第 四 章 电控驱动防滑牵引力控制系统(ASRTRC)
驱动防滑系统

如果驱动车轮的滑转率仍未降到设定范围之内, 防滑控制系统ECU又会控制ASR制动执行器,对驱 动车轮施加一定的制动力,进一步控制驱动车轮 的滑转率,使之符合要求,以达到防止车轮滑转 的目的。在ASR处于防滑控制中,只要驾驶员一踩 下制动踏板,ASR便会自动退出控制,而不影响制 动过程。
ASR是ABS的逻辑和功能扩展。ABS在增加了ASR功能后, 主要变化是在ECU增加了驱动防滑逻辑系统来检测转动轮的 转速。ASR大多借用ABS的硬件,两者共存一体,发展成了 ABS/ASR系统。ABS/ASR已在欧洲新载货汽车中普遍应用, 并且欧共体法规EEC/71/320已强制规定在总质量大于3.5t 的某些载货汽车使用,重型车是首先装用的。今天 ABS/ASR已成为欧美日等发达国家汽车的标准设备。
3.控制功能的扩展与集成
将各个不同的汽车电子控制系统集成是,在实现 各自基本功能的前提下,形成更强大的集成电控系 统是是汽车电子控制系统的必然趋势。目前, ABS/ASR向以下几个方向发展:a.和电子制动力分 配系统集成,形成ABS/ASR/EBD系统,可以改善 提高功效。b.和电子稳定程序ESP系统集成,形成 ABS/ASR/ESP综合控制,可以解除制动、起步、 转向时对驾驶员的高要求。c.和汽车巡航自动控制 AAC系统集成,形成ABS/ASR/AAC系统,可以解 除制动、起步、和保持安全车距方面向时对驾驶员 的高要求。
驱动防滑系统概述 驱动防滑系统理论基础 驱动防滑(ASR)基本组成 驱动防滑系统工作基本原理 驱动防滑系统(ASR)控制过程 实际应用 存在问题 未来发展
驱动防滑系统概述
当汽车在驱动过程(如起步、转弯\加速等过程)中,
ABS系统不能防止车轮滑转,因此针对这个要求出 现了防止驱动车轮发生滑转的驱动防滑系统(ASR也 称为TRC),以维持汽车行驶方向稳定性。由于驱动 防滑系统是通过调节驱动车轮的驱动力来实现工作
第四章 汽车防滑控制系统

§4-2 制动防滑控制系统(ABS)
2、防抱死控制过程 控制过程:以车轮角减速度、角加速度和滑移率作为
控制参数进行防抱死制动控制时,控制过程分为在高 附着系数路面上的控制过程、在低附着系数路面上的 控制过程和在附着系数高低过渡路面上的控制。 路面附着系数高低判定:根据车轮在制动压力增大过 程中的角减速度变化和在制动压力减小过程中的角加 速度变化率进行判定。 车轮角减速度门限值、角加速度门限值和滑移率门限 值确定:根据各种路面情况下的大量试验获得的经验 数据。
§4-2 制动防滑控制系统(ABS)
(3)车速传感器
ABS中的车速传感器是要检测汽车车身相对于路面的移 动速度,ABS控制器可根据此信号及车轮转速信号准确地计算 车轮的滑移率。在汽车紧急制动的情况下,车轮与地面之间 有滑移存在,用车轮转速传感器信号得不到准确的绝对车速。
(4)制动灯开关
制动灯开关用于向ABS电子控制器提供汽车制动信号。 当驾驶员踩下制动踏板时,制动灯开关在接通制动灯电路的 同时,向ABS电子控制器输出一电压信号,电子控制器根据 此信号判断汽车处于制动状态,并根据相关传感器输入的信 号进行防抱死制动控制。
牵引力(Ft)和制力(FB)的大小,取决于车轮与地面的纵 向附着力和横向附着力的大又与车轮载荷、胎面花纹、轮胎 气压、路面粗糙度、潮湿程度、行驶速度、车轮偏转角(α) 等因素有关。为此,附着力(Fф)成为车轮相对于地面有无 滑移关键因素。
§4-1 概述
滑移率—车速与轮速之差为滑移,用s表示。它表示车轮纵向运动 中滑动成分所占的比例。制动时滑移,轮速减小为负滑移;驱动 时滑转,轮速增大为正滑移。s值按下式计算: s制动=(v车-v轮)/v车×100% 其中: v车—车身瞬时速度(m/s); v轮—车速瞬时速度(m/s)。 试验证明:弹性车轮在地面上滚动,产生了阻力和摩擦力(附着 力),附着力Fф=G·ф其最大值是在边滚动、边滑动时发生,s值 为20%时。
5讲 ASR(TRC)电控系统

2.继电器控制
TRC制动执行器主继电器
继电器接通条件: 点火开关接通; ECU没有故障
TRC节气门继电器控制
继电器接通条件: 点火开关接通; ECU没有故障
TRC泵电机继电器控制
继电器接通条件:TRC主继电器接通;发动机 转速超过500rpm;换挡杆在“P”或“N”挡以外 位置;IDL1信号断开;压力传感器信号接通
3.初始检查功能
(1)副节气门执行器 同时满足三个条件: 换挡杆在“P”或“N”挡位; 主节气门关闭; 车辆停止 ECU使副节气门执行器先将副节气门完全 关闭,然后完全打开,对副节气门执行器 和节气门位置传感器的电路进行检查,也 检查副节气门的工作 点火开关每接通一次,就进行一次检查
(2)TRC制动执行器电磁阀
车轮转速控制?abs和trcecu关闭副节气门减少进气量从而减小发动机扭矩?同时abs和trcecu控制trc制动执行器电磁阀将abs执行器设置为压力提高模式控制驱动轮的制动?当制动开始时后轮加速度下降abs和trcecu将abs执行器设置为压力保持模式?如果后轮加速度下降太多abs和trcecu将abs执行器设置为压力降低模式?通过上述反复控制保持在目标控制速度左右2
四液压 通道式
3.凌志LS400 TRC部件配置图
四、ASR/TRC工作过程
压力提高模式
压力保持模式
压力降低模式
压力低时 1. 正常制动时(TRC未起动) TRC泵转
2.TRC压力提高模式
3. TRC压力保持模式
3.ABS压力降低模式
ABS泵 不工作
五、ASR/TRC控制功能
车轮转速控制
六、ASR/TRC电控系统及电路
ASR/TRC的检测
• 零部件检测:万用表,示波器
底盘电控技术题库

底盘电控技术题库第一章底盘电控技术概述一、填空(1)汽车底盘电子控制主要包括:电控自动变速器、防抱死制动系统、驱动防滑系统、电控悬架系统、转向控制系统等。
(2)自动变速器分为:液力自动变速器、手动式机械变速器、无级变速器。
(3)转向控制主要包括动力转向控制和四轮转向控制。
(4)空气弹簧悬架和油气弹簧悬架是主动悬架。
二、判断题(1)半主动悬架可调节减振器的阻尼力,有些还可以调节横向稳定器的刚度。
(√)(1)半主动悬架仅对悬架系统的刚性进行调节。
(×)(1)主动悬架随时对悬架系统的刚度、减振器的阻尼力进行调整。
(√)(1)主动悬架仅对悬架系统的刚性进行调节。
(×)(1)主动悬架仅对减振器的阻尼力进行调节。
(×)(2)空气弹簧是主动悬架。
(√)(2)空气弹簧是被动悬架。
(×)(2)空气弹簧是半主动悬架。
(×)(3)油气弹簧是主动悬架。
(√)(3)油气弹簧是被动悬架。
(×)(3)油气弹簧是半主动悬架。
(×)(4)世界上第一台ABS系统首先被应用于航空领域的飞机上。
(√)(4)世界上第一台ABS系统首先被应用于航海领域的轮船上。
(×)(5)ASR也被称为牵引力控制系统(Traction Control System),简称TCS。
(√)(5)ABS也被称为牵引力控制系统(Traction Control System),简称TCS。
(×)(6)主动悬架调节需要消耗能量,故系统中需要能源。
(√)(6)主动悬架调节不需要消耗能量,故系统中不需要能源。
(×)(7)半主动悬架调节不需消耗能量,故系统中不需要能源。
(√)(7)半主动悬架调节需消耗能量,故系统中需要能源。
(×)三、简答题1、汽车驱动防滑控制的英文写法Anti Slip Regulation2、汽车制动防滑控制的英文写法Anti-lock Brake System3、空气弹簧概念空气弹簧是一种通过改变空气弹簧的空气压力来改变弹性元件刚度的主动悬架。
汽车底盘电控系统检修课件 项目四 电控驱动防滑控制系统的检修

项目四 电控驱动防滑控制系统的检修
2. 输出执行元件的检修 用万用表检测执行元件,检测步骤及检测内容参见表 4-2 所示。
3. ASR 系统的故障诊断 ASR 系统具有故障自诊断功能,借助诊断仪 V.A.G1551 可读取故障码。根据故障码可检查故障原因,对维修 很有帮助。表 4-3 所示为奥迪 A6 轿车 ABS&ASR 系统故障码表。
项目四 电控驱动防滑控制系统的检修
二、ASR 主要部件的结构和工作原理
1. ASR 电控单元 因 ASR 和 ABS 的一些信号输入和处 理都是相同的,为了减少电子器件的应用数 量,使结构更紧凑,ASR 电控单元和 ABS 电控单元通常组合在一起,如图所示。 ASR&ABS 电控单元将 ABS 和 ASR 的 控制功能结合为一体,用所输入的 4 个车 轮轮速传感器的轮速信号,计算车轮空转情 况和路面状态,用以减小发动机转矩和控制 车轮制动力,从而控制车轮轮速。
项目四 电控驱动防滑控制系统的检修
2. 信号输入元件
1)副节气门位置传感器 副节气门位置传感器安装在副节气门轴上,将副节气门开度 转换为电压信号,并将这一信号经发动机&变速器电脑发送至 ABS&ASR 电脑,其内部电路构成如图所示。 2)主节气门怠速触点信号 ASR 要起作用,主节气门的怠速触点必须断开,也就是说, 油门踏板必须踩下,汽车处于加速状态。
项目四 电控驱动防滑控制系统的检修
一、ASR 系统的基本组成和工作原理
1. ASR 系统的基本组成 ASR 汽车驱动防滑系统的作用是防止汽车 加速过程中打滑,特别是防止汽车在非对称路 面或转弯时驱动轮的空转。
2. ASR 系统的工作原理 当驱动防滑系统处于工作状态时,电子控 制单元根据各轮速传感器检测到的转速信号, 确定驱动车轮的滑转率和汽车的参考速度。当 电子控制单元判定驱动车轮的滑转率超过设定 的限值时,就使驱动副节气门的步进电机转动, 减小副节气门的开度。
第五章 电控驱动防滑/牵引力控制系统(ASR/TRC)

一、填空(1)ABS控制的是汽车制动时车轮的“拖滑”,主要是用来提高制动效果和确保制动安全。
(2)ASR是控制车轮的“滑转”,用于提高汽车起步、加速及在滑溜路面行驶时的牵引力和确保行驶稳定性。
(3)ASR的传感器主要是车轮车速传感器和节气门开度传感器。
(4)ASR制动压力源是蓄压器,通过电磁阀调节驱动车轮制动压力的大小。
二、判断(1)ABS控制的是汽车制动时车轮的“拖滑”,主要是用来提高制动效果和确保制动安全。
(√)(1)ASR控制的是汽车加速时车轮的“拖滑”,主要是用来提高制动效果和确保制动安全。
(×)(2)ASR是控制车轮的“滑转”,用于提高汽车起步、加速及在滑溜路面行驶时的牵引力和确保行驶稳定性。
(√)(2)ABS是控制车轮的“滑转”,用于提高汽车起步、加速及在滑溜路面行驶时的牵引力和确保行驶稳定性。
(×)(3)ASR只对驱动车轮实施制动控制。
(√)(3)ASR可以对驱动车轮和从动车轮同时实施制动控制。
(×)(4)当车速很低(小于8km/h)时,ABS系统不起作用。
(√)(4)当车速很低(小于40km/h)时,ABS系统不起作用。
(×)(5)将ASR选择开关关闭,ASR就不起作用。
(√)(5)即使将ASR选择开关关闭,ASR也能起作用。
(×)(6)单独方式是ASR制动压力调节器和ABS制动压力调节器在结构上各自分开。
(√)三、简答题1、汽车打“滑”的分类汽车打“滑”有两种情况,一是汽车制动时车轮的滑移,二是汽车驱动时车轮的滑转。
2、ASR的主要传感器ASR的传感器主要是车轮车速传感器和节气门开度传感器。
四、问答题1、ASR的基本功能ASR的基本功能是防止汽车在加速过程中打滑,特别是防止汽车在非对称路面或在转弯时驱动轮的空转,以保持汽车行驶方向的稳定性,操纵性和维持汽车的最佳驱动力以及提高汽车的平顺性。
2、ASR的工作原理车轮车速传感器将行驶汽车驱动车轮转速及非驱动车轮转速转变为电信号,输送给电子控制单元(ECU)。
汽车电控内容4.ASR系统结构原理(2课时)

5、汽车防滑转电子控制系统常用控制方式
(1)发动机输出功率控制: 在汽车起步、加速时,ASR控制器输出控制信号,控制发动机输出功率,以
抑制驱动轮滑转。常用方法有:辅助节气门控制、燃油喷射量控制和延迟点火控 制。 (2)驱动轮制动控制:
直接对发生空转的驱动轮加以制动,反映时间最短。普遍采用ASR与ABS组 合的液压控制系统,在ABS系统中增加电磁阀和调节器,从而增加了驱动控制功 能。
4、ASR系统与ABS系统的不同主要在于:
(1)ABS系统是防止制动时车轮抱死滑移,确保制动安全;ASR系统(TRC)则是防 止驱动车轮原地不动而不停的滑转,提高汽车起步、加速及滑溜路面行驶时的牵引力, 确保行驶稳定性。 (2)ABS系统对所有车轮起作用,控制其滑移率;而ASR系统只对驱动车轮起制动 控制作用。 ( 3 ) ABS 是 不 使 车 轮 转 动 角 速 度 为 零 , 防 止 车 轮 抱 死 滑 移 , 在 车 速 很 低 ( 小 于 8km/h)时不起作用; ASR是不使车轮中心平移速度即车速为零,防止车轮滑转, 一般在车速很高时(大于80km/h)不起作用。
2、ASR系统作用
ASR系统就是利用控制器控制车轮与路面的滑移率,防止汽车在起步、加速过程中打 滑,特别是防止汽车在非对称路面或转弯时驱动轮的空转,以保持汽车行驶方向的稳 定性,操纵性和维持汽车的最佳驱动力以及提高汽车的平顺性。
第一台汽车驱动防滑控制系统由瑞典的沃尔沃(VOLOV)汽车公司在1985年试制成 功,安装在沃尔沃760-Turbo轿车上,当时称为电子牵引力控制系统(ETO)。它通 过调节燃油供给量来调节发动机输出转矩,从而控制驱动轮滑转率,产生最佳驱动 力。ABS/ASR,既可保证方向稳定性,又可改善牵引性。
汽车构造牵引力控制系统TRC讲解

(四)TRC制动压力调节器的工作过程
(1) 在正常制动中(TRC未启动)
当施加制动力时,TRC制动执行器中所有
的电磁阀(总泵切断电磁阀、储压器切断电 磁阀、储液罐切断电磁阀)都关断。
踩制动
总泵高压油
总泵切
断电磁阀
ABS&TRபைடு நூலகம்制动压力调节
器
分泵
(2)在车辆加速中( TRC启动)
在加速中如果驱动轮滑转,ABS和TRC ECU控制发动机扭矩和驱动轮的制动,以 避免发生滑转。左、右驱动轮制动器中的 液压,分别有三种模式
分泵液压 器
ABS&TRC制动压力调节
储液罐切断电磁阀 储液罐
总泵
压力提高
压力保持 控制
压力降低
Ⅰ压力提高:加油门,出现制动轮空转、
TRC所有电磁阀接通,同时ABS和TRC制 动压力调节器也转至“压力提高”模式, 但总泵切断电磁阀接通是关闭的。
储压器
储压器切断电磁阀
ABS和TRC制动压力调节器
分泵,
当压力传感开关检测到储压器中压力下降,
TRC泵工作。
Ⅱ压力保持:当制动分泵中的液压提高或降低到所
牵引力控制系统TRC
驱动防滑控制系统
车辆在积雪、结冰或潮湿泥泞 的道路上起步或在行驶中突然加速, 驱动轮会高速滑转,损失扭矩、并 使车辆打滑
F阻<F驱<F附 <视道路而定>
制动驱动轮
解决方案:
减小发动机输出功率、 降低发动机扭矩输出
TRC/ASR
作用:防止车轮滑转 组成: SENSOR:轮速传感器、TPS
需要压力时,系统就切换至“压力保持”模式。 ABS泵的总泵切断电磁阀、储压器切断电磁阀、储 液罐切断电磁阀均接通
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章电控驱动防滑/牵引力控制系统(ASR/TRC)一、教学目的和基本要求通过此章内容的教学,让学生了解ASR的理论基础、ASR控制的方式、ASR 与ABS的区别;掌握ASR的结构与工作原理及典型车型的ASR结构组成和工作过程;了解防滑差速器的作用、形式以及四轮驱动防滑差速器的基本结构和工作原理。
二、教学内容及课时安排第一节概述、第二节ASR的结构与工作原理理论教学:1学时。
第三节典型ASR 理论教学:2学时。
第四节防滑差速器的结构原理理论教学:1学时。
三、教学重点及难点重点:ASR的理论基础;ASR的结构与工作原理。
难点:丰田ABS/TRC液压系统的工作情况及控制电路。
四、教学基本方法和教学过程此内容采用理实一体化教学方法,对ASR及典型车型ABS/TRC的结构原理的授课采用先理论后实践的方法。
五、作业1.ASR的理论基础2.ASR与ABS的区别3.ASR的结构与工作原理4.防滑差速器的作用5.典型车型的A BS/TRC液压系统的控制方式第四章电控驱动防滑/牵引力控制系统(ASR/TRC)第一节概述一、ASR系统的理论基础1.ASR系统的理论基础汽车驱动防滑控制(Anti Slip Reguliation)系统简称ASR,是应用于车轮防滑的电子控制系统。
汽车打滑是指汽车车轮的滑转,车轮的滑转率又称滑移率。
驱动车轮的滑移率S d=×100%,式中v c是车轮圆周速度;v是车身瞬时速度。
滑移率与纵向附着系数的关系如图5-1所示。
2.ASR与ABS的区别(1)ABS是防止制动时车轮抱死滑移,提高制动效果,确保制动安全;ASR (TRC)则是防止驱动车轮原地不动而不停的滑转,提高汽车起步、加速及滑溜路面行驶时的牵引力,确保行驶稳定性。
(2)ABS对所有车轮起作用,控制其滑移率;而ASR只对驱动车轮起制动控制作用。
(3)ABS是在制动时,车轮出现抱死情况下起控制作用,在车速很低(小于8km/h)时不起作用;而ASR则是在整个行驶过程中都工作,在车轮出现滑转时起作用,当车速很高(80~120 km/h)时不起作用。
二、防滑转控制方式汽车防滑转电子控制系统常用的控制方式有:1.发动机输出功率控制在汽车起步、加速时,ASR控制器输出控制信号,控制发动机输出功率,以抑制驱动轮滑转。
常用方法有:辅助节气门控制、燃油喷射量控制和延迟点火控制。
2.驱动轮制动控制直接对发生空转的驱动轮加以制动,反映时间最短。
普遍采用ASR与ABS 组合的液压控制系统,在ABS系统中增加电磁阀和调节器,从而增加了驱动控制功能。
3.同时控制发动机输出功率和驱动轮制动力控制信号同时起动ASR制动压力调节器和辅助节气门调节器,在对驱动车轮施加制动力的同时减小发动机的输出功率,以达到理想的控制效果。
4.防滑差速锁(LSD:Limited-Slip-Differential)控制LSD能对差速器锁止装置进行控制,使锁止范围从0%~100%,系统结构如图5-2所示。
当驱动轮单边滑转时,控制器输出控制信号,使差速锁和制动压力调节器动作,控制车轮的滑移率。
这时非滑转车轮还有正常的驱动力,从而提高汽车在滑溜路面的起步、加速能力及行驶方向的稳定性。
5.差速锁与发动机输出功率综合控制:差速锁制动控制与发动机输出功率综合控制相结合的控制系统可根据发动机的状况和车轮的滑转的实际情况采取相应的控制达到最理想的控制效果。
第二节ASR系统的结构与工作原理一、ASR的基本组成与工作原理1.ASR的基本组成ASR由ECU、执行器(制动压力调节器、节气门驱动装置)、传感器(车轮车速传感器、节气门开度传感器)等组成。
2.ASR的工作原理车速传感器将行驶汽车驱动车轮转速及非驱动车轮转速转变为电信号,输送给电控单元ECU。
ECU根据车速传感器的信号计算驱动车路的滑移率,若滑移率超限,控制器再综合考虑节气门开度信号、发动机转速信号、转向信号等因素确定控制方式,输出控制信号,使相应的执行器动作,使驱动车轮的滑移率控制在目标范围之内。
二、ASR传感器1.车轮车速传感器:与ABS系统共享。
2.节气门开度传感器:与发动机电控系统共享。
3.ASR选择开关:ASR专用的信号输入装置。
ASR选择开关关闭时ASR不起作用。
三、ASR电子控制单元(ECU)ASR ECU也是以微处理器为核心,配以输入输出电路及电源等组成。
ASR 与ABS的一些信号输入和处理是相同的,为减少电子器件的应用数量,ASR控制器与ABS电控单元常组合在一起,图5-4为ABS/ASR组合ECU实例。
四、ASR系统的执行机构1.制动压力调节器ASR的制动压力调节器执行ASR ECU的指令对滑转车轮施加制动力和控制制动力的大小,以使滑转车轮的滑转率在目标范围内。
ASR的压力源是蓄压器,通过电磁阀来调节驱动车轮的制动压力。
ASR制动压力调节器结构形式有:单独方式和组合方式。
(1)单独方式ASR ECU通过电磁阀的控制实现对驱动轮制动力的控制,控制过程如下:◆正常制动时ASR不起作用,电磁阀不通电,阀在左位,调压缸的活塞被回位弹簧推至右边极限位置。
此时调压缸右腔与储液室相通而压力低,左腔通过活塞使ABS制动压力调节器与车轮制动分泵相通,因此ASR不起作用且对ABS无任何影响。
◆起步或加速时若驱动轮出现滑转需要实施制动时,ASR使电磁阀通电,阀至右位,蓄压器中的制动液推活塞左移。
此时调压腔右腔与储液室隔断而与蓄压器接通,蓄压器中的制动液推活塞左移使与ABS制动压力调节器的通道封闭。
活塞左移使左腔压力增大,驱动车轮制动分泵压力升高。
◆压力保持过程:此时电磁阀半通电,阀在中位,调压缸与储液室和蓄压器都隔断,于是活塞保持原位不动,制动压力保持不变。
◆压力降低过程:此时电磁阀断电,阀回左位,使调压腔右腔与蓄压器隔断而与储液室接通,于是调压缸右腔压力下降,制动压力下降。
(2)组合方式ASR制动压力调节器与ABS制动压力调节器组合在一起,(ABS/ASR组合压力调节器)如图5-6所示。
◆ASR不起作用时,电磁阀Ⅰ不通电,ABS起制动作用并通过电磁阀Ⅱ和电磁阀Ⅲ来调节制动压力。
◆驱动轮滑转时,ASR控制器使电磁阀Ⅰ通电,阀移至右位,电磁阀Ⅱ和电磁阀Ⅲ不通电,阀仍在左位,于是,蓄压器的压力油通入驱动轮制动泵,制动压力增大。
◆需要保持驱动轮制动压力时,ASR控制器使电磁阀Ⅰ半通电,阀至中位,隔断蓄压器及制动总泵的通路,驱动轮制动分泵压力保持不变。
◆需要减小驱动轮制动压力时,ASR控制器使电磁阀Ⅱ和电磁阀Ⅲ通电,阀移至右位,接通驱动车轮制动分泵与储液室的通道,制动压力下降。
2.节气门驱动装置ASR控制系统通过改变发动机辅助节气门的开度来控制发动机的输出功率。
节气门驱动装置由步进电机和传动机构组成。
步进电机根据ASR控制器输出的控制脉冲转动规定的转角,通过传动机构带动辅助节气门转动。
ASR不起作用时,辅助节气门处于全开位置,当需要减少发动机驱动力来控制车轮滑转时,ASR控制器输出信号使辅助节气门驱动机构工作,改变辅助节气门开度。
第三节典型ASR一、丰田车系防抱死制动与驱动防滑(ABS/TRC)ASR由电子控制单元ECU、车轮轮速传感器、制动压力调节器、副节气门及控制驱动轮制动管路等组成。
副节气门由步进电机控制,并设有节气门开度传感器。
ASR(TRC)工作过程:1.液压系统与执行器⑴ABS/TRC液压系统ABS/TRC液压系统由制动供能装置(电动泵、蓄能器)、电磁阀总成(3个二位二通阀)、压力调节装置(2个电磁阀、储液器)等组成,如图5-9所示。
工作情况:①当需要对驱动轮施加制动力矩时:TRC的3个电磁阀都通电。
②当需要对驱动轮保持制动力矩时:ABS的2个电磁阀通较小电流。
③当需要对驱动轮减小制动力矩时:ABS的2个电磁阀通较大电流。
④当无需对驱动轮施加制动力矩时:各个电磁阀都不通电且ECU控制步进电机转动使副节气门保持开启。
⑵TRC液压制动执行器TRC液压制动执行器由泵总成、制动执行器组成。
①泵总成:由泵电动机和蓄压器两部分组成。
②制动执行器:由蓄压器切断电磁阀、制动总泵切断电磁阀、储液缸切断电磁阀和压力开关或压力传感器四部分组成。
2.副节气门及其驱动机构—副节气门执行器依据ECU的信号控制副节气门的开闭角度,从而控制进入发动机空气量,达到控制发动机输出功率的目的。
副节气门传感器安装及结构如图5-14所示。
3.TRC控制电路及主要装置丰田ABS/TRC控制电路。
4.TRC的工作过程⑴正常制动过程(TRC不起作用)⑵汽车加速过程(TRC起作用)①压力升高②压力保持⑶压力降低5.车轮转速控制过程⑴一个典型的轮速控制循环⑵轮速控制运转条件二、日产车系ASR三、本田车系ASR第四节防滑差速器一、防滑差速器简介1.防滑差速器—防止车轮打滑的差速器,可自动控制汽车驱动轮打滑。
2.类型强制锁止式——通过电控或气控锁止机构人为的将差速器锁止。
自动锁止式(自锁式)——在滑路面上自动增大锁止系数直至完全锁止。
二、电子控制式防滑差速器1.电子控制式防滑差速器⑴V-TCS(Vehicle Traking Control System)—根据驱动轮的滑移量,通过电子控制装置来控制发动机转速和汽车制动力进行工作;或按照左、右车轮的转速差来控制转矩,并与制动器相结合最优分配驱动轮驱动力。
⑵LSD(Limited Slip Differential)—利用传感器掌握各种道路情况和车辆运动状态,通过操纵加速踏板和制动器,采集和读取驾驶员所要求的信息,并按驾驶员的意愿和要求最优分配左右驱动轮驱动力,如图5-21所示。
2.四轮驱动防滑差速器⑴基本结构传递路线:发动机—变速器—驱动小齿轮—环齿轮—中央差速器—前驱动轴—前差速器1)中央差速器——具有两大功能:将变速器输出动力均匀分配前后驱动轴2)差速限制机构——当前后车轮间发生转速差时,按照转速差控制油压多板离合器的接合力,从而控制前后轮的转矩分配。
⑵工作原理⑶控制特性主要根据节气门开度、车速和变速器变速信号由ECU控制并改变差动限制离合器的压紧力。
①起步控制②打滑控制③通常控制。