(完整版)专题5导数的应用含参函数的单调性讨论答案

合集下载

高一数学利用导数研究函数的单调性试题答案及解析

高一数学利用导数研究函数的单调性试题答案及解析

高一数学利用导数研究函数的单调性试题答案及解析1.若函数在区间内是增函数,则实数的取值范围是()A.B.C.D.【答案】B【解析】∵f(x)=x3+ax-2,∴f′(x)=3x2+a,∵函数f(x)=x3+ax-2在区间[1,+∞)内是增函数,∴f′(1)=3+a≥0,∴a≥-3.故选B..【考点】利用导数研究函数的单调性..2.已知函数(1)若,试确定函数的单调区间;(2)若,且对于任意,恒成立,试确定实数的取值范围;【答案】(1)详见解析(2).【解析】(1)求出函数的导数,只要解导数的不等式即可,根据导数与0的关系判断函数的单调性;(2)函数f(|x|)是偶函数,只要f(x)>0对任意x≥0恒成立即可,等价于f(x)在[0,+∞)的最小值大于零.试题解析:解:(1)由得,所以.由得,故的单调递增区间是,由得,故的单调递减区间是. 4(2)由可知是偶函数.于是对任意成立等价于对任意成立.由得.①当时,.此时在上单调递增.故,符合题意.②当时,.当变化时的变化情况如下表:单调递减极小值单调递增由此可得,在依题意,,又.综合①,②得,实数的取值范围是.【考点】1.利用导数求闭区间上函数的最值;2.利用导数研究函数的单调性..3.已知函数f(x)=2x--aln(x+1),a∈R.(1)若a=-4,求函数f(x)的单调区间;(2)求y=f(x)的极值点(即函数取到极值时点的横坐标).【答案】(1)f(x)的单调增区间为(-1,3),单调减区间为(3,+∞)。

(2)ⅰ. 7分ⅱ.当时,若,由函数的单调性可知f(x)有极小值点;有极大值点。

若时, f(x)有极大值点,无极小值点。

【解析】(1)因为,f(x)=2x--aln(x+1),a∈R,定义域为(-1,+∞)。

所以,,故,f(x)的单调增区间为(-1,3),单调减区间为(3,+∞)。

(2)因为,f(x)=2x--aln(x+1),a∈R,定义域为(-1,+∞)。

利用导数研究含参函数的单调性

利用导数研究含参函数的单调性

1 f ( x )在 ( , 2) 上 为 减 函 数 。 a
综上:
(1)当a 0时 , f ( x)在 (0,2) 上 递 增 , 在 (
2, ) 上 递 减 。
1 (2)当a 时 , f ( x )在 (0, ) 上 为 增 函 数 。 2 1 1 (3)当0 a 时 , f ( x )在 (0, 2) 和 ( ,)上 为 增 函 数 ; 2 a 1 f ( x )在 (2, ) 上 为 减 函 数 。 a 1 1 (4)当a 时 , f ( x )在 (0, ) 和 ( 2,)上 为 增 函 数 ; 2 a
1、能利用导数法判断含参函数的单调性
2、掌握讨论含参函数单调性的几种常见 分类标准
独立自学
1 用导数判断函数单调性的法则 、 :
如果在(a,b)内, f ( x)>0, 则f ( x)在此区间是增函数;
则f ( x)在此区间是减函数。 如果在(a,b)内,f ( x)<0,
2、求函数单调区间的一般步骤是 1、求定义域 2、求导f'(x) 3、令f'(x)>0,求出增区间,令f'(x)<0,求出减区间。
课题导入 安徽高考真题展示:
2 (09年)已知函数 f ( x) x a(2 ln x), a 0.讨论 f ( x)的单调性 x
含参数函数的单调性问题是历年高考中的一个重要 考点,同时也是学习中的一个难点。那么我们该如 何应对这一类问题呢?
利用导数研究含参函数的单调性
目标引领
探究: 1、在求导计算前应注意什么问题? 2、导函数中影响符号变化的部分是什么函数? 3、在利用导函数判别单调性时,应如何讨论? 无法确定导函数中二次结构的判别式符号,故应对判别式进行 分类讨论。 归纳总结: 对于二次函数取值正负,当根的情况 不能确定时,要对判别式进行讨论。

高三数学专题含参函数的单调性

高三数学专题含参函数的单调性

高三数学专题含参函数的单调性1.设f(x)=ax3+x恰有三个单调区间,试确定a的取值范围,并求出这三个单调区间.2.判断函数f(x)=(a+1)ln x+ax2+1的单调性.3.已知函数f(x)=x2+2a ln x,(1)若函数f(x)的图象在(2,f(2))处的切线斜率为l,求实数a的值;(2)求函数f(x)的单调区间.4.设函数f(x)=ax-(a+1)ln(x+1),其中a≥-1,求f(x)的单调区间.5.已知函数f(x)=ln(1+x)-x+x2(k≥0).试求f(x)的单调区间.6.讨论函数f(x)=ax2+x-(a+1)ln x(a≥0)的单调性.7.函数f(x)=ax2-a-ln x,讨论f(x)的单调性.8.设函数f(x)=(x-1)3-ax-b,x∈R,其中a,b∈R.求f(x)的单调区间.9.已知函数f(x)=-a(x-ln x).(1)当a=1时,试求f(x)在(1,f(1))处的切线方程;(2)当a≤0时,试求f(x)的单调区间.10.已知函数f(x)=ln x-ax+-1(a∈R).(1)当a=-1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)当a≤时,讨论f(x)的单调性.11.设函数f(x)=1+(1+a)x-x2-x3,其中a>0.讨论f(x)在其定义域上的单调性.12.已知函数f(x)=a ln x+x2-(1+a)x(x>0),其中a为实数.求函数f(x)的单调区间.13.已知函数f(x)=e x-ax+a,其中a∈R,e为自然对数的底数.讨论函数f(x)的单调性,并写出对应的单调区间.14.已知函数f(x)=-ax2+(1+a)x-ln x(a∈R).当a>0时,求函数f(x)的单调递减区间.15.设函数f(x)=x2-m ln x(m>0),求函数f(x)的单调区间.16.已知函数f(x)=ax+x2-x ln a(a>0且a≠1),求函数f(x)的单调递增区间.17.已知函数f(x)=ln x-a(x-1),a∈R,讨论函数f(x)的单调性.18.已知函数f(x)=ax-e x(a∈R),求函数f(x)的单调区间.19.已知函数f(x)=ln x-ax-3(a≠0),讨论函数f(x)的单调性.20.已知函数f(x)=ln x-(a∈R),试判断f(x)在定义域内的单调性.21.已知f(x)=a(x-ln x)+,a∈R. 讨论f(x)的单调性.22.已知函数f(x)=a ln x-ax-3(a∈R).求函数f(x)的单调区间.23.设f(x)=x ln x-ax2+(2a-1)x,a∈R. 令g(x)=f′(x),求g(x)的单调区间.24.设函数f(x)=ax-2-ln x(a∈R).(1)若f(x)在点(e,f(e))处的切线斜率为,求a的值;(2)当a>0时,求f(x)的单调区间.25.设函数f(x)=.求函数f(x)在[0,2]上的单调区间.26.已知函数f(x)=a e xx-2a e x-x2+x.(1)求函数f(x)在(2,f(2))处的切线方程;(2)讨论函数f(x)的单调区间.27.已知m>0,讨论函数f(x)=的单调性.答案解析1.【答案】解f′(x)=3ax2+1,若a>0,则f′(x)>0,x∈(-∞,+∞),此时f(x)只有一个单调区间,矛盾.若a=0,则f(x)=x,此时f(x)也只有一个单调区间,矛盾.若a<0,则f′(x)=3a(x+)(x-),综上可知,a<0时,f(x)恰有三个单调区间,其中减区间为(-∞,-),(,+∞),增区间为[-,].【解析】2.【答案】解由题意知f(x)的定义域为(0,+∞),f′(x)=+2ax=.①当a≥0时,f′(x)>0,故f(x)在(0,+∞)上单调递增.②当a≤-1时,f′(x)<0,故f(x)在(0,+∞)上单调递减.③当-1<a<0时,令f′(x)=0,解得x=,则当x∈(0,)时,f′(x)>0;当x∈[,+∞)时,f′(x)≤0.故f(x)在(0,)上单调递增,在[,+∞)上单调递减.综上,当a≥0时,f(x)在(0,+∞)上单调递增;当a≤-1时,f(x)在(0,+∞)上单调递减;当-1<a<0时,f(x)在(0,)上单调递增,在[,+∞)上单调递减.【解析】3.【答案】解(1)f′(x)=2x+=,由已知f′(2)=1,解得a=-3.(2)函数f(x)的定义域为(0,+∞).①当a≥0时,f′(x)>0,f(x)的单调递增区间为(0,+∞);②当a<0时,f′(x)=,当x变化时,f′(x),f(x)的变化情况如下:由上表可知,函数f(x)的单调递减区间是(0,];单调递增区间是(,+∞).【解析】4.【答案】解由已知得函数f(x)的定义域为(-1,+∞)且f′(x)=(a≥-1),①当-1≤a≤0时,f′(x)<0,函数f(x)在(-1,+∞)上单调递减;②当a>0时,由f′(x)=0,解得x=.f′(x)、f(x)随x的变化情况如下表:从上表可知,当x∈(-1,]时,f′(x)≤0,函数f(x)在(-1,]上单调递减;当x∈(,+∞)时,f′(x)>0,函数f(x)在(,+∞)上单调递增.综上所述:当-1≤a≤0时,函数f(x)在(-1,+∞)上单调递减.当a>0时,函数f(x)在(-1,]上单调递减,函数f(x)在(,+∞)上单调递增.【解析】5.【答案】解f′(x)=-1+kx=,x∈(-1,+∞).当k=0时,f′(x)=-,所以,在区间(-1,0)上,f′(x)>0;在区间[0,+∞)上,f′(x)≤0.故f(x)的单调递增区间是(-1,0),单调递减区间是[0,+∞);当0<k<1时,由f′(x)==0,得x 1=0,x2=>0,所以,在区间(-1,0)和(,+∞)上,f′(x)>0;在区间[0,]上,f′(x)≤0.故f(x)的单调递增区间是(-1,0)和(,+∞),单调递减区间是[0,];当k=1时,f′(x)=,故f(x)的单调递增区间是(-1,+∞);当k>1时,f′(x)==0,得x 1=∈(-1,0),x2=0,所以在区间(-1,)和(0,+∞)上,f′(x)>0;在区间[,0]上,f′(x)≤0,故f(x)的单调递增区间是(-1,)和(0,+∞),单调递减区间是[,0].【解析】6.【答案】解函数f(x)的定义域为(0,+∞),f′(x)=ax+1-=,①当a=0时,f′(x)=,由f′(x)≥0,得x≥1;由f′(x)<0,得0<x<1.所以,f(x)在(0,1)内为减函数,在[1,+∞)内为增函数;②当a>0时,f′(x)=,因为a>0,所以-<0,由f′(x)≥0,得x≥1;由f′(x)<0,得0<x<1.所以,f(x)在(0,1)内为减函数,在[1,+∞)内为增函数.综上所述,a≥0时,f(x)在(0,1)内为减函数;在[1,+∞)内为增函数.【解析】7.【答案】解由f(x)=ax2-a-ln x,得f′(x)=2ax-=(x>0),当a≤0时,f′(x)<0在(0,+∞)恒成立,则f(x)在(0,+∞)上为减函数;当a>0时,由f′(x)=0,得x=±=±,∴当x∈(0,)时,f′(x)<0,当x∈[,+∞)时,f′(x)≥0,则f(x)在(0,)上为减函数,在[,+∞)上为增函数.综上,当a≤0时,f(x)在(0,+∞)上为减函数,当a>0时,f(x)在(0,)上为减函数,在[,+∞)上为增函数.【解析】8.【答案】解(1)函数f(x)=(x-1)3-ax-b的导数为f′(x)=3(x-1)2-a,当a≤0时,f′(x)≥0,f(x)在R上递增;当a>0时,当x>1+或x<1-时,f′(x)>0,当1-≤x≤1+时,f′(x)≤0,可得f(x)的增区间为(-∞,1-),(1+,+∞),减区间为[1-,1+].【解析】9.【答案】解(1)当a=1时,f′(x)=-1+,f′(1)=0,f(1)=e-1.∴方程为y=e-1.(2)函数定义域为(0,+∞),f′(x)=-a(1-),==,当a≤0时,对于∀x∈(0,+∞),e x-ax>0恒成立,令f′(x)>0⇒x>1,令f′(x)<0⇒0<x<1,∴f(x)的减区间为(0,1),增区间为(1,+∞).【解析】10.【答案】解(1)当a=-1时,f(x)=ln x+x+-1,x∈(0,+∞),所以f′(x)=+1-,因此,f′(2)=1,即曲线y=f(x)在点(2,f(2))处的切线斜率为1,又f(2)=ln 2+2,所以y=f(x)在点(2,f(2))处的切线方程为y-(ln 2+2)=x-2,即x-y+ln 2=0.(2)因为f(x)=ln x-ax+-1,所以f′(x)=-a+=-,x∈(0,+∞),令g(x)=ax2-x+1-a,x∈(0,+∞),①当a=0时,g(x)=-x+1,x∈(0,+∞),所以,当x∈(0,1)时,g(x)>0,此时f′(x)<0,函数f(x)单调递减;当x∈(1,+∞)时,g(x)<0,此时f′(x)>0,函数单调递增;②当a≠0时,由g(x)=0,即ax2-x+1-a=0,解得x 1=1,x2=-1.(ⅰ)当a=时,x 1=x2,g(x)≥0恒成立,此时f′(x)≤0,函数f(x)在(0,+∞)上单调递减;(ⅱ)当0<a<时,x∈(0,1)时,g(x)>0,此时f′(x)<0,函数f(x)单调递减,x∈(1,-1)时,g(x)<0,此时f′(x)>0,函数f(x)单调递增,x∈(-1,+∞)时,g(x)>0,此时f′(x)<0,函数f(x)单调递减;(ⅲ)当a<0时,由于-1<0,x∈(0,1)时,g(x)>0,此时f′(x)<0,函数f(x)单调递减;x∈(1,+∞)时,g(x)<0,此时函数f′(x)>0,函数f(x)单调递增.综上所述:当a≤0时,函数f(x)在(0,1)上单调递减;函数f(x)在(1,+∞)上单调递增,当a=时,函数f(x)在(0,+∞)上单调递减,当0<a<时,函数f(x)在(0,1)和(-1,+∞)上单调递减;函数f(x)在(1,-1)上单调递增.【解析】11.【答案】解f(x)的定义域为(-∞,+∞),f′(x)=1+a-2x-3x2,由f′(x)=0,得x 1=,x2=,x1<x2,∴由f′(x)<0,得x<或x>;由f′(x)>0,得<x<,故f(x)在(-∞,)和(,+∞)上单调递减,在(,)上单调递增.【解析】12.【答案】解因为f′(x)=+x-(1+a)=(x>0),①当a≤0时,令f′(x)>0,得x>1;令f′(x)<0,得0<x<1,此时,函数f(x)的增区间是(1,+∞),减区间是(0,1),②当0<a<1时,令f′(x)>0,得x>1或0<x<a;令f′(x)<0,得a<x<1,此时,函数f(x)的增区间是(1,+∞)和(0,a),减区间是(a,1),③当a=1时,f′(x)≥0对任意x∈(0,+∞)恒成立,此时,函数f(x)的增区间是(0,+∞),无减区间,④当a>1时,令f′(x)>0,得x>a或0<x<1;令f′(x)<0,得1<x<a,此时,函数f(x)的增区间是(a,+∞)和(0,1),减区间是(1,a).【解析】13.【答案】解由函数f(x)=e x-ax+a,可知f′(x)=e x-a,①当a≤0时,f′(x)>0,函数f(x)在R上单调递增;②当a>0时,令f′(x)=e x-a=0,得x=ln a,故当x∈(-∞,ln a)时,f′(x)<0,此时f(x)单调递减;当x∈(ln a,+∞)时,f′(x)>0,此时f(x)单调递增.综上所述,当a≤0时,函数f(x)的单调递增区间为(-∞,+∞);当a>0时,函数f(x)的单调递减区间为(-∞,ln a),单调递增区间为(ln a,+∞).【解析】14.【答案】解当a>0时,函数f(x)=-ax2+(1+a)x-ln x的导数f′(x)=-ax+1+a-=-(x>0),当a=1时,f′(x)≤0,f(x)递减;当a>1时,1>,f′(x)<0,可得x>1或0<x<;当0<a<1时,1<,f′(x)<0,可得0<x<1或x>.综上可得,a=1时,f(x)的减区间为(0,+∞);a>1时,f(x)的减区间为(1,+∞),(0,);0<a<1时,f(x)的减区间为(,+∞),(0,1).【解析】15.【答案】解函数f(x)的定义域为(0,+∞),f′(x)=,当0<x<时,f′(x)<0,函数f(x)单调递减,当x>时,f′(x)>0,函数f(x)单调递增.综上,函数f(x)的单调增区间是(,+∞),减区间是(0,).【解析】16.【答案】解函数f(x)的定义域为R,f′(x)=ax ln a+2x-ln a=2x+(ax-1)ln a.令h(x)=f′(x)=2x+(ax-1)ln a,h′(x)=2+ax ln2a,当a>0,a≠1时,h′(x)>0,所以h(x)在R上是增函数,又h(0)=f′(0)=0,所以,f′(x)>0的解集为(0,+∞),f′(x)<0的解集为(-∞,0),故函数f(x)的单调增区间为(0,+∞),单调减区间为(-∞,0).【解析】17.【答案】解f(x)的定义域为(0,+∞),f′(x)=,若a≤0,则f′(x)>0,∴f(x)在(0,+∞)上单调递增,若a>0,则由f′(x)=0,得x=,当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,∴f(x)在(0,)上单调递增,在(,+∞)上单调递减.∴当a≤0时,f(x)在(0,+∞)上单调递增,当a>0时,f(x)在(0,)上单调递增,在(,+∞)上单调递减.【解析】18.【答案】解∵f′(x)=a-e x,x∈R.当a≤0时,f′(x)<0,f(x)在R上单调递减;当a>0时,令f′(x)=0得x=ln a.由f′(x)>0得f(x)的单调递增区间为(-∞,ln a);由f′(x)<0得f(x)的单调递减区间为(ln a,+∞).【解析】19.【答案】解由已知得f(x)的定义域为(0,+∞),且f′(x)=-a,当a>0时,f(x)的单调增区间为(0,],减区间为(,+∞);当a<0时,f(x)的单调增区间为(0,+∞),无减区间.【解析】20.【答案】解由题意得f(x)的定义域是(0,+∞)且f′(x)=,当a≥0时,f′(x)>0,f(x)在(0,+∞)上单调递增;当a<0时,f(x)在(0,-a]上单调递减,在(-a,+∞)上单调递增.【解析】21.【答案】解由f(x)=a(x-ln x)+(x>0),得f′(x)=a(1-)+=+==(x>0).若a≤0,则ax2-2<0恒成立,∴当x∈(0,1)时,f′(x)>0,f(x)为增函数,当x∈[1,+∞)时,f′(x)≤0,f(x)为减函数;当a>0时,若0<a<2,当x∈(0,1)和(,+∞)时,f′(x)>0,f(x)为增函数,当x∈[1,]时,f′(x)≤0,f(x)为减函数;若a=2,f′(x)≥0恒成立,f(x)在(0,+∞)上为增函数;若a>2,当x∈(0,)和(1,+∞)时,f′(x)>0,f(x)为增函数,当x∈[,1]时,f′(x)≤0,f(x)为减函数.【解析】22.【答案】解f′(x)=(x>0),当a>0时,f(x)的单调增区间为(0,1],减区间为(1,+∞);当a<0时,f(x)的单调增区间为(1,+∞),减区间为(0,1];当a=0时,f(x)不是单调函数.【解析】23.【答案】解∵f(x)=x ln x-ax2+(2a-1)x(x>0),∴g(x)=f′(x)=ln x-2ax+2a,x>0,g′(x)=-2a=,当a≤0时,g′(x)>0恒成立,即得g(x)的单调增区间是(0,+∞);当a>0,x≥时,g′(x)≤0,函数为减函数,当0<x<时,g′(x)>0,函数为增函数,∴当a≤0时,g(x)的单调增区间是(0,+∞);当a>0时,g(x)的单调增区间是(0,),单调减区间是[,+∞).【解析】24.【答案】解(1)函数的导数f′(x)=a-,若f(x)在点(e,f(e))处的切线斜率为,则f′(e)=a-=,得a=.(2)由f′(x)=a-=(x>0),当a>0时,令f′(x)=0,解得x=.当x变化时,f′(x),f(x)随x变化情况如下表:由表可知,f(x)在(0,)上是单调减函数,在(,+∞)上是单调增函数,所以,当a>0时,f(x)的单调减区间为(0,),单调增区间为(,+∞).【解析】25.【答案】解f′(x)=,当2-m≤0,即m≥2时,x∈[0,2],f′(x)≥0,f(x)在[0,2]上单调递增;当0<m<2时,令f′(x)≤0,得0≤x≤2-m,令f′(x)>0,得2-m<x≤2,所以f(x)在[0,2-m]上单调递减,在(2-m,2]上单调递增;当m≤0时,f′(x)≤0,f(x)在[0,2]上单调递减.【解析】26.【答案】解(1)函数f(x)=a e xx-2a e x-x2+x的导数为f′(x)=a(e x+x e x)-2a e x-x+1=(x-1)(a e x-1),可得f(x)在(2,f(2))处的切线斜率为a e2-1,切点为(2,0),即有切线的方程为y-0=(a e2-1)(x-2),即为y=(a e2-1)(x-2).(2)由f(x)的导数为f′(x)=(x-1)(a e x-1),①当a=0时,f′(x)=-(x-1),当x>1时,f′(x)<0,f(x)递减;当x<1时,f′(x)>0,f(x)递增;②当a<0时,当x>1时,f′(x)<0,f(x)递减;当x<1时,f′(x)>0,f(x)递增;③当a>0时,若a=,则f′(x)=(x-1)(e x-1-1),f(x)在R上递增;若a>,则f′(x)>0,即为(x-1)(x-ln)>0,可得x>1或x<ln;f′(x)<0,即为(x-1)(x-ln)<0,可得ln<x<1;若0<a<,则f′(x)>0,即为(x-1)(x-ln)>0,可得x<1或x>ln;f′(x)<0,即为(x-1)(x-ln)<0,可得1<x<ln.综上可得,a≤0时,f(x)的增区间为(-∞,1),减区间为(1,+∞);a=时,f(x)的增区间为(-∞,+∞);a>时,f(x)的增区间为(1,+∞),(-∞,ln),减区间为(ln,1);0<a<时,f(x)的增区间为(ln,+∞),(-∞,1),减区间为(1,ln).【解析】27.【答案】解f′(x)=,设g(x)=-mx2-(m+3)x-3,令g(x)=0,得x 1=-,x2=-1.①当0<m<3时,x1<x2,x,f′(x)与f(x)的变化情况如下:∴f(x)在区间(-∞,-),(-1,+∞)上是减函数,在区间(-,-1)上是增函数.②当m=3时,x1=x2,在区间(-∞,+∞)上,g(x)≤0,即f′(x)≤0,∴f(x)在区间(-∞,+∞)上是减函数.③当m>3时,x1>x2,x变化时,f′(x)与f(x)的变化情况如下:∴f(x)在区间(-∞,1),(-,+∞)上是减函数,在区间(-1,-)上是增函数.【解析】。

专题05 利用导数研究函数零点问题 (解析版)

专题05 利用导数研究函数零点问题 (解析版)

导数及其应用专题五:利用导数研究函数零点问题一、知识储备1、利用导数确定函数零点的常用方法(1)图象法:根据题目要求画出函数的图象,标明函数极(最)值的位置,借助数形结合的思想分析问题(画草图时注意有时候需使用极限).(2)利用函数零点存在定理:先用该定理判定函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数. 2、利用函数的零点求参数范围的方法(1)分离参数(()a g x =)后,将原问题转化为()y g x =的值域(最值)问题或转化为直线y a =与()y g x =的图象的交点个数问题(优选分离、次选分类)求解; (2)利用函数零点存在定理构建不等式求解;(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解. 二、例题讲解1.(2022·重庆市秀山高级中学校高三月考)已知函数()e e x x f x x =+. (1)求函数()f x 的单调区间和极值;(2)讨论函数()()()g x f x a a =-∈R 的零点的个数.【答案】(1)单调递减区间是(,2)-∞-,单调递增区间是(2,)-+∞,极小值为21e -,无极大值;(2)详见解析. 【分析】(1)利用导数求得()f x 的单调区间,进而求得极值.(2)由(1)画出()f x 大致图象,由此对a 进行分类讨论,求得()g x 的零点个数. 【详解】(1)函数()f x 的定义域为R ,且()(2)e x f x x '=+, 令()0f x '=得2x =-,则()'f x ,()f x 的变化情况如下表示:(2,)-+∞.当2x =-,()f x 有极小值为21(2)e f -=-,无极大值. (2)令()0f x =有1x =-:当1x <-时,()0f x <;当1x >-时,()0f x >,且()f x 经过212,e A ⎛⎫-- ⎪⎝⎭,(1,0)B -,(0,1)C .当x →-∞,与一次函数相比,指数函数e x y -=增长更快,从而1()0e xx f x -+=→;当x →+∞时,()f x →+∞,()f x '→+∞,根据以上信息,画出大致图象如下图所示.函数()()()g x f x a a =-∈R 的零点的个数为()y f x =与y a =的交点个数. 当2x =-时,()f x 有极小值21(2)e f -=-. ∴关于函数()()()g x f x a a =-∈R 的零点个数有如下结论: 当21e a <-时,零点的个数为0个; 当21e a =-或0a ≥,零点的个数为1个; 当210ea -<<时,零点的个数为2个. 【点睛】求解含参数零点问题,可利用分离常数法,结合函数图象进行求解.感悟升华(核心秘籍)本题讨论()()()g x f x a a =-∈R 零点的个数,将问题分解为()y f x =与y a =交点的个数,注意在利用导函数求()f x 单调性,极值后,画出草图,容易出错,本题利用极限x →-∞时,()0f x →,从而将草图画的更准确;三、实战练习1.(2022·河南高三开学考试(文))若函数()34f x ax bx =+-,当2x =时,函数()f x 有极值43-.(1)求函数的递减区间;(2)若关于x 的方程()0f x k -=有一个零点,求实数k 的取值范围. 【答案】(1)递减区间为()2,2-;(2)428,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【分析】(1)对函数进行求导,利用()()2120,42824,3f a b f a b ⎧=-='⎪⎨=-+=-⎪⎩,解方程即可得1,34.a b ⎧=⎪⎨⎪=⎩,对函数求导,根据导数的性质列表,即可得答案;(2)作出函数的图象,直线与函数图象需有1个交点,即可得答案; 【详解】(1)()23f x ax b '=-,由题意知()()2120,42824,3f a b f a b ⎧=-='⎪⎨=-+=-⎪⎩解得1,34.a b ⎧=⎪⎨⎪=⎩ 故所求的解析式为()31443f x x x =-+,可得()()()2422f x x x x '=-=-+,令()0f x '=,得2x =或2x =-,由此可得所以函数的递减区间为2,2-.(2)由(1)知,得到当2x <-或2x >时, ()f x 为增函数; 当22x -<<时, ()f x 为减函数,∴函数()31443f x x x =-+的图象大致如图,由图可知当43k <-或283k >时, ()f x 与y k =有一个交点,所以实数k 的取值范围为428,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【点睛】关键点睛:根据函数的单调性做出该函数的大致图像,进而利用数形结合求解,考查利用导数研究函数的极值、单调性、零点,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力、运算求解能力.2.(2022·陕西西安中学高三月考(理))已知函数()()1xf x e ax a R =--∈.(1)试讨论函数()f x 的零点个数;(2)若函数()()ln 1ln xg x e x =--,且()()f g x f x <⎡⎤⎣⎦在()0,x ∈+∞上恒成立,求实数a 的取值范围.【答案】(1)当0a 或1a =时,函数()f x 只有一个零点;当()()0,11,a ∈+∞时,函数()f x 有两个零点.(2)(],1-∞【分析】(1)通过求解函数的单调性,然后根据零点存在定理,通过讨论求解得出函数零点的个数;(2)根据(1)中结论,得到函数()f x 在(0,)+∞上单调递增,将不等式转换为自变量的比较,最后得出结论. 【详解】解:(1)根据题意,可得()x f x e a '=-,则有:①若0a ,则()0x f x e a '=->,此时可得函数()f x 在R 上单调递增, 又因为(0)0f =,所以函数只有一个零点; ②若0a >,令()0f x '=,则有ln x a =,所以()0ln f x x a '>⇒>,此时函数()f x 在(ln ,)a +∞上单调递增;()0ln f x x a '<⇒<,此时函数()f x 在(,ln )a -∞上单调递减;即()(ln )1ln min f x f a a a a ==--,则有:()i 当ln 01a a =⇒=时,则()0f x ,此时函数()f x 只有一个零点;()ii 当ln 0a ≠时,即1a ≠时,则(ln )(0)0f a f <=,又因为x →-∞时,()f x →+∞;x →+∞时,()f x →+∞, 根据零点存在定理可得,此时函数()f x 在R 上有两个零点. 综上可得,当0a 或1a =时,函数()f x 只有一个零点;当()()0,11,a ∈+∞时,函数()f x 有两个零点.(2)下面证明:0x ∀>,有()0g x x <<,先证:0x ∀>,有()0g x >,由(1)可知当1a =时,()()00min f x f ==,即当0x >时,1x e x ->,故0x ∀>,()()()1ln 1ln ln ln10x xe g x e x g x x ⎛⎫-=--==>= ⎪⎝⎭,再证0x ∀>,()g x x <;要证0x ∀>,()g x x <,只需证明0x ∀>,1x xe e x-<,即证0x ∀>,1x x e xe -<,即证0x ∀>,10x x xe e -+> 令()1(0)x x H x xe e x =-+>()0x H x xe '=>在(0,)+∞上恒成立,即得函数()H x 在(0,)+∞上单调递增,故有()(0)0H x H >=,即0x ∀>,10x x xe e -+>恒成立,即0x ∀>,有()0g x x <<,当1a ≤时,由(1)得,()f x 在(0,)+∞上单调递增,则由上结论可知,[()]()f g x f x <在(0,)x ∈+∞上恒成立,符合题意;当1a >时,由(1)得,()f x 在(0,ln )a 上单调递减,在(ln ,)a +∞上单调递增, 此时当0ln x a <<时,0()ln [()]()g x x a f g x f x <<<⇔>,不合题意, 综上可得,1a ,即(],1a ∈-∞. 【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.3.(2022·榆林市第十中学高三月考(文))已知函数()2ln f x ax x x =--,0a ≠.(1)试讨论函数()f x 的单调性;(2)若函数()f x 有两个零点,求实数a 的取值范围.【答案】(1)当0a <时,函数()f x 在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)()0,1. 【分析】(1)求出导函数()212121ax x f x ax x x-'-=--=,设()221g x ax x =--,对a 分类讨论:当0a <时,函数()f x在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)把()f x 有两个零点,转化为2ln x xa x +=有两个解,令()2ln x x h x x+=,二次求导后得到函数()h x 的单调性和极值,即可求出实数a 的取值范围. 【详解】函数()2ln f x ax x x =--的定义域为()0+∞,. (1)()212121ax x f x ax x x-'-=--=,设()221g x ax x =--当0a <时,因为函数()g x 图象的对称轴为104x a=<,()01g =-. 所以当0x >时,()0g x <,()0f x '<,函数()f x 在()0,∞+上单调递减;当0a >时,令()0g x =.得1x =2x =当20x x <<时,()0<g x ,()0f x '<,当2x x >时,()0>g x ,()0f x '>.所以函数()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)若()f x 有两个零点,即2ln 0ax x x --=有两个解,2ln x x a x +=.设()2ln x x h x x +=,()312ln x h x xx '-=-, 设()12ln F x x x =--,因为函数()F x 在()0,∞+上单调递减,且()10F =, 所以当01x <<时,()0F x >,()0h x '>,当1x >时,()0F x <,()0h x '<. 以函数()h x 在()0,1上单调递增,在()1,+∞上单调递减, 且 x →+∞时,()0h x →,()11h =, 所以01a <<.即实数a 的取值范围为()0,1.4.(2022·沙坪坝·重庆南开中学)已知函数()e 1xf x x a -=++(R a ∈).(1)讨论()f x 的单调性;(2)若函数()f x 有两个零点,求a 的取值范围.【答案】(1)当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增;(2)()20,e -.【分析】(1)对函数求导,进而讨论a 的符号,进而得到函数的单调区间;(2)由(1)可以判断0a >,根据(1)可知()()min ln 0f x f a =<,进而根据零点存在定理结合放缩法得到答案. 【详解】(1)()f x 的定义域为R ,()1e xf x a -'=-,①当0a ≤时,()0f x '>恒成立,所以()f x 在R 上单调递增; ②当0a >时,令()0f x '=得ln x a =, 当ln x a <时,()0f x '<,()f x 单调递减, 当ln x a >时,()0f x '>,()f x 单调递增,所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增综上所述,当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.(2)由(1)可知,0a ≤时,()f x 在R 上单调递增,函数至多有一个零点,不合题意.0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,因为函数有2个零点,所以()()2min ln ln 200e f x f a a a -==+<⇒<<,且()11e 02f a -+>=.记()()e 0x g x x x =-<,则()e 1xg x '=-,所以(),0x ∈-∞时,()0g x '<,()g x 单调递减,所以()()010g x g >=>,则e xx >,于是2e2x x ->-,则x <0时,2e 4xx ->. 所以当x <0时,()214ax f x x >++,限定1x <-,则()()212844ax f x x x ax >+=+, 所以当1x <-且8x a<-时,()0f x >.于是,若函数有2个零点,则()20,e a -∈.【点睛】在“()()2min ln ln 200e f x f a a a -==+<⇒<<,且()11e 02f a -+>=”这一步之后,另一个特值不太好找,这时候需要利用e xx >得到2e2x x->-,进而根据放缩法得到结论. 5.(2022·赣州市第十四中学高三月考(文))已知函数()e 2xf x x =+. (1)求函数()y f x =的单调区间;(2)若函数()()()g x f x ax a =-∈R ,在定义域内恰有三个不同的零点,求实数a 的取值范围.【答案】(1)()f x 在(),2-∞-和()2,1--上为减函数,在()1,-+∞上为增函数;(2)⎛⎫+∞⎪⎪⎭. 【分析】(1)求出函数()f x 的定义域,利用导数与函数单调性的关系可求得函数()f x 的增区间和减区间;(2)分析可知,直线y a =与函数()22xeh x x x=+(0x ≠且2x ≠-)的图象有三个交点,利用导数分析函数()22xe h x x x=+的单调性与极值,数形结合可得出实数a 的取值范围.【详解】(1)因为()e 2xf x x =+的定义域为{}2x x ≠-,且()()()212x e x f x x +'=+,则当2x <-时,()0f x '<,()f x 为减函数; 当21x -<<-时,()0f x '<,()f x 为减函数; 当1x >-时,()0f x '>,()f x 为增函数,综上可得:()f x 在(),2-∞-和()2,1--上为减函数,在()1,-+∞上为增函数; (2)令函数()()0g x f x ax =-=,因为0x =不是方程的解,所以可得22xe a x x=+,构造函数()22xeh x x x =+(0x ≠且2x ≠-),则()()()22222x e x h x x x -'=+,由()0h x '=可得x =作出函数()h x 的图象如下图所示:由图可知,当a >时,函数y a =与函数()y h x =的图象有三个不同的交点,因此实数a 的取值范围是⎛⎫+∞⎪⎪⎭.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.6.(2022·天津静海一中高三月考)已知函数32()3f x x x ax b =-++在1x =-处的切线与x 轴平行. (1)求a 的值和函数()f x 的单调区间; (2)若函数()y f x =的图象与抛物线231532y x x =-+恰有三个不同交点,求b 的取值范围. 【答案】(1)-9,单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-;(2)1,12⎛⎫⎪⎝⎭.【分析】(1)根据(1)0f '-=即可求得a 的值,利用导函数求解单调区间;(2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,转化为()g x 有三个不同的零点.【详解】(1)由已知得2()36f x x x a '=-+, ∵在1x =-处的切线与x 轴平行 ∴(1)0f '-=,解得9a =-.这时2()3693(1)(3)f x x x x x ==+'--- 由()0f x '>,解得3x >或1x <-; 由()0f x '<,解13x .∴()f x 的单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-. (2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,则原题意等价于()g x 图象与x 轴有三个交点. ∵2()3963(1)(2)g x x x x x '=-+=--, ∴由()0g x '>,解得2x >或1x <; 由()0g x '<,解得12x <<.∴()g x 在1x =时取得极大值1(1)2g b =-;()g x 在2x =时取得极小值(2)1g b =-.依题意得10210b b ⎧->⎪⎨⎪-<⎩,解得112b <<.故b 的取值范围为1,12⎛⎫⎪⎝⎭.7.(2022·沙坪坝·重庆南开中学高三月考)已知函数()()2ln =+-∈f x ax x x a R .(1)当1a =时,求()f x 在区间1[,1]3上的最值;(2)若()()g x f x x =-在定义域内有两个零点,求a 的取值范围.【答案】(1)3()=ln 24min f x +,()2max f x =;(2)10,2e ⎛⎫⎪⎝⎭.【分析】(1)当1a =时,求出导函数,求出函数得单调区间,即可求出()f x 在区间1[,1]3上的最值;(2)由()()0g x f x x =-=,分离参数得2ln ()x a h x x ==,根据函数2ln ()xh x x =得单调性作图,结合图像即可得出答案. 【详解】解:(1)当1a =时,()2ln f x x x x =+-,(21)(1)()x x f x x-+'=,∴()f x 在11[,)32单调递减,在1(,1]2单调递增,11114ln ln 339339f ⎛⎫=+-=+ ⎪⎝⎭,()414112ln 993f e f ⎛⎫==+> ⎪⎝⎭,∴13()()ln 224min f x f ==+,()(1)2max f x f ==.(2)()()0g x f x x =-=2ln ()x a h x x ⇔==,则312ln ()xh x x -'=,∴()h x在单调递增,在)+∞单调递减,12h e=,当0x →时,()h x →-∞,当x →+∞时,()0h x →, 作出函数2ln ()x h x x =和y a=得图像, ∴由图象可得,1(0,)2a e∈.8.(2022·全国高三专题练习)已知函数()ln f x a x bx =+的图象在点(1,3)-处的切线方程为21y x =--. (1)若对任意1[,)3x ∈+∞有()f x m 恒成立,求实数m 的取值范围;(2)若函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,求实数k 的范围. 【答案】(1)[ln31--,)+∞;(2)3(ln2,0)4-.【分析】(1)()af x b x'=+,(0)x >,根据函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--.可得f '(1)2=-,f (1)3=-,解得a ,b ,利用导数研究函数的单调性极值与最值即可得出实数m 的取值范围. (2)由(1)可得:2()ln 32g x x x x k =-+++,利用导数研究函数的单调性极值与最值,根据函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,可得最值满足的条件,进而得出实数k 的取值范围.【详解】解:(1)()a f x b x'=+,(0)x >.函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--. f '∴(1)2=-,f (1)3=-,∴23a b b +=-⎧⎨=-⎩,解得3b =-,1a =.()ln 3f x x x ∴=-.13()13()3x f x x x --=-=',1[,)3x ∈+∞,()0f x '∴.∴当13x =时,函数()f x 取得最大值,1()ln313f =--.对任意1[,)3x ∈+∞有()f x m 恒成立,所以()max m f x ,1[,)3x ∈+∞.ln31m ∴--.∴实数m 的取值范围是[ln31--,)+∞.(2)由(1)可得:2()ln 32g x x x x k =-+++,∴1(21)(1)()23x x g x x x x--'=+-=, 令()0g x '=,解得12x =,1. 列表如下:由表格可知:当1x =时,函数()f x 取得极小值g (1)k =;当2x =时,函数()g x 取得极大值13()ln224g k =-++.要满足函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点, 3ln2040k k ⎧-++>⎪⎨⎪<⎩, 解得3ln204k -<<, 则实数k 的取值范围3(ln2,0)4-.【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、转化方法,考查了推理能力于计算能力,属于难题.9.(2022·全国高三开学考试)已知函数()()()21102f x x a x x =-+>. (1)若()()ln g x f x a x =+,讨论函数()g x 的单调性;(2)已知()()()2ln 222m x f x x x a x a =-++-+,若()m x 在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点,求a 的取值范围.【答案】(1)答案见解析;(2)9ln 21,105⎛⎤+ ⎥⎝⎦ 【分析】(1)求出导函数,对a 进行分类讨论:①0a ≤;②01a <<;③a =1;④a >1,利用导数研究单调性. (2)把()m x 在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点转化为关于x 方程2ln 2=2x x x a x -++在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根.令()2ln 21=,,22x x x h x x x -+⎡⎫∈+∞⎪⎢+⎣⎭利用导数判断单调性,求出值域,即可求出a 的范围. 【详解】(1)()f x 的定义域为(0,+∞),()()()()11x x a a f x x a x x--'=-++=. ①当0a ≤时,令()0f x '<,得到01x <<;令()0f x '>,得到1x >,此时()f x 在(0,1)上为减函数,在(1,+∞)上为增函数;②当01a <<时,令()0f x '<,得到1<<a x ;令()0f x '>,得到0x a <<或1x >,此时()f x 在(a ,1)上为减函数,在(0,a )和()1,+∞上为增函数;③当a =1时,显然()0f x '≥恒成立,此时()f x 在0,+∞)上为增函数;④当a >1时,令()0f x '<,得到1x a <<;令()0f x '>,得到01x <<或x a >.此时()f x 在(1,a )上为减函数,在(0,1)和(a ,+∞)上为增函数.综上:①当0a ≤时, ()f x 在(0,1)上为减函数,在(1,+∞)上为增函数; ②当01a <<时, ()f x 在(a ,1)上为减函数,在(0,a )和()1,+∞上为增函数; ③当a =1时,()f x 在0,+∞)上为增函数;④当a >1时,()f x 在(1,a )上为减函数,在(0,1)和(a ,+∞)上为增函数.(2)()()()22ln 222ln 22m x f x x x a x a x ax x x a =-++-+=---+在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点,即关于x 方程2ln 2=2x x x a x -++在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根.令()2ln 21=,,22x x x h x x x -+⎡⎫∈+∞⎪⎢+⎣⎭则()()2232ln 4=2x x x h x x +--'+, 令()2132ln 4,2p x x x x x ⎡⎫=+--∈+∞⎪⎢⎣⎭,,则()()()212x x p x x-+'=,显然()0p x '≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,故()p x 在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增.因为p (1)=0,所以当1,12x ⎡⎫∈⎪⎢⎣⎭,有()0p x <,即()0h x '<所以()h x 单调递减;当()1x ∈+∞,,有()0p x >,即()0h x '>所以()h x 单调递增; 因为()()9ln 24=,1,0111423ln 21532h h h h ⎛⎫⎛⎫+==-> ⎪ ⎪⎝⎭⎝⎭,所以a 的取值范围9ln 21,105⎛⎤+ ⎥⎝⎦ 10.(2022·贵州贵阳一中(文))已知函数3211()()32f x x ax a =-∈R 在[0,1]上的最小值为16-.(1)求a 的值;(2)若函数()()2()g x f x x b b =-+∈R 有1个零点,求b 的取值范围. 【答案】(1)1a =;(2)76b <-或103b >.【分析】(1)利用导数分0a ,01a <<,1a =和1a >四种情况求出函数的最小值,然后列方程可求出a 的值; (2)由(1)3211()232g x x x x b =--+,可得3211232b x x x =-++,构造函数3211()232h x x x x =-++,利用导数求出函数的单调区间和极值,结合函数图像可得答案 【详解】解:(1)由3211()32f x x ax =-,2()()f x x ax x x a =--'=,当0a 时,()'f x 在[0,)+∞上恒大于等于0,所以()f x 在[0,1]上单调递增, min ()(0)0f x f ==,不合题意;当01a <<时,则[0,]x a ∈时,()0f x '<,()f x 单调递减; [,1]x a ∈时,()0f x '>,()f x 单调递增,所以333min 111()()326f x f a a a a ==-=-,31166a -=-,所以1a =,不满足01a <<;当1a =时,在[0,1]上,()0f x '且不恒为0,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f ==-=-,适合题意;当1a >时,在[0,1]上,()0f x '<,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f a ==-=-,所以1a =,不满足1a >;综上,1a =. (2)由(1)3211()232g x x x x b =--+,所以3211232b x x x =-++,令3211()232h x x x x =-++,则2()2(2)(1)h x x x x x =-++=--+',所以(2)0,(1)0h h ''=-=,且当1x <-时,()0h x '<; 当12x -<<时,()0h x '>;当2x >时,()0h x '<,所以 117()(1)2326h x h =-=+-=-极小, 1110()(2)844323h x h ==-⨯+⨯+=极大,如图:函数()g x 有1个零点,所以76b <-或103b >.。

含参函数的单调性讨论

含参函数的单调性讨论
3a 3a
单调递减区间: (,
1 3a
)

(
1 ,). 3a
例2: 若函数f ( x) x3 ax2 1在(0,2)内单调递减,
求实数a的取值范围.
解析:
f '( x) 3x2 2ax, x (0,2)
则f '( x) 0在(0,2)上恒成立
即2ax 3x 2
a 3 x, x (0,2) 令g(x) 3 x
f (x)
+
0
-
f (x)
极大值
1 0 极小值
(1, )
+
综上,当 a 0时, f (x) 在 (,1) 上单调递减, f (x) 在 (1,) 上单调递增。
当 e a 0 时, f (x) 在(,ln(2a))上单调递增,在(ln(2a),1)上单调递减,在(1,)上单调递增;
2
当 a e 时, f (x) 在 (, ) 上单调递增。
练习 1.
练习2: 求f (x) x ax x2 (a 0)的单调区间
解:函数的定义域是[0,a],且当x≠0,a时,有:
f ( x)
ax x2 x(a 2x) x(3a 4x) . 2 ax x2 2 ax x2
由f (x) 0 及x (0,a), 解得0<x<3a/4,故f(x)的递增区间是(0,3a/4).
由f (x) 0 及 x (0,a), 解得3a/4<x<a,故f(x)的递减区间是(3a/4,a).
说明: 事实上在判断单调区间时,如果出现个别点使得导数为零,不影响包 含该点的某个区间上的单调性,只有在某个区间内恒有导数为零,才 能判定 f(x)在这一区间内是常数函数.

含参函数的单调性讨论

含参函数的单调性讨论

1
f,(x) + — +
+ —+
f (x)
综上:
( 1 ) a 0, y f ( x ) 在 - ,1, 1 a , ; 1 ,1 a 。
( 2 ) a 0, y f ( x ) 在 - ,1 a, 1, ; 1 a ,1 。
( 3 ) a 0, y f ( x ) 在 R ;
2.讨论含参函数单调性时,先要明确函数的定义 域,然后对函数求导。讨论函数的单调性其实就 是讨论 f , ( x ) 在定义域内各区间的正负情况,从 而影响函数的单调性。比如,含参的一元二次函 数讨论,在能够通过因式分解求出不等式对应方 程的根时,依据根的大小进行分类讨论;在不能 通过因式分解求出根的情况时,还要根据判别式 进行分类讨论.
例题讲解
例 2.已知函数 f (x) ln x a , (a R)
若函数
f
(x)

x
1,e上的最小值是
3Байду номын сангаас
,求
a
的值.
2
解: f , ( x )
1 x
a x2
xa x2
xa 1 e1
a e1 e a
f,(x )
+
—+

f (x)
综上: a 1
f
(1)
a
3 2
a
1 a e
f
(a)
ln
作业布置 请同学们认真完成导学案的自主练习
谢谢!
x ln( 2 a ) 0 1 0 ln( 2 a ) 1 0 1 ln( 2 a )
f,(x )
+
—+

f (x)

导数单调性含参讨论问题

导数单调性专题:导数单调性含参讨论——核心在于找临界点:导数单调性含参讨论临界点一、因为极值点二、因为二次项系数(主要是开口方向)三、因为定义域(定义域的限制)四、因为绝对值一、因为极值点的大小比较而产生的分类讨论——这是一种最主流的分类讨论1、(江苏高考)已知函数b ax x x f ++=23)((R b a ∈,)(1)讨论)(x f 的单调性:2、(四川高考)已知函数a a ax x x a x x f +--++-=2222ln )(2)(,)0(>a 其中)(x g 是)(x f 的导函数,讨论函数)(x g 单调性:二、因为二次项系数含有参数而产生的分类讨论3、(北京高考)已知函数kx e k x x f •-=2)()((1)讨论函数)(x f 单调性:三、因定义域的限制而产生的分类讨论——这是一种最容易忽略的分类讨论4、(山东高考)已知函数11ln )(--+-=xa ax x x f (R a ∈) (1)讨论函数)(x f 单调性:四、因绝对值而产生的分类讨论——这是一种天然的分类讨论5、(浙江高考)已知函数a=3(3(R+)f-xxxa∈)(1)若函数))((aM-M,求)am (x[-上的最大值和最小值分别记为)f在]1,1(),m(aa回家作业:1、已知函数x)(2++=,求)ln-2(af)1xaxxf的单调区间;(x。

利用导数研究含参函数单调性

利用导数研究含参函数单调性在数学中,单调性是指函数随着自变量的变化而变化的趋势。

如果函数在区间上递增,那么我们称函数在该区间上是单调递增的;如果函数在区间上递减,那么我们称函数在该区间上是单调递减的。

利用导数研究含参函数的单调性,是一种非常常用且有效的方法。

对于含参函数,其导数是关于自变量的函数,通过研究导数的符号来判断函数的单调性。

具体来说,如果导数在区间上恒大于0,那么函数在该区间上是递增的;如果导数在区间上恒小于0,那么函数在该区间上是递减的。

这可以通过导数的定义和性质来证明。

下面以一个简单的例子来说明如何利用导数研究含参函数的单调性。

假设我们要研究含参函数 f(x;a) = ax^2 的单调性,其中 a 是参数。

首先,我们计算函数f的导数。

由于a是参数,我们将其视为常数。

根据导数的定义,有:f'(x;a) = lim[h->0] (f(x+h;a) - f(x;a)) / h= lim[h->0] (a(x+h)^2 - ax^2) / h= lim[h->0] (2axh + ah^2) / h= lim[h->0] (2ax + ah)= 2ax因此,函数 f 的导数是 f'(x;a) = 2ax。

接下来,我们通过研究导数的符号来判断函数f的单调性。

当 a > 0 时,当 x1 < x2 时,有 2ax1 < 2ax2,即 f'(x1;a) <f'(x2;a)。

因此,函数 f 在区间上是递增的。

当 a < 0 时,当 x1 < x2 时,有 2ax1 > 2ax2,即 f'(x1;a) >f'(x2;a)。

因此,函数 f 在区间上是递减的。

当a=0时,函数f(x;a)=0,因此函数f在任意区间上是常数,既不递增也不递减。

综上所述,当 a > 0 时,函数 f(x;a) = ax^2 在任意区间上都是递增的;当 a < 0 时,函数 f(x;a) = ax^2 在任意区间上都是递减的;当a = 0 时,函数 f(x;a) = ax^2 是常数。

含参单调性的讨论


4a
2a
4a 4a
2a 2a
设g(x) ln x x 1,则g'(x) 1 1. x
当x (0,1)时,g'(x) 0;当x (1, )时,g'(x) 0.
所以g(x)在(0,1)单调递增,在(1,)单调递减,在x 1处g(x)有最大值g(1) 0. 所以当x 0时,g(x) 0.
【2017】解:(1) f (x)的定义域为(0,), f '(x) 1 2ax 2a 1 (x 1)(2ax 1)
x
x
若a 0,则当x (0,)时,f '(x) 0,故f (x)在(0,)上单调递增;
若a 0,则当x (0, 1 )时,f '(x) 0;当x ( 1 ,)时,f '(x) 0.
令f
'(x)
0得x1
0,
x2
2 a
.
(1)a 0时,当x 0或x 2 时,f '(x) 0;当0 x 2 时,f '(x) 0.
a
a
f (x)的增区间是(,0),( 2 ,);减区间是(0, 2).
a
a
(2)a 0时,当x 0或x 2 时,f '(x) 0;当 2 x 0时,f '(x) 0.
2
2
所以f (x)在(0, a )递增,在( a ,)递减。
2
2
例2 讨论f (x) (a 1) ln x x a 的单调性。 x
不要只顾着比较两根1与-a大小,而要注意定义域大于0 的限制!
思考题2 f (x) 1 x2 ax (a 1) ln x 2
解:x 0. f '(x) x a a 1 x2 ax (a 1) (x 1)[x (a 1)]

利用导数研究含参函数的单调性

利用导数研究含参函数的单调性导数是研究函数的重要工具之一,通过对函数的导数进行研究,可以得到函数的单调性信息。

含参函数是指函数中包含一个或多个参数,通过改变参数的取值可以得到一组函数。

接下来,我们将讨论如何利用导数研究含参函数的单调性。

首先,我们先来回顾一下单调性的概念。

若函数在其定义域上单调递增,则函数的值随自变量的增加而增加;若函数在其定义域上单调递减,则函数的值随自变量的增加而减小。

简而言之,单调性描述了函数随自变量变化的趋势。

对于含参函数,我们首先可以将参数视为常数,通过对函数关于自变量的导数进行研究,来探究函数的单调性。

然后,我们再考虑参数的变化对函数单调性的影响。

以一元含参函数为例,设函数为f(x;a),其中x为自变量,a为参数。

我们首先对自变量x求导,得到导函数f'(x;a)。

然后,通过研究导函数的单调性来推导出原函数f(x;a)的单调性。

在研究导函数的单调性时,我们可以采用以下几种方法:1.部分导数法:对于多元含参函数,我们可以先固定参数a,然后对自变量中的一些变量求导,得到该变量的偏导数。

通过研究偏导数的单调性,可以推导出原函数的部分单调性。

然后,再逐个固定其他变量,对其他变量求导,从而得到更完整的原函数的单调性。

2.极值点法:对于导函数f'(x;a),我们可以求出其零点,即f'(x;a)=0的解,也就是导函数的临界点。

通过研究导函数在临界点附近的变化情况,可以推导出原函数的单调性。

具体而言,如果导函数在临界点附近从正变负,那么原函数在临界点左边单调递增,在临界点右边单调递减;反之,如果导函数在临界点附近从负变正,那么原函数在临界点左边单调递减,在临界点右边单调递增。

3.导数符号法:对于导函数f'(x;a),如果在整个定义域上恒大于0或者恒小于0,则可以推导出原函数在整个定义域上单调递增或者单调递减。

具体而言,如果f'(x;a)>0,那么原函数单调递增;如果f'(x;a)<0,那么原函数单调递减。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

〖专题5〗导数的应用一含参函数的单调性讨论

“含参数函数的单调性讨论问题”是近年来高考考查的一个常考内容,也是我们高考 复习的重点•从这几年来的高考试题来看,含参数函数的单调性讨论常常出现在研究函数 的单调性、极值以及最值中,因此在高考复习中更应引起我们的重视.

一、思想方法:

、典例讲解 a [典例1]讨论f (x) x —的单调性,求其单调区间. x

a

解: f(x) x -的定义域为(,0) (0,

x

2 a x a

f'(x) 1 -2 ^^^(x 0)(它与 g(x) x x

l)当 a 0时,f'(x) 0(x 0)恒成立, 此时f(x)在(,0)和(0,)都是单调增函数, 即f (x)的增区间是(,0)和(0,);

II)当 a 0 时 f'(x) 0( x 0) x 、a或x 、a f '(x) 0(x 0) 、a x 0 或 0 x . a

此时f (x)在(,..a)和(・、a,)都是单调增函数, f (x)在(--a,0)和(0, . a)都是单调减函数,

即f(x)的增区间为(,-..a)和C、a,); f (x)的减区间为(a,0)和(0, - a).

步骤小结:1、先求函数的定义域, 2、 求导函数(化为乘除分解式,便于讨论正负) , 3、 先讨论只有一种单调区间的(导函数同号的)情况, 4、 再讨论有增有减的情况(导函数有正有负,以其零点分界) 5、 注意函数的断点,不连续的同类单调区间不要合并. [变式练习1]讨论f(x) x alnx的单调性,求其单调区间.

f'(x) 0 x f'(x) 0 x D 时 f'(x) D 时 f'(x) D 时 f'(x) A C 0 0 0

B ... f(x)增区间为A,B和…

D ... f (x)增区间为C,D和…

f (x)在区间D上为增函数 f (x)在区

间D上为减函数 f (x)在区间D上为常函数 x 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论.

) x2 a同号) 解:f (x) x a lnx的定义域为(0,)

a x a f'(x) 1 (x 0)(它与 g(x) x a 同号)

x x

l)当 a 0时,f'(x) 0(x 0)恒成立, 此时f (x)在(0,)为单调增函数, 即f (x)的增区间为(0,

II)当 a 0时 f'(x) 0(x f'(x) 0(x 此时f (x)在(a, f (x)在(0, a)是单调减函数,

即f (x)的增区间为 (a, ); f (x)的减区间为(0, a).

[典例2] 讨论f (x) ax In x的单调性. 解:f (x) ax In x的定义域为(0,)

1 ax 1 宀- n

f'(x) a (x 0)(匕与 g(x) ax 1 同号)

x x

I) 当 a 0时,

f'(x) 0(x 0)恒成立 (此时f'(x) 0

1

x 没有意

a 义)

此时f (x)在(0, )为单调增函数,即 f (x)的增区间为 (0,)

II) 当 a 0时,f'(x) 0(x 0)恒成立,

(此时 f'(x) 0 x 1 不在定义域内,没有意义) a

此时f (x)在(0, )为单调增函数,即 f(x)的增区间为 (0,)

Ill) 当a 0时,令f'(x) 0 x 1

a 于是,当x变化时,f'(x), f (x)的变化情况如下表:(结合g(x)图象定号)

x 1 (0,-) a 1 a

(-,) a

f'(x) 0

f(x) 增/ 减\

1 1

所以, 此时f (x)在(0,)为单调增函数,f(x)在(一,)是单调减函数,

1 1 即f (x)的增区间为(0, -); f (x)的减区间为(一,)• a a

),不存在减区间

0) x a;

0) 0 x a )为单调增函数, a a 小结:导函数正负的相应区间也可以由导函数零点来分界, 但要注意其定义域和连续性. 即 先求出f'(x)的零点,再其分区间然后定 f'(x)在相应区间内的符号•一般先讨论 f'(x) 0无解情况,再讨论解f'(x) 0过程产生增根的情况(即解方程变形中诸如平方、 去分母、去对

数符号等把自变量 x范围扩大而出现有根,但根实际上不在定义域内的) 即根据f'(x)零点个数从少到多,相应原函数单调区间个数从少到多讨论,最后区间(最 确定相应单调性. 1 2 f (x) ax In x的单调性.

2

舍去) iii) 当 a 0 时, 当x变化时,f '(x), f (x)的变化情况如下表:(结合g(x)图象定号)

x (0J a) n 7 1 ) f'(x) 0

f(x) 增/ 减\

所以,此时f (x)在(0 ; 1)为单调增函数,f (x)在(J丄,)是单调减函数, \ a V a

即f (x)的增区间为(0,. 1 ) ; f (x)的减区间为(.1

, )

\ a \ a

小结:一般最后要综合讨论情况,合并同类的,如 i),ii)可合并为一类结果.对于二次型函 数(如g(x) ax2 1

)讨论正负一般先根据二次项系数分三种类型讨论.

好结合导函数的图象) [变式练习2]讨论

解:f (x) 1 2 ax

2 In x的定义域为(0,)

f'(x) ax ax2 1 “ (x

f'(x) 0 x ax2 1 0( x 0),它与 g(x)

0),

ax2 1同号.

0时,无解;

」(另一根不在定义域内

a

i)当a 0 时,f'(x) 0(x

2

0)恒成立 (此时f'(x) 0 x

ii)当 a 此时f (x)在(0, 0 时,f'(x) 0(x

(此时方程ax2 1

此时f (x)在(0,

)为单调增函数,即 f (x)的增区间为

0)恒成立,

1 —没有意义) a

(0,)

0判别式 0,方程无解)

)为单调增函数,即f(x)的增区间为(0,) [典例3]求f (x) 解: a2x3 ax2 x 1

的单调区间.

f(x) a2x3 ax2 x 1的定义域为R,

2 2 f'(x) 3a X I) II) 当 a 0 时,f'(x) 0 时 3a 0 , f'(x) i) f'(x) 所以此时, ii) f'(x) f'(x) 2ax 1 (3ax 1)(ax 1)

1 0 f (x)在R上单调递减,f (x)减区间为R,无增区间.

0得X1

0时,

f'(x)是开口向上的二次函数,

1 -x2

3a

X1 X2

x —或x a

f (x)的增区间为

0时, X

i X

2

1 3a

1 (a 0), a

因此可知(结合

1 —;f'(x) 3a

1 ,

,―)和(「 a 3a

f'(x)的图象)

1 3a

3a );f(x)的减区间为

(丄

a

1 ,—)和( 3a

小结:求函数单调区间可化为导函数的正负讨论(即分讨论其相应不等式的解区间) 见的是化为二次型不等式讨论,当二次函数开口定且有两根时,一般要注意讨论两根大小 (分大、小、等三种情况)。含参二次不等式解时要先看能否因式分解,若能则是计算简 单的问题,需看开口及两根大小,注意结合图象确定相应区间正负. 1 3 1 2 [变式练习3] 求f(x) -x —ax 2

f(x)的定义域为R, f'(x)

所以此时, f (x)的增区间为

x 1的单调区间.

解:

I)

f'(x)是开口向上的二次函数,

2 a 2 时,

f (x)在R上单调递增,

当 所以此时

II)

令 f'(x)

因此可知

);f(x)的减区间为

丄).

a

,常

ax 1 2 a

f'(x)

a 2或a 2时

a 、、a2 2 0得

X1

0恒成立

f(x)增区间为R,无减区间.

a a2 4 2 ,X1 X2

X (,X1) X1 (X1,X

2

) X2 (X2,)

(结合f'(x)的图象)f (x)与f'(x)随x变化情况如下表

相关文档
最新文档