2011年全国高考文科数学试题及答案-全国

合集下载

2011年高考数学(全国大纲版)文科真题及答案

2011年高考数学(全国大纲版)文科真题及答案

2011年高考数学(全国大纲版)文科真题及答案参考答案评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则。

2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给力,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分。

3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。

4.只给整数分数,选择题不给中间分。

一、选择题16 DBBCAD 712 CCBACD二、填空题13.0 14.15.16.6三、解答题17.解:设的公比为q,由题设得3分解得6分当当10分18.解:由正弦定理得3分由余弦定理得故6分8分故12分19.解:记A表示事件:该地的1位车主购买甲种保险;B表示事件:该地的1位车主购买乙种保险但不购买甲种保险;C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;D表示事件:该地的1位车主甲、乙两种保险都不购买;E表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买。

3分6分9分12分20.解法一:取AB中点E,连结DE,则四边形BCDE为矩形,DE=CB=2,连结SE,则又SD=1,故,所以为直角。

3分由,得平面SDE,所以。

SD与两条相交直线AB、SE都垂直。

所以平面SAB。

6分由平面SDE知,平面平面SED。

作垂足为F,则SF 平面ABCD,作,垂足为G,则FG=DC=1。

连结SG,则,又,故平面SFG,平面SBC 平面SFG。

9分作,H为垂足,则平面SBC。

,即F到平面SBC的距离为由于ED//BC,所以ED//平面SBC,E到平面SBC的距离d也有设AB与平面SBC所成的角为,则12分解法二:以C为坐标原点,射线CD为x轴正半轴,建立如图所示的空间直角坐标系Cxyz。

设D,则A、B。

又设,,由得故x=1。

2011年全国高考文科数学试题及答案-广东

2011年全国高考文科数学试题及答案-广东

2011年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项: 1.答卷前,考生务必用黑色字迹的钢笔或签字笔将字迹的姓名和考生号、实施号、座位号填写在答题卡上用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把大题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须卸载答题卡个题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选作题地题号对应的信息点,再作答,漏凃,错涂、多涂。

答案无效。

5.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回。

参考公式:锥体体积公式V=13Sh,其中S 为锥体的底面积,h 为锥体的高。

线性回归方程^^^y b x a =+中系数计算公式^^^121(1)(1),(1)ni ni x x y y b a y b x x ==--==--∑∑样本数据x 1,x 2, (x)21()2(2)()n x x x x x x -+-+- 其中,x y 表示样本均值。

N 是正整数,则1221()(ab )n n n n n n a b a b a a b b -----=-+++……一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数z 满足iz=1,其中i 为虚数单位,则 A .-i B .i C .-1 D .12.已知集合A=(,),x y x y 为实数,且221x y +=,B=(,),x y x y 为实数,且1x y +=则A ⋂B 的元素个数为A .4B .3C .2D .13.已知向量a=(1,2),b=(1,0),c=(3,4)。

2011年全国高考文科数学试题及答案-天津

2011年全国高考文科数学试题及答案-天津

2011年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项: 1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式: 如果事件A ,B 互斥,那么 棱柱的体积公式V Sh =()()()P A B P A P B ⋃=+其中S 表示棱柱的底面面积。

h 表示棱柱的高。

一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.1.i 是虚数单位,复数131ii--= A .2i - B .2i + C .12i --D .12i -+2.设变量x ,y 满足约束条件1,40,340,x x y x y ≥⎧⎪+-≤⎨⎪-+≤⎩则目标函数3z x y =-的最大值为A .-4B .0C .43D .43.阅读右边的程序框图,运行相应的程序,若输入x 的值为-4,则输出y 的值为 A .,0.5 B .1 C .2 D .44.设集合{}{}|20,|0A x R x B x R x =∈->=∈<,{}|(2)0C x R x x =∈->, 则“x A B ∈⋃”是“x C ∈”的 A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件5.已知244log 3.6,log 3.2,log 3.6a b c ===则A .a b c >>B .a c b >>C .b a c >>D .c a b >>6.已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A .23B .25C .43D .457.已知函数()2sin(),f x x x R ωϕ=+∈,其中0,,()f x ωπϕπ>-<≤若的最小正周期为6π,且当2x π=时,()f x 取得最大值,则( )A .()f x 在区间[2,0]π-上是增函数B .()f x 在区间[3,]ππ--上是增函数C .()f x 在区间[3,5]ππ上是减函数D .()f x 在区间[4,6]ππ上是减函数8.对实数a b 和,定义运算“⊗”:,1,,1.aab a b b a b -≤⎧⊗=⎨->⎩设函数2()(2)(1),f x x x x R =-⊗-∈。

2011年全国高考文科数学试题及答案-山东

2011年全国高考文科数学试题及答案-山东

2011年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I 卷和第II 卷两部分,共4页,满分150分。

考试用时120分钟,考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证证、县区和科类填写在答题卡和试卷规定的位置上。

2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按能上能下要求作答的答案无效。

4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

参考公式:柱体的体积公式:V Sh =,其中S 是柱体的底面积,h 是柱体的高。

圆柱的侧面积公式:S cl =,其中c 是圆柱的底面周长,l 是圆柱的母线长。

球的体积公式:343V R π=,其中R 是球的半径。

球的表面积公式:24S Rπ=,其中R 是球的半径。

用最小二乘法求线性回归方程系数公式:12241ˆˆ,ni ii ni x y nx ybay bx xnx==-==--∑∑, 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B )第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只有一项是满足题目要求的. 1.设集合 M ={x|(x+3)(x-2)<0},N ={x|1≤x ≤3},则M ∩N = A .[1,2) B .[1,2] C .( 2,3] D .[2,3] 2.复数z=22ii-+(i 为虚数单位)在复平面内对应的点所在象限为A .第一象限B .第二象限C .第三象限D .第四象限3.若点(a,9)在函数3xy =的图象上,则tan=6a π的值为A .0 BC .1D4.曲线211y x =+在点P (1,12)处的切线与y 轴交点的纵坐标是A .-9B .-3C .9D .155.已知a ,b ,c ∈R ,命题“若a b c ++=3,则222a b c ++≥3”,的否命题是 A .若a +b+c≠3,则222a b c ++<3 B .若a+b+c=3,则222a b c ++<3 C .若a +b+c≠3,则222a b c ++≥3D .若222a b c ++≥3,则a+b+c=36.若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=A .23B .32C .2D .37.设变量x ,y 满足约束条件250200x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,则目标函数231z x y =++的最大值为A .11B .10C .9D .8.58.某产品的广告费用x 与销售额y 的统计数据如下表广告费用x (万元)4 2 35 销售额y (万元)49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元9.设M (0x ,0y )为抛物线C :28x y =上一点,F 为抛物线C 的焦点,以F 为圆心、FM 为半径的圆和抛物线C 的准线相交,则0y 的取值范围是A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)10.函数2sin 2xy x =-的图象大致是11.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯 视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命 题的个数是 A .3 B .2 C .1 D .012.设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ= (λ∈R ),1412A A A A μ=(μ∈R ),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知点C (c ,o ),D(d ,O ) (c ,d ∈R )调和分割点A (0,0),B (1,0),则下面说法正确的是 A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上第II 卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽 取40名学生进行调查,应在丙专业抽取的学生人数为 . 14.执行右图所示的程序框图,输入l =2,m=3,n=5,则输出的y 的值是15.已知双曲线22221(0b 0)x y a a b -=>,>和椭圆22x y =1169+有相同的 焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .16.已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A-2cos C 2c-a=cos B b.(I )求sin sin CA的值;(II )若cosB=14,5b ABC 的周长为,求的长. 18.(本小题满分12分)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(I )若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(II )若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.19.(本小题满分12分)如图,在四棱台1111ABCD A B C D -中,1D D ⊥平面ABCD ,底面ABCD 是平行四边形,AB=2AD ,11AD=A B ,BAD=∠60° (Ⅰ)证明:1AA BD ⊥;(Ⅱ)证明:11CC A BD ∥平面.20.(本小题满分12分)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数不在下表的同一列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足:(1)ln n n n n b a a =+-,求数列{}n b 的前2n 项和2n S .21.(本小题满分12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为803π立方米,且2l r ≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >.设该容器的建造费用为y 千元. (Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域; (Ⅱ)求该容器的建造费用最小时的r .22.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线3x =-于点(3,)D m -.(Ⅰ)求22m k +的最小值;(Ⅱ)若2OG OD =∙OE ,(i )求证:直线l 过定点;(ii )试问点B ,G 能否关于x 轴对称?若能,求出此时ABG 的外接圆方程;若不能,请说明理由.参考答案一、选择题1——12 ADDCABBBCCAD 二、填空题13.16 14.68 15.22143x y -= 16.2 三、解答题 17.解:(I )由正弦定理,设,sin sin sin a b ck A B C=== 则22sin sin 2sin sin ,sin sin c a k C k A C Ab k B B ---== 所以cos 2cos 2sin sin .cos sin A C C AB B--= 即(cos 2cos )sin (2sin sin )cos A C B C A B -=-, 化简可得sin()2sin().A B B C +=+ 又A B C π++=,所以sin 2sin C A =因此sin 2.sin CA = (II )由sin 2sin CA =得 2.c a =由余弦定得及1cos 4B =得 22222222cos 14444.b ac ac Ba a a a =+-=+-⨯= 所以2.b a = 又5,a bc ++= 从而1,a =因此b=2。

2011年高考课标卷文科数学试题WORD版

2011年高考课标卷文科数学试题WORD版

2011年普通高等学校招生全国统一考试文科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合{}{}0,1,2,3,4,1,3,5,,M N P MN ===则P 的子集共有(A )2个 (B )4个 (C)6个 (D )8个 【解析】:{}1,3,5P =,利用组合数公式01233333328C C C C +++==.子集中包括真子集∅。

(2)复数512ii=- (A )2i - (B )12i - (C )2i -+ (D )12i -+【解析】:2255(12)5(2)5(2)212(12)(12)1(2)5i i i i i i i i i i +--====---+-。

【解析2】假设选项A 成立,则5212ii i=--去分母得5(2))(12)5i i i i =--=-不成立,但是我们知道C 成立。

(3)下列函数中,既是偶函数又在()0,+∞单调递增的函数是 A. 3y x = B. 1y x =+ C 。

21y x =-+ D 。

2xy -=【解析】:A 是奇函数排除.C 是减函数排除。

对于D 在(0,)+∞上12()2x x y -==为减函数排除。

选择B(4).椭圆221168x y +=的离心率为 A. 13 B. 12C 。

33 D.22 【解析】22242c e a ===。

注意2216,16.88a a b b ≠=≠=而是而是 (5)执行右面得程序框图,如果输入的N 是6,那么输出的p 是(A )120 (B )720 (C )1440 (D )5040(6)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B ) 12 (C ) 23 (D ) 34【解析】本题是逻辑相悖的题。

题目提供的数字很小,数一数就可以了。

2011年全国高考文科数学试题及答案-山东

2011年全国高考文科数学试题及答案-山东

2011年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I 卷和第II 卷两部分,共4页,满分150分.考试用时120分钟,考试结束后,将本试卷和答题卡一并交回. 注意事项:1.、答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证证、县区和科类填写在答题卡和试卷规定的位置上.2.、第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.、第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按能上能下要求作答的答案无效.4.、填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:柱体的体积公式:V Sh =,其中S 是柱体的底面积,h 是柱体的高.圆柱的侧面积公式:S cl =,其中c 是圆柱的底面周长,l 是圆柱的母线长.球的体积公式:343V R π=,其中R 是球的半径. 球的表面积公式:24S Rπ=,其中R 是球的半径.用最小二乘法求线性回归方程系数公式:12241ˆˆ,ni ii ni x y nx ybay bx xnx==-==--∑∑, 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B )第Ⅰ卷(共60分)一、选择题:本大题共l0小题.、每小题5分,共50分在每小题给出的四个选项中,只有一项是满足题目要求的.、 1.、设集合 M ={x|(x+3)(x-2)<0},N ={x|1≤x ≤3},则M ∩N = A.、[1,2) B.、[1,2] C.、( 2,3] D.、[2,3] 2.、复数z=22ii-+(i 为虚数单位)在复平面内对应的点所在象限为A.、第一象限B.、第二象限C.、第三象限D.、第四象限3.、若点(a,9)在函数3xy =的图象上,则tan=6a π的值为 A.、0 B.C.、1D.4.、曲线211y x =+在点P (1,12)处的切线与y 轴交点的纵坐标是A.、-9B.、-3C.、9D.、155.、已知a ,b ,c ∈R ,命题“若a b c ++=3,则222a b c ++≥3”,的否命题是 A.、若a +b+c≠3,则222a b c ++<3 B.、若a+b+c=3,则222a b c ++<3 C.、若a +b+c≠3,则222a b c ++≥3D.、若222a b c ++≥3,则a+b+c=36.、若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=A.、23B.、32C.、2D.、37.、设变量x ,y 满足约束条件250200x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,则目标函数231z x y =++的最大值为A.、11B.、10C.、9D.、8.、58.、某产品的广告费用x 与销售额y 的统计数据如下表广告费用x (万元)4 2 35 销售额y (万元)49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.、4,据此模型预报广告费用为6万元时销售额为A.、63.、6万元B.、65.、5万元C.、67.、7万元D.、72.、0万元9.、设M (0x ,0y )为抛物线C :28x y =上一点,F 为抛物线C 的焦点,以F 为圆心、FM 为半径的圆和抛物线C 的准线相交,则0y 的取值范围是A.、(0,2)B.、[0,2]C.、(2,+∞)D.、[2,+∞)10.、函数2sin 2xy x =-的图象大致是11.、下图是长和宽分别相等的两个矩形.、给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯 视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.、其中真命 题的个数是 A.、3 B.、2 C.、1 D.、012.、设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ= (λ∈R ),1412A A A A μ=(μ∈R ),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知点C (c ,o ),D(d ,O ) (c ,d ∈R )调和分割点A (0,0),B (1,0),则下面说法正确的是 A.、C 可能是线段AB 的中点 B.、D 可能是线段AB 的中点C.、C ,D 可能同时在线段AB 上D.、C ,D 不可能同时在线段AB 的延长线上第II 卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.、13.、某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽 取40名学生进行调查,应在丙专业抽取的学生人数为 .、 14.、执行右图所示的程序框图,输入l =2,m=3,n=5,则输出的y 的值是15.、已知双曲线22221(0b 0)x y a a b -=>,>和椭圆22x y =1169+有相同的 焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .、16.、已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .、三、解答题:本大题共6小题,共74分.、 17.、(本小题满分12分)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.、已知cos A-2cos C 2c-a=cos B b.、(I )求sin sin CA的值;(II )若cosB=14,5b ABC 的周长为,求的长. 18.、(本小题满分12分)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.、(I )若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(II )若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.、19.、(本小题满分12分)如图,在四棱台1111ABCD A BC D -中,1D D ⊥平面ABCD ,底面ABCD 是平行四边形,AB=2AD ,11AD=A B ,BAD=∠60° (Ⅰ)证明:1AA BD ⊥;(Ⅱ)证明:11CC A BD ∥平面.、20.、(本小题满分12分)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数不在下表的同一列.、(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足:(1)ln n n n n b a a =+-,求数列{}n b 的前2n 项和2n S .、21.、(本小题满分12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为803π立方米,且2l r ≥.、假设该容器的建造费用仅与其表面积有关.、已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >.、设该容器的建造费用为y 千元.、 (Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域; (Ⅱ)求该容器的建造费用最小时的r .、22.、(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.、如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线3x =-于点(3,)D m -.、(Ⅰ)求22m k +的最小值; (Ⅱ)若2OG OD =∙OE ,(i )求证:直线l 过定点;(ii )试问点B ,G 能否关于x 轴对称?若能,求出此时ABG 的外接圆方程;若不能,请说明理由.、参考答案一、选择题1——12 ADDCABBBCCAD 二、填空题13.、16 14.、68 15.、22143x y -= 16.、2 三、解答题 17.、解:(I )由正弦定理,设,sin sin sin a b ck A B C=== 则22sin sin 2sin sin ,sin sin c a k C k A C Ab k B B ---== 所以cos 2cos 2sin sin .cos sin A C C AB B--= 即(cos 2cos )sin (2sin sin )cos A C B C A B -=-, 化简可得sin()2sin().A B B C +=+ 又A B C π++=,所以sin 2sin C A =因此sin 2.sin CA = (II )由sin 2sin CA =得 2.c a =由余弦定得及1cos 4B =得 22222222cos 14444.b ac ac Ba a a a =+-=+-⨯= 所以2.b a = 又5,a bc ++= 从而1,a =因此b=2. 18.、解:(I )甲校两男教师分别用A 、B 表示,女教师用C 表示;乙校男教师用D 表示,两女教师分别用E 、F 表示从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A ,D )(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F )共9种. 从中选出两名教师性别相同的结果有:(A ,D ),(B ,D ),(C ,E ),(C ,F )共4种, 选出的两名教师性别相同的概率为4.9P =(II )从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ), (C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F )共15种, 从中选出两名教师来自同一学校的结果有: (A ,B ),(A ,C ),(B ,C ),(D ,E ),(D ,F ),(E ,F )共6种,选出的两名教师来自同一学校的概率为62.155P == 19.、(I )证法一:因为1D D ⊥平面ABCD ,且BD ⊂平面ABCD ,所以1D D BD ⊥,又因为AB=2AD ,60BAD ∠=︒, 在ABD ∆中,由余弦定理得22222cos603BD AD AB AD AB AD =+-⋅︒=,所以222AD BD AB +=, 因此AD BD ⊥, 又1,ADD D D =所以11.BD ADD A ⊥平面 又1AA ⊂平面ADD 1A 1, 故1.AA BD ⊥ 证法二:因为1D D ⊥平面ABCD ,且BD ⊂平面ABCD , 所以1.BD D D ⊥取AB 的中点G ,连接DG ,在ABD ∆中,由AB=2AD 得AG=AD ,又60BAD ∠=︒,所以ADG ∆为等边三角形. 因此GD=GB ,故DBG GDB ∠=∠, 又60AGD ∠=︒1,D D ∠︒∠∠∠︒︒︒⊥=所以GDB=30,故ADB=ADG+GDB=60+30=90,所以BD AD.又AD D所以BD ⊥平面ADD 1A 1, 又1AA ⊂平面ADD 1A 1, 故1.AA BD ⊥(II )连接AC ,A 1C 1,设AC BD E =,连接EA 1因为四边形ABCD 为平行四边形, 所以1.2EC AC =由棱台定义及AB=2AD=2A 1B 1知 A 1C 1//EC 且A 1C 1=EC ,所以边四形A 1ECC 1为平行四边形, 因此CC 1//EA 1,又因为EA 1⊂平面A 1BD ,1CC ⊂平面A 1BD , 所以CC 1//平面A 1BD.20.、解:(I )当13a =时,不合题意;当12a =时,当且仅当236,18a a ==时,符合题意; 当110a =时,不合题意. 因此1232,6,18,a a a === 所以公式q=3, 故123.n n a -=⋅(II )因为(1)ln n n n n b a a =+-111123(1)(23)23(1)[ln 2(1)ln 3]23(1)(ln 2ln 3)(1)ln 3,n n n n n n n n n n ----=⋅+-⋅=⋅+-+-=⋅+--+-所以21222122(133)[111(1)](ln 2ln3)n nn nS b b b -=+++=++++-+-++--2|[123(1)2]ln3n n -+-++-22132ln 3133ln 3 1.nn n n -=⨯+-=+- 21.、解:(I )设容器的容积为V ,由题意知23480,,33V r l r V πππ=+=又 故322248044203()333V r l r r r r rππ-==-=- 由于2l r ≥ 因此0 2.r <≤所以建造费用2224202342()34,3y rl r c r r r c rππππ=⨯+=⨯-⨯+ 因此21604(2),0 2.y c r r rππ=-+<≤ (II )由(I )得3221608(2)20'8(2)(),0 2.2c y c r r r r r c πππ-=--=-<<- 由于3,20,c c >->所以当3200,2r r c -==-时,m =则 所以2228(2)'()().c y r m r rm m rπ-=-++ (1)当9022m c <<>即时,∈∈当r=m 时,y'=0;当r (0,m)时,y'<0;当r (m,2)时,y'>0.所以r m =是函数y 的极小值点,也是最小值点. (2)当2m ≥即932c <≤时, 当(0,2),'0,r y ∈<时函数单调递减, 所以r=2是函数y 的最小值点, 综上所述,当932c <≤时,建造费用最小时2;r = 当92c >时,建造费用最小时r =22.、(I )解:设直线(0)l y kx t k =+>的方程为,由题意,0.t >由方程组22,1,3y kx t x y =+⎧⎪⎨+=⎪⎩得 222(31)6330k x ktx t +++-=,由题意0∆>, 所以2231.k t +> 设1122(,),(,)A x y B x y , 由韦达定理得1226,31ktx x k +=-+ 所以1222.31ty y k +=+ 由于E 为线段AB 的中点, 因此223,,3131E Ekt tx y k k ==++ 此时1.3E OE E y k x k==- 所以OE 所在直线方程为1,3y x k=- 又由题设知D (-3,m ), 令x=-3,得1m k=, 即mk=1,所以2222,m k mk +≥=当且仅当m=k=1时上式等号成立, 此时 由0∆>得02,t << 因此 当102m k t ==<<且时,22m k +取最小值2.(II )(i )由(I )知OD 所在直线的方程为1,3y x k=-将其代入椭圆C 的方程,并由0,k >解得(G又2231(,),(3,)3131k t E D k k k--++, 由距离公式及0t >得2222291||(,31||||k OG k OD OE +=+=+====由2||||||,OG OD OE t k =⋅=得因此,直线l 的方程为(1).y k x =+所以,直线(1,0).l -恒过定点(ii )由(i)得(G若B ,G 关于x 轴对称,则(B代入2(1)31y k x k =+-=整理得即426710k k -+=, 解得216k =(舍去)或21,k = 所以k=1, 此时3131(,),(,)2222B G ---关于x 轴对称. 又由(I )得110,1,x y ==所以A (0,1).由于ABG ∆的外接圆的圆心在x 轴上,可设ABG ∆的外接圆的圆心为(d ,0), 因此223111(),,242d d d +=++=-解得 故ABG ∆的外接圆的半径为2r ==所以ABG ∆的外接圆方程为2215().24x y ++=。

2011·新课标全国卷(文科数学)高考卷

2011·课标全国卷(课标文数)课标文数1.A1[2011·课标全国卷] 已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( )A .2个B .4个C .6个D .8个 课标文数 1.A1[2011·课标全国卷] B 【解析】 因为M ={}0,1,2,3,4,N ={}1,3,5,所以P =M ∩N ={}1,3,所以集合P 的子集共有,{}1,{}3,{}1,34个.课标文数2.L4[2011·课标全国卷] 复数5i1-2i=( )A .2-iB .1-2iC .-2+iD .-1+2i课标文数2.L4[2011·课标全国卷] C 【解析】5i1-2i =5i (1+2i )(1-2i )(1+2i )=5i -105=-2+i.课标文数3.B3,B4[2011·课标全国卷] 下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( )A .y =x 3B .y =|x |+1C .y =-x 2+1D .y =2-|x | 课标文数3.B3,B4[2011·课标全国卷] B 【解析】 A 选项中,函数y =x 3是奇函数;B 选项中,y =||x +1是偶函数,且在()0,+∞上是增函数;C 选项中,y =-x 2+1是偶函数,但在()0,+∞上是减函数;D 选项中,y =2-|x |=⎝⎛⎭⎫12|x |是偶函数,但在()0,+∞上是减函数.故选B.课标文数4.H5[2011·课标全国卷] 椭圆x 216+y 28=1的离心率为( )A.13B.12C.33D.22课标文数4.H5[2011·课标全国卷] D 【解析】 由题意a =4,c 2=8,∴c =22,所以离心率为e =c a =224=22.课标文数5.L1[2011·课标全国卷] 执行下面的程序框图,如果输入的N 是6,那么输出的p 是( )图1-1A .120B .720C .1440D .5040 课标文数5.L1[2011·课标全国卷] B 【解析】 k =1时,p =1; k =2时,p =1×2=2; k =3时,p =2×3=6; k =4时,p =6×4=24; k =5时,p =24×5=120; k =6时,p =120×6=720.课标文数6.G2,K2[2011·课标全国卷] 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.34课标文数6.G2,K2[2011·课标全国卷] A 【解析】 甲、乙两名同学参加小组的情况共有9种,参加同一小组的情况有3种,所以参加同一小组的概率为39=13.课标文数7.C1,C6[2011·课标全国卷] 已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ=( )A .-45B .-35C.35D.45课标文数7.C1,C6[2011·课标全国卷] B 【解析】 解法1:在角θ终边上任取一点P (a ,2a )(a ≠0),则r 2=||OP 2=a 2+(2a )2=5a 2,∴cos 2θ=a 25a 2=15,∴cos2θ=2cos 2θ-1=25-1=-35.解法2:tan θ=2a a =2,cos2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35.课标文数8.G2[2011·课标全国卷] 在一个几何体的三视图中,正视图和俯视图如图1-2所示,则相应的侧视图可以为( )图1-2 图1-3 课标文数8.G2[2011·课标全国卷] D 【解析】 由正视图和俯视图知几何体的直观图是由一个半圆锥和一个三棱锥组合而成的,如图,故侧视图选D.图1-4课标文数9.H7[2011·课标全国卷] 已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A 、B 两点,|AB |=12,P 为C 的准线上一点,则△ABP 的面积为( )A .18B .24C .36D .48 课标文数9.H7[2011·课标全国卷] C 【解析】 设抛物线方程为y 2=2px (p >0),则焦点F ⎝⎛⎭⎫p 2,0,A ⎝⎛⎭⎫p 2,p ,B ⎝⎛⎭⎫p2,-p , 所以||AB =2p =12,所以p =6.又点P 到AB 边的距离为p =6, 所以S △ABP =12×12×6=36.课标文数10.B9[2011·课标全国卷] 在下列区间中,函数f (x )=e x +4x -3的零点所在的区间为( )A.⎝⎛⎭⎫-14,0B.⎝⎛⎭⎫0,14C.⎝⎛⎭⎫14,12D.⎝⎛⎭⎫12,34课标文数10.B9[2011·课标全国卷] C 【解析】 因为f ⎝⎛⎭⎫14=e 14-2<0,f ⎝⎛⎭⎫12=e 12-1>0, 所以f ⎝⎛⎭⎫14·f ⎝⎛⎭⎫12<0,又因为函数y =e x 是单调增函数,y =4x -3也是单调增函数, 所以函数f (x )=e x +4x -3是单调增函数, 所以函数f (x )=e x +4x -3的零点在⎝⎛⎭⎫14,12内.课标文数11.C5,C4[2011·课标全国卷] 设函数f (x )=sin ⎝⎛⎭⎫2x +π4+cos ⎝⎛⎭⎫2x +π4,则( )A .y =f (x )在⎝⎛⎭⎫0,π2单调递增,其图像关于直线x =π4对称B .y =f (x )在⎝⎛⎭⎫0,π2单调递增,其图像关于直线x =π2对称C .y =f (x )在⎝⎛⎭⎫0,π2单调递减,其图像关于直线x =π4对称D .y =f (x )在⎝⎛⎭⎫0,π2单调递减,其图像关于直线x =π2对称课标文数11.C5,C4[2011·课标全国卷] D 【解析】 f (x )=2sin ⎝⎛⎭⎫2x +π4+π4=2sin ⎝⎛⎭⎫2x +π2=2cos2x ,所以y =f (x )在⎝⎛⎭⎫0,π2内单调递减,又f ⎝⎛⎭⎫π2=2cos π=-2,是最小值.所以函数y =f (x )的图像关于直线x =π2对称.课标文数12.B4,B7,B8[2011·课标全国卷] 已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图像与函数y =|lg x |的图像的交点共有( )A .10个B .9个C .8个D .1个 课标文数12.B4,B7,B8[2011·课标全国卷] A 【解析】 由题意作出函数图像如图,由图像知共有10个交点.图1-5课标文数13.F3[2011·课标全国卷] 已知a 与b 为两个不共线的单位向量,k 为实数,若向量a +b 与向量k a -b 垂直,则k =________.课标文数13.F3[2011·课标全国卷] 1 【解析】 由题意,得(a +b )·(k a -b )=k ||a 2-a ·b +k a ·b -||b 2=k +(k -1)a ·b -1=(k -1)(1+a ·b )=0,因为a 与b 不共线,所以a ·b ≠-1,所以k -1=0, 解得k =1.课标文数14.E5[2011·课标全国卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧3≤2x +y ≤9,6≤x -y ≤9,则z =x +2y的最小值为________________________________________________________________________.课标文数14.E5[2011·课标全国卷] -6 【解析】 作出可行域如图阴影部分所示,由⎩⎪⎨⎪⎧y =-2x +3,y =x -9 解得A (4,-5). 当直线z =x +2y 过A 点时z 取最小值,将A (4,-5)代入, 得z =4+2×(-5)=-6.图1-6课标文数15.C8[2011·课标全国卷] △ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________.课标文数15.C8[2011·课标全国卷] 1534 【解析】 解法1:由正弦定理,有AC sin B =ABsin C,即7sin120°=5sin C,所以sin C =5sin120°7=5314,所以cos C =1-sin 2C =1-⎝⎛⎭⎫53142=1114, 又因为A +B +C =180°,所以A +C =60°, 所以sin A =sin(60°-C )=sin60°cos C -cos60°sin C =32×1114-12×5314=3314, 所以S △ABC =12AB ·AC sin A =12×5×7×3314=1534.解法2:设BC =x (x >0),由余弦定理,有 cos120°=52+x 2-7210x ,整理得x 2+5x -24=0,解得x =3,或x =-8(舍去),即BC =3,所以S △ABC =12AB ·BC sin B =12×5×3×sin120°=12×5×3×32=1534.课标文数16.G8[2011·课标全国卷] 已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________.课标文数16.G8[2011·课标全国卷] 13 【解析】 如图,设球的半径为R ,圆锥底面半径为r ,则球面面积为4πR 2,圆锥底面面积为πr 2,由题意πr 2=1216πR 2,所以r =32R ,所以OO 1=OA 2-O 1A 2=R 2-34R 2=12R ,所以SO 1=R +12R =32R , S 1O 1=R -12R =12R ,所以S 1O 1SO 1=R23R 2=13.图1-7课标文数17.D2,D3[2011·课标全国卷] 已知等比数列{a n }中,a 1=13,公比q =13.(1)S n 为{a n }的前n 项和,证明:S n =1-a n2;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.课标文数17.D2,D3[2011·课标全国卷] 【解答】 (1)因为a n =13×⎝⎛⎭⎫13n -1=13n ,S n =13⎝⎛⎭⎫1-13n 1-13=1-13n 2,所以S n =1-a n2.(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n ) =-n (n +1)2.所以{b n }的通项公式为b n =-n (n +1)2.图1-8课标文数18.G5,G11[2011·课标全国卷] 如图1-8,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .(1)证明:P A ⊥BD ;(2)设PD =AD =1,求棱锥D -PBC 的高. 课标文数18.G5,G11[2011·课标全国卷] 【解答】 (1)证明:因为∠DAB =60°,AB =2AD ,由余弦定理得BD =3AD ,从而BD 2+AD 2=AB 2,故BD ⊥AD . 又PD ⊥底面ABCD ,可得BD ⊥PD , 所以BD ⊥平面P AD ,故P A ⊥BD . (2)如图,作DE ⊥PB ,垂足为E . 已知PD ⊥底面ABCD ,则PD ⊥BC .由(1)知BD ⊥AD ,又BC ∥AD ,所以BC ⊥BD .图1-9故BC ⊥平面PBD ,BC ⊥DE . 则DE ⊥平面PBC .由题设知PD =1,则BD =3,PB =2. 根据DE ·PB =PD ·BD 得DE =32. 即棱锥D -PBC 的高为32. 课标文数19.I2[2011·课标全国卷] 某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A 配方的频数分布表指标值 分组 [90,94)[94,98) [98,102)[102,106)[106,110]频数 82042228B 配方的频数分布表(2)已知用B 配方生产的一件产品的利润y (单位:元)与其质量指标值t 的关系式为y =⎩⎪⎨⎪⎧-2,t <942,94≤t <102,4,t ≥102.估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润.课标文数19.I2[2011·课标全国卷] 【解答】 (1)由试验结果知,用A 配方生产的产品中优质品的频率为22+8100=0.3,所以用A 配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B 配方生产的产品中优质品的频率为32+10100=0.42,所以用B 配方生产的产品的优质品率的估计值为0.42.(2)由条件知,用B 配方生产的一件产品的利润大于0当且仅当其质量指标值t ≥94,由试验结果知,质量指标值t ≥94的频率为0.96.所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96.用B 配方生产的产品平均一件的利润为1100[4×(-2)+54×2+42×4]=2.68(元).课标文数20.H3,H4[2011·课标全国卷] 在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上.(1)求圆C 的方程;(2)若圆C 与直线x -y +a =0交于A 、B 两点,且OA ⊥OB ,求a 的值. 课标文数20.H3,H4[2011·课标全国卷] 【解答】 (1)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0).故可设C 的圆心为(3,t ),则有32+(t -1)2=(22)2+t 2,解得t =1.则圆C 的半径为32+(t -1)2=3. 所以圆C 的方程为(x -3)2+(y -1)2=9.(2)设A (x 1,y 1),B (x 2,y 2),其坐标满足方程组⎩⎪⎨⎪⎧x -y +a =0,(x -3)2+(y -1)2=9. 消去y ,得到方程2x 2+(2a -8)x +a 2-2a +1=0.由已知可得,判别式Δ=56-16a -4a 2>0.从而 x 1+x 2=4-a ,x 1x 2=a 2-2a +12.①由于OA ⊥OB ,可得x 1x 2+y 1y 2=0. 又y 1=x 1+a ,y 2=x 2+a ,所以 2x 1x 2+a (x 1+x 2)+a 2=0.②由①,②得a =-1,满足Δ>0,故a =-1.课标文数21.B12[2011·课标全国卷] 已知函数f (x )=a ln x x +1+bx ,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y -3=0.(1)求a ,b 的值;(2)证明:当x >0,且x ≠1时,f (x )>ln xx -1.课标文数21.B12[2011·课标全国卷] 【解答】 (1)f ′(x )=a ⎝⎛⎭⎫x +1x -ln x (x +1)2-bx 2.由于直线x +2y -3=0的斜率为-12,且过点(1,1),故⎩⎪⎨⎪⎧f (1)=1,f ′(1)=-12,即⎩⎪⎨⎪⎧b =1,a 2-b =-12, 解得a =1,b =1.(2)由(1)知f (x )=ln x x +1+1x ,所以f (x )-ln x x -1=11-x 2⎝⎛⎭⎫2ln x -x 2-1x . 考虑函数h (x )=2ln x -x 2-1x (x >0),则h ′(x )=2x -2x 2-(x 2-1)x 2=-(x -1)2x 2.所以当x ≠1时,h ′(x )<0,而h (1)=0,故当x ∈(0,1)时,h (x )>0,可得11-x 2h (x )>0.当x ∈(1,+∞)时,h (x )<0,可得11-x 2h (x )>0. 从而当x >0,且x ≠1时,f (x )-ln xx -1>0, 即f (x )>ln xx -1.课标文数22.N1[2011·课标全国卷] 如图1-10,D ,E 分别为△ABC 的边AB ,AC 上的点,且不与△ABC 的顶点重合.图1-10已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程x 2-14x +mn =0的两个根.(1)证明:C ,B ,D ,E 四点共圆;(2)若∠A =90°,且m =4,n =6,求C ,B ,D ,E 所在圆的半径. 课标文数22.N1[2011·课标全国卷]图1-11【解答】 (1)证明:连结DE ,根据题意在△ADE 和△ACB 中,AD ×AB =mn =AE ×AC , 即AD AC =AEAB,又∠DAE =∠CAB ,从而△ADE ∽△ACB . 因此∠ADE =∠ACB ,即∠ACB 与∠EDB 互补,所以∠CED 与∠DBC 互补, 所以C ,B ,D ,E 四点共圆.(2)m =4,n =6时,方程x 2-14x +mn =0的两根为x 1=2,x 2=12. 故AD =2,AB =12.取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线相交于H 点,连结DH .因为C ,B ,D ,E 四点共圆,所以C ,B ,D ,E 四点所在圆的圆心为H ,半径为DH .由于∠A =90°,故GH ∥AB ,HF ∥AC ,从而HF =AG =5,DF =12(12-2)=5.故C ,B ,D ,E 四点所在圆的半径为5 2.课标文数23.N3[2011·课标全国卷] 在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α.(α为参数) M 是C 1上的动点,P 点满足OP →=2OM →,P 点的轨迹为曲线C 2. (1)求C 2的参数方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.课标文数23.N3[2011·课标全国卷] 【解答】 (1)设P (x ,y ),则由条件知M ⎝⎛⎭⎫x 2,y 2,由于M 点在C 1上,所以⎩⎨⎧x2=2cos α,y2=2+2sin α,即⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α. 从而C 2的参数方程为⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α,(α为参数)(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ.射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3, 射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3. 所以|AB |=|ρ2-ρ1|=2 3.课标文数24.N4[2011·课标全国卷] 设函数f (x )=|x -a |+3x ,其中a >0.(1)当a =1时,求不等式f (x )≥3x +2的解集;(2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值.课标文数24.N4[2011·课标全国卷] 【解答】 (1)当a =1时,f (x )≥3x +2可化为|x -1|≥2. 由此可得x ≥3或x ≤-1,故不等式f (x )≥3x +2的解集为{x |x ≥3或x ≤-1}.(2)由f (x )≤0得|x -a |+3x ≤0.此不等式可化为不等式组⎩⎪⎨⎪⎧x ≥a ,x -a +3x ≤0或⎩⎪⎨⎪⎧x <a ,a -x +3x ≤0, 即⎩⎪⎨⎪⎧x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧x <a ,x ≤-a 2. 因为a >0,所以不等式组的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x ≤-a 2. 由题设可得-a 2=-1,故a =2.。

2011年全国高考文科数学试题及答案-北京

2011年普通高等学校招生全国统一考试(北京卷)数学(文)本试卷共5页,150分.考试时间长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集U=R,集合P={x ︱x 2≤1},那么A .(-∞, -1]B .[1, +∞)C .[-1,1]D .(-∞,-1] ∪[1,+∞)2.复数212i i -=+ A .i B .-i C .4355i -- D .4355i -+ 3.如果,0log log 2121<<y x 那么A .y< x<1B .x< y<1C .1< x<yD .1<y<x4.若p 是真命题,q 是假命题,则A .p ∧q 是真命题B .p ∨q 是假命题C .﹁p 是真命题D .﹁q 是真命题5.某四棱锥的三视图如图所示,该四棱锥的表面积是A .32B .C .48D .6.执行如图所示的程序框图,若输入A 的值为2,则输入的P 值为A .2B .3C .4D .57.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为8x 天,且每件产品每天的仓储费用为1元.为使平均没见产品的生产准备费用与仓储费用之和最小,每批应生产产品 A .60件B .80件 C .100件D .120件8.已知点A (0,2),B (2,0).若点C 在函数y = x 的图像上,则使得ΔABC 的面积为2的点C 的个数为A .4B .3C .2D .1第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.在ABC ∆中.若b=5,4B π∠=,sinA=13,则a=___________________. 10.已知双曲线2221y x b-=(b >0)的一条渐近线的方程为2y x =,则b = . 11.已知向量a=,1),b=(0,-1),c=(k.若a-2b 与c 共线,则k=________________.12.在等比数列{a n }中,a 1=12,a 4=4,则公比q=______________;a 1+a 2+…+a n = _________________. 13.已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是_______14.设A (0,0),B (4,0),C (t+4,3),D (t,3)(t ∈R ).记N (t )为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N (0)= N (t )的所有可能取值为三、解答题6小题,共80分,解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)已知函数()4cos sin()16f x x x π=+-. (Ⅰ)求()f x 的最小正周期:(Ⅱ)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 16.(本小题共13分)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差],)()()[(1222212x x x ns n -+-+-= 其中为n x x x ,,,21 的平均数) 17.(本小题共14分)如图,在四面体PABC 中,PC ⊥AB ,PA ⊥BC,点D,E,F,G 分别是棱AP,AC,BC,PB 的中点.(Ⅰ)求证:DE ∥平面BCP ;(Ⅱ)求证:四边形DEFG 为矩形; (Ⅲ)是否存在点Q ,到四面体PABC 六条棱的中点的距离相等?说明理由.18.(本小题共13分)已知函数()()xf x x k e =-. (Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值.19.(本小题共14分)已知椭圆2222:1(0)x y G a b a b+=>>右焦点为(,0),斜率为I 的直线l 与椭圆G 交与A 、B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(I )求椭圆G 的方程;(II )求PAB ∆的面积.20.(本小题共13分)若数列12:,,,(2)n n A a a a n ⋅⋅⋅≥满足11(1,2,,1)k k a a k n +-==⋅⋅⋅-,则称n A 为E 数列,记12()n n S A a a a =++⋅⋅⋅+.(Ⅰ)写出一个E 数列A 5满足130a a ==;(Ⅱ)若112a =,n=2000,证明:E 数列n A 是递增数列的充要条件是n a =2011;(Ⅲ)在14a =的E 数列n A 中,求使得()n S A =0成立得n 的最小值.参考答案一、选择题(共8小题,每小题5分,共40分)(1)D (2)A (3)D (4)D (5)B (6)C (7)B (8)A二、填空题(共6小题,每小题5分,共30分)(9)325 (10)2 (11)1 (12)2 2121--n (13)(0,1) (14)6 6,7,8,三、解答题(共6小题,共80分)(15)(共13分)解:(Ⅰ)因为1)6sin(cos 4)(-+=πx x x f所以)(x f 的最小正周期为π(Ⅱ)因为.32626,46πππππ≤+≤-≤≤-x x 所以于是,当6,262πππ==+x x 即时,)(x f 取得最大值2;当)(,6,662x f x x 时即πππ-=-=+取得最小值—1.(16)(共13分)解(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为方差为(Ⅱ)记甲组四名同学为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10,分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4),(A 3,B 1),(A 2,B 2),(A 3,B 3),(A 1,B 4),(A 4,B 1),(A 4,B 2),(A 4,B 3),(A 4,B 4), 用C 表示:“选出的两名同学的植树总棵数为19”这一事件,则C 中的结果有4个,它们是:(A 1,B 4),(A 2,B 4),(A 3,B 2),(A 4,B 2),故所求概率为.41164)(==C P (17)(共14分)证明:(Ⅰ)因为D ,E 分别为AP ,AC 的中点,所以DE//PC 。

(精校版)2011年全国卷文数高考试题文档版(含答案)

2016届惠州八中高三考试题(9)文科数学一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合M={0,1,2,3,4},N={1,3,5},P=M N ⋂,则P 的子集共有( )(A )2个 (B )4个 (C )6个 (D )8个 (2)复数512ii=- (A )2i - (B )12i - (C ) 2i -+ (D )12i -+(3)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是(A )3y x = (B )||1y x =+ (C )21y x =-+ (D )||2x y -=(4)椭圆221168x y +=的离心率为(A )13 (B )12 (C (D(5)执行右面的程序框图,如果输入的N 是6,那么输出的p 是(A )120 (B )720 (C )1440 (D )5040 (6)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )(A )(13) (B )12 (C )23 (D )34(7)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=(A )45- (B )35- (C )35 (D )45(8)在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为(9)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B两点,||12AB =,P 为C 的准线上一点,则ABP ∆的面积为 (A )18 (B )24 (C )36 (D )48(10)在下列区间中,函数()43x f x e x =+-的零点所在的区间为(A )1(,0)4- (B )1(0,)4 (C )11(,)42 (D )13(,)24(11)设函数()sin(2)cos(2)44f x x x ππ=+++,则(A )()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称(B )()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称(C )()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称(D )()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称(12)已知函数()y f x =的周期为2,当[1,]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有(A )10个 (B )9个 (C )8个 (D )1个二、填空题:本大题共4小题,每小题5分.(13)已知a 与b 为两个不共线的单位向量,k 为实数,若向量a +b 与向量k a -b垂直,则k=_____________.(14)若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是______.(15) ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为________. (16)已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为____________.三、解答题:解答应写文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知等比数列{}n a 中,113a =,公比13q =.(I )n S 为{}n a 的前n 项和,证明:12nn a S -=(II )设31323log log log n n b a a a =+++,求数列{}n b 的通项公式.(18)(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD .(I )证明:PA BD ⊥;(II )设PD=AD=1,求棱锥D-PBC 的高.(19)(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润.(20)(本小题满分12分) 在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上.(I )求圆C 的方程;(II )若圆C 与直线0x y a -+=交于A ,B 两点,且,OA OB ⊥求a 的值.(21)(本小题满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(I )求a ,b 的值;(II )证明:当x>0,且1x ≠时,ln ()1xf x x >-.请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.(22)(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.(I )证明:C ,B ,D ,E 四点共圆;(II )若90A ∠=︒,且4,6,m n ==求C ,B ,D ,E 所在圆的半径.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C .(I )求2C 的方程;(II )在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求|AB|.(24)(本小题满分10分)选修4-5:不等式选讲设函数()||3f x x a x =-+,其中0a >.(I )当a=1时,求不等式()32f x x ≥+的解集.(II )若不等式()0f x ≤的解集为{x|1}x ≤-,求a 的值.2016届惠州八中高三考试题(9)文科数学答题卡一、选择题二、填空题13.___________ 14.___________ 15.___________ 16.___________三、解答题:解答应写文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知等比数列{}n a 中,113a =,公比13q =.(I )n S 为{}n a 的前n 项和,证明:12nn a S -=(II )设31323log log ...log n n b a a a =+++,求数列{}n b 的通项公式.(18)(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD .(I )证明:PA BD ⊥;(II )设PD=AD=1,求棱锥D-PBC 的高.某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润.在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上.(I )求圆C 的方程;(II )若圆C 与直线0x y a -+=交于A ,B 两点,且,OA OB ⊥求a 的值.(21)(本小题满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(I )求a ,b 的值;(II )证明:当x>0,且1x ≠时,ln ()1xf x x >-.请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.(22)(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.(I )证明:C ,B ,D ,E 四点共圆;(II )若90A ∠=︒,且4,6,m n ==求C ,B ,D ,E 所在圆的半径.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C .(I )求2C 的方程;(II )在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求|AB|.(24)(本小题满分10分)选修4-5:不等式选讲设函数()||3f x x a x =-+,其中0a >.(I )当a=1时,求不等式()32f x x ≥+的解集.(II )若不等式()0f x ≤的解集为{x|1}x ≤-,求a 的值.2011年普通高等学校招生全国统一考试文科数学试卷参考答案一、选择题(1)B (2)C (3)B (4)D (5)B (6)A (7)B (8)D (9)C (10)C (11)D (12)A 二、填空题(13)1 (14)-6 (15)4315 (16)31三、解答题 (17)解:(Ⅰ)因为.31)31(311n n n a =⨯=-,231131)311(31nn n S -=--= 所以,21nn a S --(Ⅱ)n n a a a b 32313log log log +++= )21(n +++-= 2)1(+-=n n所以}{n b 的通项公式为.2)1(+-=n n b n (18)解:(Ⅰ)因为60,2DAB AB AD ∠=︒=,由余弦定理得BD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面P AD. 故 P A ⊥BD(Ⅱ)如图,作DE ⊥PB ,垂足为E .已知PD ⊥底面ABCD ,则PD ⊥BC .由(Ⅰ)知BD ⊥AD ,又BC//AD ,所以BC ⊥BD . 故BC ⊥平面PBD ,BC ⊥DE .则DE ⊥平面PBC .由题设知,PD=1,则BD=3,PB=2, 根据BE·PB=PD·BD ,得DE=23, 即棱锥D —PBC 的高为.23(19)解(Ⅰ)由试验结果知,用A 配方生产的产品中优质的频率为228=0.3100+,所以用A 配方生产的产品的优质品率的估计值为0.3. 由试验结果知,用B 配方生产的产品中优质品的频率为32100.42100+=,所以用B 配方生产的产品的优质品率的估计值为0.42(Ⅱ)由条件知用B 配方生产的一件产品的利润大于0当且仅当其质量指标值t≥94,由试验结果知,质量指标值t≥94的频率为0.96,所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96. 用B 配方生产的产品平均一件的利润为68.2)442254)2(4(1001=⨯+⨯+-⨯⨯(元) (20)解:(Ⅰ)曲线162+-=x x y 与y 轴的交点为(0,1),与x 轴的交点为().0,223(),0,223-+故可设C 的圆心为(3,t ),则有,)22()1(32222t t +=-+解得t=1. 则圆C 的半径为.3)1(322=-+t 所以圆C 的方程为.9)1()3(22=-+-y x(Ⅱ)设A (11,y x ),B (22,y x ),其坐标满足方程组:⎪⎩⎪⎨⎧=-+-=+-.9)1()3(,022y x a y x 消去y ,得到方程.012)82(222=+-+-+a a x a x由已知可得,判别式.0416562>--=∆a a 因此,,441656)28(22,1a a a x --±-=从而2120,422121+-=-=+a a x x a x x ①由于OA ⊥OB ,可得,02121=+y y x x又,,2211a x y a x y +=+=所以.0)(222121=+++a x x a x x ②由①,②得1-=a ,满足,0>∆故.1-=a(21)解:(Ⅰ)221(ln )'()(1)x x b x f x x x α+-=-+ 由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即 1,1,22b a b =⎧⎪⎨-=-⎪⎩ 解得1a =,1b =.(Ⅱ)由(Ⅰ)知ln 1f ()1x x x x =++,所以 )1ln 2(111ln )(22xx x x x x x f -+-=-= 考虑函数()2ln h x x =+x x 12-(0)x >,则22222)1()1(22)(xx x x x x x h --=---=' 所以当1≠x 时,,0)1(,0)(=<'h x h 而故当)1,0(∈x 时,;0)(11,0)(2>->x h x x h 可得 当),1(+∞∈x 时,;0)(11,0)(2>-<x h x x h 可得从而当.1ln )(,01ln )(,1,0->>--≠>x x x f x x x f x x 即且 (22)解: (I )连接DE ,根据题意在△ADE 和△ACB 中,AD×AB=mn=AE×AC , 即ABAE AC AD =.又∠DAE=∠CAB ,从而△ADE ∽△ACB因此∠ADE=∠ACB所以C ,B ,D ,E 四点共圆.(Ⅱ)m=4, n=6时,方程x 2-14x+mn=0的两根为x 1=2,x 2=12.故 AD=2,AB=12.取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线相交于H 点,连接DH.因为C ,B ,D ,E 四点共圆,所以C ,B ,D ,E 四点所在圆的圆心为H ,半径为DH.由于∠A=900,故GH ∥AB , HF ∥AC. HF=AG=5,DF=21(12-2)=5. 故C ,B ,D ,E 四点所在圆的半径为52 (23)解:(I )设P(x ,y),则由条件知M(2,2Y X ).由于M 点在C 1上,所以 ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧+==ααsin 222,cos 22y x 即 ⎭⎬⎫⎩⎨⎧+==ααs i n 44c o s 4y x从而2C 的参数方程为 4cos 44sin x y αα=⎧⎨=+⎩(α为参数)(Ⅱ)曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为8s i n ρθ=. 射线3πθ=与1C 的交点A 的极径为14sin 3πρ=, 射线3πθ=与2C 的交点B 的极径为28sin 3πρ=.所以21||||AB ρρ-==(24)解:(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x -≥.由此可得 3x ≥或1x ≤-. 故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-.(Ⅱ) 由()0f x ≤ 得30x a x -+≤此不等式化为不等式组 30x a x a x ≥⎧⎨-+≤⎩ 或30x a a x x ≤⎧⎨-+≤⎩即 4x a a x ≥⎧⎪⎨≤⎪⎩ 或2x a a a ≤⎧⎪⎨≤-⎪⎩ 因为0a >,所以不等式组的解集为{}|2a x x ≤- 由题设可得2a -= 1-,故2a =。

2011年全国高考文科数学试题及答案-北京

2011年普通高等学校招生全国统一考试(北京卷)数学(文)本试卷共5页,150分.考试时间长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U=R,集合P={x ︱x 2≤1},那么A .(-∞, -1]B .[1, +∞)C .[-1,1]D .(-∞,-1] ∪[1,+∞)2.复数212i i-=+A .iB .-iC .4355i -- D .4355i -+3.如果,0log log 2121<<y x 那么A .y< x<1B .x< y<1C .1< x<yD .1<y<x4.若p 是真命题,q 是假命题,则A .p ∧q 是真命题B .p ∨q 是假命题C .﹁p 是真命题D .﹁q 是真命题5.某四棱锥的三视图如图所示,该四棱锥的表面积是 A .32B .C .48D .6.执行如图所示的程序框图,若输入A 的值为2,则输入的P 值为 A .2 B .3 C .4 D .5 7.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为8x天,且每件产品每天的仓储费用为1元.为使平均没见产品的生产准备费用与仓储费用之和最小,每批应生产产品 A .60件 B .80件 C .100件 D .120件 8.已知点A (0,2),B (2,0).若点C 在函数y = x 的图像上,则使得ΔABC 的面积为2的点C 的个数为A .4B .3C .2D .1第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.在ABC ∆中.若b=5,4B π∠=,sinA=13,则a=___________________. 10.已知双曲线2221y x b-=(b >0)的一条渐近线的方程为2y x =,则b = .11.已知向量a=,1),b=(0,-1),c=(k.若a-2b 与c 共线,则k=________________. 12.在等比数列{a n }中,a 1=12,a 4=4,则公比q=______________;a 1+a 2+…+a n = _________________. 13.已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是_______14.设A (0,0),B (4,0),C (t+4,3),D (t,3)(t ∈R ).记N (t )为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N (0)= N (t )的所有可能取值为三、解答题6小题,共80分,解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分) 已知函数()4cos sin()16f x x x π=+-.(Ⅰ)求()f x 的最小正周期: (Ⅱ)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.16.(本小题共13分) 以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. (注:方差],)()()[(1222212x x x x x x ns n -+-+-=其中为n x x x ,,,21 的平均数)17.(本小题共14分) 如图,在四面体PABC 中,PC ⊥AB ,PA ⊥BC,点D,E,F,G 分别是棱AP ,AC,BC,PB 的中点. (Ⅰ)求证:DE ∥平面BCP ; (Ⅱ)求证:四边形DEFG 为矩形; (Ⅲ)是否存在点Q ,到四面体PABC 六条棱的中点的距离相等?说明理由.18.(本小题共13分) 已知函数()()xf x x k e =-. (Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值.19.(本小题共14分)已知椭圆2222:1(0)x y G a b a b+=>>右焦点为(),斜率为I 的直线l与椭圆G 交与A 、B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(I )求椭圆G 的方程; (II )求PAB ∆的面积.20.(本小题共13分)若数列12:,,,(2)n n A a a a n ⋅⋅⋅≥满足11(1,2,,1)k k a a k n +-==⋅⋅⋅-,则称n A 为E 数列,记12()n n S A a a a =++⋅⋅⋅+.(Ⅰ)写出一个E 数列A 5满足130a a ==;(Ⅱ)若112a =,n=2000,证明:E 数列n A 是递增数列的充要条件是n a =2011; (Ⅲ)在14a =的E 数列n A 中,求使得()n S A =0成立得n 的最小值.参考答案一、选择题(共8小题,每小题5分,共40分) (1)D (2)A (3)D (4)D (5)B (6)C (7)B (8)A二、填空题(共6小题,每小题5分,共30分) (9)325 (10)2 (11)1(12)2 2121--n (13)(0,1) (14)6 6,7,8, 三、解答题(共6小题,共80分) (15)(共13分)解:(Ⅰ)因为1)6sin(cos 4)(-+=πx x x f1)cos 21sin 23(cos 4-+=x x x 1cos 22sin 32-+=x xx x 2cos 2sin 3+=)62sin(2π+=x所以)(x f 的最小正周期为π (Ⅱ)因为.32626,46πππππ≤+≤-≤≤-x x 所以 于是,当6,262πππ==+x x 即时,)(x f 取得最大值2;当)(,6,662x f x x 时即πππ-=-=+取得最小值—1. (16)(共13分)解(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, 所以平均数为;435410988=+++=x方差为.1611])43510()4359()4358[(412222=-+-+-=s(Ⅱ)记甲组四名同学为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10,分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4), (A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4), (A 3,B 1),(A 2,B 2),(A 3,B 3),(A 1,B 4), (A 4,B 1),(A 4,B 2),(A 4,B 3),(A 4,B 4),用C 表示:“选出的两名同学的植树总棵数为19”这一事件,则C 中的结果有4个,它们是:(A 1,B 4),(A 2,B 4),(A 3,B 2),(A 4,B 2),故所求概率为.41164)(==C P (17)(共14分) 证明:(Ⅰ)因为D ,E 分别为AP ,AC 的中点,所以DE//PC 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

www.zgxzw.com 中国校长网 中国校长网资源频道 http://zy.zgxzw.com 2011年普通高等学校招生全国统一考试

文科数学(必修+选修II) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。 第Ⅰ卷1至2页。第Ⅱ卷3至4页。考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷 注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。..........

3.第Ⅰ卷共l2小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 一、选择题

1.设集合U=1,2,3,4,1,2,3,M2,3,4,N则=(MN)ð

A.12, B.23, C.2,4 D.1,4

2.函数2(0)yxx≥的反函数为 A.2()4xyxR B.2(0)4xyx≥ C.24yx()xR D.24(0)yxx≥ 3.权向量a,b满足1||||1,2abab,则2ab A.2 B.3 C.5 D.7

4.若变量x、y满足约束条件6321xyxyx,则23zxy的最小值为 A.17 B.14 C.5 D.3 5.下面四个条件中,使ab成立的充分而不必要的条件是 A.1ab B.1ab

C.22ab D.33ab

6.设nS为等差数列{}na的前n项和,若11a,公差为22,24kkdSS,则k= A.8 B.7 C.6 D.5 www.zgxzw.com 中国校长网 中国校长网资源频道 http://zy.zgxzw.com 7.设函数()cos(0)fxx>,将()yfx的图像向右平移3个单位长度后,所得的图像与原图像重合,则的最小值等于 A.13 B.3 C.6 D.9

8.已知二面角l,点,,AAClC为垂足,点,BBDl,D为垂足,若AB=2,AC=BD=1,则CD= A.2 B.3 C.2 D.1 9.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 A.12种 B.24种 C.30种 D.36种

10.设()fx是周期为2的奇函数,当0≤x≤1时,()fx=2(1)xx,则5()2f=

A.-12 B.1 4 C.14 D.12 11.设两圆1C、2C都和两坐标轴相切,且都过点(4,1),则两圆心的距离12CC= A.4 B.42 C.8 D.82 12.已知平面截一球面得圆M,过圆心M且与成060,二面角的平面截该球面得圆N,若该球的半径为4,圆M的面积为4,则圆N的面积为 A.7 B.9 C.11 D.13

第Ⅱ卷 注意事项: 1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。请认真核准条形码卜的准考证号、姓名和科目。 2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效。 3.第Ⅱ卷共l0小题,共90分。 二、填空题:本大题共4小题,每小题5分,共20分把答案填在题中横线上(注意:在试卷上作.....

答无效...)

13.(1-x)10的二项展开式中,x的系数与x9的系数之差为: . 14.已知a∈(3,2),tan2,cos则= 15.已知正方体ABCD—A1B1C1D1中,E为C1D1的中点,则异面直线AE与BC所成角的余弦值为 。 www.zgxzw.com 中国校长网 中国校长网资源频道 http://zy.zgxzw.com 16.已知F1、F2分别为双曲线C: 29x- 227y=1的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2∠的平分线.则|AF2| = . 三、解答题:本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤 17.(本小题满分l0分)(注意:在试题卷上作答无效.........)

设等比数列na的前n项和为nS,已知26,a13630,aa求na和nS

18.(本小题满分2分)(注意:在试题卷上作答无效.........) △ABC的内角A、B、C的对边分别为a、b、c.己知sincsin2sinsin,aACaCbB (Ⅰ)求B; (Ⅱ)若075,2,Abac求与

19.(本小题满分l2分)(注意:在试题卷上作答无效.........) 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立。 (I)求该地1位车主至少购买甲、乙两种保险中的1种概率; (II)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率。

20.(本小题满分l2分)(注意:在试题卷上作答无效.........) www.zgxzw.com 中国校长网

中国校长网资源频道 http://zy.zgxzw.com 如图,四棱锥SABCD中, ABCD,BCCD,侧面SAB为等边三角形,

2,1ABBCCDSD.

(I)证明:SD平面SAB; (II)求AB与平面SBC所成的角的大小。

21.(本小题满分l2分)(注意:在试题卷上作答无效.........) 已知函数32()3(36)124fxxaxaxaaR

(I)证明:曲线()0yfxx在处的切线过点(2,2); (II)若0()fxxx在处取得极小值,0(1,3)x,求a的取值范围。

22.(本小题满分l2分)(注意:在试题卷上作答无效.........) 已知O为坐标原点,F为椭圆22:12yCx在y轴正半轴上的焦点,过F且斜率为-2

的直线l与C交与A、B两点,点P满足0.OAOBOP (Ⅰ)证明:点P在C上; (II)设点P关于O的对称点为Q,证明:A、P、B、Q四点在同一圆上。 www.zgxzw.com 中国校长网

中国校长网资源频道 http://zy.zgxzw.com 参考答案 评分说明: 1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则。 2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给力,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分。 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。 4.只给整数分数,选择题不给中间分。 一、选择题 1—6 DBBCAD 7—12 CCBACD 二、填空题

13.0 14.55 15.23 16.6 三、解答题 17.解:设{}na的公比为q,由题设得

1211

6,630.aqaaq



…………3分

解得113,2,2,3.aaqq或 …………6分 当113,2,32,3(21);nnnnaqaS时 当112,3,23,31.nnnnaqaS时 …………10分 18.解: (I)由正弦定理得2222.acacb …………3分

由余弦定理得2222cos.bacacB

故2cos,45.2BB因此 …………6分 (II)sinsin(3045)A sin30cos45cos30sin4526.4

…………8分 www.zgxzw.com 中国校长网 中国校长网资源频道 http://zy.zgxzw.com 故sin2613,sin2AabB sinsin6026.sinsin45CcbB

 …………12分

19.解:记A表示事件:该地的1位车主购买甲种保险; B表示事件:该地的1位车主购买乙种保险但不购买甲种保险; C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种; D表示事件:该地的1位车主甲、乙两种保险都不购买; E表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买。

(I)()0.5,()0.3,,PAPBCAB …………3分

()()()()0PCPABPAPB …………6分

(II),()1()10.80.2,DCPDPC …………9分 123()0.20.80.384.PEC …………12分

20.解法一: (I)取AB中点E,连结DE,则四边形BCDE为矩形,DE=CB=2,

连结SE,则,3.SEABSE

又SD=1,故222EDSESD, 所以DSE为直角。 …………3分 由,,ABDEABSEDESEE, 得AB平面SDE,所以ABSD。 SD与两条相交直线AB、SE都垂直。 所以SD平面SAB。 …………6分 (II)由AB平面SDE知, 平面ABCD平面SED。

作,SFDE垂足为F,则SF平面ABCD,

3.2SDSESFDE

作FGBC,垂足为G,则FG=DC=1。 连结SG,则SGBC,

又,BCFGSGFGG, 故BC平面SFG,平面SBC平面SFG。 …………9分 作FHSG,H为垂足,则FH平面SBC。

相关文档
最新文档