由于非线性磁链特性引起的间谐电流,对系统性能和控制效果造成不利影响。
间谐电流抑制控制方法通过在dq坐标系中引入附加控制环节来抑制间谐电流的产生。
该方法可以有效地降低间谐电流的波动,提高系统的性能和控制精度。
2.4神经网络控制方法神经网络控制方法是一种基于模型的控制方法,能够实现交直轴电流的解耦控制。
该方法通过训练神经网络模型来建立电机控制系统的映射关系,从而实现交直轴电流的耦合控制。
直线电机的原理

1.最大电压( max. voltage ph-ph) ———最大供电线电压,主要与电机绝缘能力有关;2.最大推力(Peak Force) ———电机的峰值推力,短时,秒级,取决于电机电磁结构的安全极限能力;3.最大电流(Peak Current) ———最大工作电流,与最大推力想对应,低于电机的退磁电流;4.最大连续消耗功率(Max. Continuous Power Loss) ———确定温升条件和散热条件下,电机可连续运行的上限发热损耗,反映电机的热设计水准;5.最大速度(Maximum speed) ———在确定供电线电压下的最高运行速度,取决于电机的反电势线数,反映电机电磁设计的结果;6.马达力常数(Motor Force Constant) ———电机的推力电流比,单位N/A或KN/A,反映电机电磁设计的结果,在某种意义上也可以反映电磁设计水平;7.反向电动势(Back EMF) ———电机反电势(系数),单位Vs/m,反映电机电磁设计的结果,影响电机在确定供电电压下的最高运行速度;8.马达常数(Motor Constant) ———电机推力与功耗的平方根的比值,单位N/√W,是电机电磁设计和热设计水平的综合体现;9.磁极节距NN(Magnet Pitch) ————电机次级永磁体的磁极间隔距离,基本不反映电机设计水平,驱动器需据此由反馈系统分辨率解算矢量控制所需的电机电角度;10.绕组电阻/每相(Resistance per phase)———电机的相电阻,一般情况下给出的往往是线电阻,即Ph-Ph,与电机发热关系较大,在一定意义下可以反映电磁设计水平;11.绕组电感/每相(Induction per phase) ———电机的相电感,一般情况下给出的往往是线电感,即Ph-Ph,与电机反电势有一定关系,在一定意义下可以反映电磁设计水平;12.电气时间常数(Electrical time constant) ———电机电感与电阻的比值,L/R;13.热阻抗(Thermal Resistance) ———与电机的散热能力有关,反映电机的散热设计水平;14.马达引力(Motor Attraction Force) ———平板式有铁心结构直线电机,尤其是永磁式电机,次极永磁体对初级铁心的法向吸引力,一般高于电机额定推力一个数量级,直接决定采用直线电机的直线运动轴的支撑导轨的承载能力和选型。