卓顶精文2019圆锥曲线历年高考题(整理)附答案
专题09.圆锥曲线(分项解析版)-备战2019高考十年高考文数分省分项精华版(解析版)

一.基础题组1.【2007江西,文7】连接抛物线24x y =的焦点F 与点(10)M ,所得的线段与抛物线交于点A ,设点O 为坐标原点,则三角形OAM 的面积为( )A.1-B.32C.1+D.32+2.【2008江西,文7】已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是 ( )A .(0,1)B .1(0,]2 C .(0,)2 D .[23. 【2008江西,文14】已知双曲线22221(0,0)x y a b a b -=>>的两条渐近线方程为3y x =±,若顶点到渐近线的距离为1,则双曲线方程为 .4.【2009江西,文7】设1F 和2F 为双曲线22221x y a b-=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为 ()( A .32 B .2 C .52D .35.【2018江西,文15】点()00,A x y 在双曲线221432x y -=的右支上,若点A 到右焦点的距离等于02x ,则0x = .6.【2018江西,文12】若双曲线22116y x m-=的离心率e=2,则m=____.[:7.【2018江西,文8】椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B|成等比数列,则此椭圆的离心率为( )A.14 B. 55C. 12D. 5-28.【2018江西,文9】已知点A (2,0),抛物线C :x 2=4y 的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则|FM|:|MN|=( )A.2:B.1:2C. 1:D. 1:3二.能力题组1.【2005江西,文16】以下同个关于圆锥曲线的①设A 、B 为两个定点,k 为非零常数,k =-||||,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若),(21+=则动点P 的轨迹为椭圆; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点.其中真2.【2006江西,文11】P 为双曲线221916x y -=的右支上一点,M ,N 分别是圆22(5)4x y ++=和22(5)1x y -+=上的点,则PM PN -的最大值为( )A.6B.7C.8D.93.【2006江西,文16】已知12F F ,为双曲线22221(00)a b x y a b a b≠-=>>且,的两个焦点,P 为双曲线右支上异于顶点的任意一点,O 为坐标原点.下面四个A.12PF F △的内切圆的圆心必在直线x a =上;[:数理化] B.12PF F △的内切圆的圆心必在直线x b =上; C.12PF F △的内切圆的圆心必在直线OP 上;D.12PF F △的内切圆必通过点0a (),. 其中真4.【2007江西,文12】设椭圆22221(0)x y a b a b+=>>的离心率为1e 2=,右焦点为(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,( ) A.必在圆222x y +=上 B.必在圆222x y +=外 C.必在圆222x y +=内D.以上三种情形都有可能5.【2018江西,文9】过双曲线12222=-by a x C :的右顶点作x 轴的垂线与C 的一条渐近线相交于A .若以C 的右焦点为圆心、半径为4的圆经过为坐标原点),两点(、O O A ,则双曲线C 的方程为( )A.112422=-y x B.19722=-y x C.18822=-y x D.141222=-y x6.【2018江西,文14】设椭圆()01:2222>>=+b a by a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于B A ,两点,B F 1与y 轴交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.三.拔高题组1.【2005江西,文21】如图,M是抛物线上y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.(1)若M为定点,证明:直线EF的斜率为定值;[:(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.2.【2006江西,文21】如图,椭圆22221(0)x y Q a b a b+=>>:的右焦点为(0)F c ,,过点F 的一动直线m 绕点F 转动,并且交椭圆于A B ,两点,P 为线段AB 的中点. (1)求点P 的轨迹H 的方程;(2)若在Q 的方程中,令21cos sin a θθ=++,2sin 0b θθπ⎛⎫=< ⎪2⎝⎭≤.设轨迹H 的最高点和最低点分别为M 和N .当θ为何值时,MNF △为一个正三角形?tan 6π=22bc a c =b a ,即a 2=3b 2. 由于21cos sin a θθ=++,2sin 0b θθπ⎛⎫=< ⎪2⎝⎭≤,则1+cos θ+sin θ=3 sin θ,得θ=arctan 433.【2007江西,文22】设动点P 到点1(10)F -,和2(10)F ,的距离分别为1d 和2d ,122F PF θ=∠,且存在常数(01)λλ<<,使得212sin d d θλ=.[:(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)如图,过点2F 的直线与双曲线C 的右支交于 A B ,两点.问:是否存在λ,使1F AB △是以点B 为直角顶点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.由①②得2(22d λ=.③4.【2008江西,文22】已知抛物线2y x =和三个点00000(,)(0,)(,)M x y P y N x y -、、200(y x ≠,00)y >过点M 的一条直线交抛物线于A 、B 两点,AP BP 、的延长线分别交曲线C 于E F 、.(1)证明E F N 、、三点共线;(2)如果A 、B 、M 、N 四点共线,问:是否存在0y ,使以线段AB 为直径的圆与抛物线有异于A 、B 的交点?如果存在,求出0y 的取值范围,并求出该交点到直线AB 的距离;若不存在,请说明理由.5.【2009江西,文22】如图,已知圆:G 222(2)x y r -+=是椭圆22116x y +=的内接△ABC 的内切圆, 其中A 为椭圆的左顶点. (1)求圆G 的半径r ;(2)过点(0,1)M 作圆G 的两条切线交椭圆于E F ,两点,证明:直线EF 与圆G 相切..G[:数理化]6.【2018江西,文21】如图,已知抛物线1C :22x by b +=经过椭圆2C :()222210x y a b a b+=>>的两个焦点.(1)求椭圆2C 的离心率;(2)设点()3,Q b ,又M ,N 为1C 与2C 不在y 轴上的两个交点,若QMN ∆的重心在抛物线1C 上,求1C 和2C 的方程.7.【2018江西,文19】已知过抛物线()022>=p px y 的焦点,斜率为22的直线交抛物线于()12,,A x y ()22,B x y (12x x <)两点,且9=AB .(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若λ+=,求λ的值.8.【2018江西,文20】已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足+=⋅++||()2MA MB OM OA OB(1)求曲线C的方程;(2)点Q(x0,y0)(-2<x0<2)是曲线C上动点,曲线C在点Q处的切线为l,点P的坐标是(0,-1),l与PA,PB分别交于点D,E,求△QAB与△PDE的面积之比.9.【2018江西,文20】椭圆C:=1(a>b>0)的离心率,a+b=3(1)求椭圆C的方程;(2) 如图,A,B,D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意点,直线DP 交x 轴于点N 直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m ,证明2m-k 为定值.10.【2018江西,文20】如图,已知抛物线2:4C xy =,过点(0,2)M 任作一直线与C 相交于,A B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点). (1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线2y=相交于点1N ,与(1)中的定直线相交于点2N ,证明:2221||||MN MN -为定值,并求此定值.。
2019高考数学三轮冲刺大题提分大题精做10圆锥曲线:定点定值问题理含答案

大题精做10 圆锥曲线:定点、定值问题[2019·甘肃联考]已知椭圆的右焦点为,上顶点为,直线的斜率为,且原点到直线的距离为.(1)求椭圆的标准方程;(2)若不经过点的直线与椭圆交于,两点,且与圆相切.试探究的周长是否为定值,若是,求出定值;若不是,请说明理由.【答案】(1);(2).【解析】(1)由题可知,,,则,直线的方程为,即,所以,解得,,又,所以椭圆的标准方程为.(2)因为直线与圆相切,所以,即.设,,联立,得,所以,,,所以.又,所以.因为,同理.所以,所以的周长是,则的周长为定值.1.[2019·安庆期末]已知椭圆过点,焦距长,过点的直线交椭圆于,两点.(1)求椭圆的方程;(2)已知点,求证:为定值.2.[2019·东莞期末]已知椭圆的中心在坐标原点,左右焦点分别为和,且椭圆经过点.(1)求椭圆的标准方程;(2)过椭圆的右顶点作两条相互垂直的直线,,分别与椭圆交于点,(均异于点),求证:直线过定点,并求出该定点的坐标.3.[2019·漳州一模]已知椭圆的中心在坐标原点,焦点在轴上,且椭圆的一个顶点与抛物线的焦点重合,离心率为.(1)求椭圆的标准方程;(2)过椭圆的右焦点且斜率存在的直线交椭圆于,两点,线段的垂直平分线交轴于点,证明:为定值.1.【答案】(1);(2).【解析】(1)由条件焦距为,知,从而将代入方程,可得,,故椭圆方程为.(2)当直线的斜率不为0时,设直线交椭圆于,,由,可得,,,,,,化简得,当直线斜率为0时,,,,即证为定值,且为.2.【答案】(1);(2)见解析.【解析】(1)设椭圆的标准方程为,,,∴,∴,∴,所以椭圆的标准方程为.(2)①直线斜率存在,设直线,,,联立方程,消去得,,,,又,由,得,即,∴,∴,∴.解得,,且均满足,当时,直线的方程为,直线过定点,与已知矛盾;当时,直线的方程为,直线过定点.②由椭圆的对称性所得,当直线,的倾斜角分别为,,易得直线,,直线,分别与椭圆交于点,,此时直线斜率不存在,也过定点,综上所述,直线恒过定点.由抛物线的焦点为,得,①又,②由①②及,解得,所以椭圆的标准方程为.(2)依题意设直线的方程为,设点,,当时,联立方程,得,,所以,,的中点坐标为,的垂直平分线为,令,得,,又,所以,当时,点与原点重合,则,,所以;综上所述,为定值.解法二:(1)同解法一.(2)依题意,当直线的斜率不为0时,设直线的方程为,设点,,联立方程,得,所以,,,,,所以的中点坐标为,的垂直平分线为,令,得,所以,所以;当直线的斜率为0时,点与原点重合,则,,所以;综上所述,为定值.。
卓顶精文-2018-2019全国高考理科解析几何高考题汇编.docx

2019-2019高考解析几何汇编017(一)10.已知F 为抛物线C :y 2=4G 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为A .16B .14C .12D .102019(一)20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,2),P 4(1,2)中恰有三点在椭圆C 上.(1)求C 的方程; (2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.2019(二)9.若双曲线:C 22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为A .2 BCD 2019(二)20.(12分)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M作G 轴的垂线,垂足为N ,点P 满足2NP NM =. (1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .2019(三)10.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A B C D .132019(三)20.(12分)已知抛物线C :y 2=2G ,过点(2,0)的直线l 交C 与A ,B两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程.2019(天津)(5)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A )22144x y -=(B )22188x y -=(C )22148x y -=(D )22184x y -=2019(天津)(19)(本小题满分14分)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线的距离为12.(I )求椭圆的方程和抛物线的方程;(II )设上两点P ,Q 关于轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与轴相交于点D .若APD △的面积为2AP 的方程. 2019(二)(11)已知F 1,F 2是双曲线E 的左,右焦点,点M 在E 上,MF 1与轴垂直,sin ,则E 的离心率为(A )(B )(C )(D )22019(二)(20)(本小题满分12分)已知椭圆E :的焦点在轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA.(I )当t =4,时,求△AMN 的面积;(II )当时,求k 的取值范围.2019(北京)19.(本小题14分)已知椭圆C :()的离心率为,,,,的面积为1. (1)求椭圆C 的方程;(2)设的椭圆上一点,直线与轴交于点M ,直线PB 与轴交于点N. 求证:为定值.2019(一)(10)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知|AB|=|DE|=C 的焦点到准线的距离为 (A)2(B)4(C)6(D)82019(一)20.(本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与G 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.2019(三)(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥G 轴.过点A 的直线l 与线段22221+=x y a b0a b >>2(,0)A a (0,)B b (0,0)O OAB ∆P C PA y x BM AN ⋅PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为(A )13 (B )12 (C )23 (D )342019(三)(20)(本小题满分12分)已知抛物线C :22y x =的焦点为F ,平行于G 轴的两条直线12,l l 分别交C 于A ,B两点,交C 的准线于P ,Q 两点.(I )若F 在线段AB 上,Y 是PQ 的中点,证明AY ∥FQ ;(II )若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 2019(二)(11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为 (A )√5(B )2(C )√3(D )√22019(二)20.(本小题满分12分)已知椭圆C :2229(0)x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M 。
专题21 圆锥曲线综合-2019年高考文数母题题源系列(全国Ⅰ专版)(原卷版)

专题21 圆锥曲线综合【母题来源一】【2019年高考全国Ⅰ卷文数】已知点A ,B 关于坐标原点O 对称,│AB │=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │−│MP │为定值?并说明理由. 【答案】(1)M 的半径=2r 或=6r ;(2)存在,理由见解析.【解析】(1)因为M 过点,A B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线+=0x y 上,且,A B关于坐标原点O 对称,所以M 在直线y x =上,故可设(, )M a a . 因为M 与直线x +2=0相切,所以M 的半径为|2|r a =+.由已知得||=2AO ,又MO AO ⊥,故可得2224(2)a a +=+,解得=0a 或=4a . 故M 的半径=2r 或=6r .(2)存在定点(1,0)P ,使得||||MA MP -为定值. 理由如下:设(, )M x y ,由已知得M 的半径为=|+2|,||=2r x AO .由于MO AO ⊥,故可得2224(2)x y x ++=+,化简得M 的轨迹方程为24y x =.因为曲线2:4C y x =是以点(1,0)P 为焦点,以直线1x =-为准线的抛物线,所以||=+1MP x . 因为||||=||=+2(+1)=1MA MP r MP x x ---,所以存在满足条件的定点P .【名师点睛】本题考查圆的方程的求解问题、圆锥曲线中的定点定值类问题.解决定点定值问题的关键是能够根据圆的性质得到动点所满足的轨迹方程,进而根据抛物线的定义得到定值,验证定值符合所有情况,使得问题得解.【母题来源二】【2018年高考全国Ⅰ文数】设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:ABM ABN =∠∠. 【答案】(1)y =112x +或112y x =--;(2)见解析. 【解析】(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2). 所以直线BM 的方程为y =112x +或112y x =--. (2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由2(2)2y k x y x =-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k,y 1y 2=–4. 直线BM ,BN 的斜率之和为1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222yx k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得 121221121224()882()0y y k y y x y x y y y k k++-++++===.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补, 所以∠ABM =∠ABN . 综上,∠ABM =∠ABN .【名师点睛】本题主要考查抛物线的标准方程与几何性质、直线与抛物线的位置关系,考查考生的化归与转化能力、运算求解能力,考查的数学核心素养是直观想象与数学运算.在设直线的方程时,一定要注意所设方程的适用范围,如用点斜式时,要考虑到直线的斜率不存在的情况,以免解答不严密或漏解. (1)求出直线l 与抛物线的交点,利用两点式写出直线BM 的方程;(2)由(1)知,当直线l 与x 轴垂直时,结论显然成立,当直线l 与x 轴不垂直时,设出斜率k ,联立直线l 与C 的方程,求出M ,N 两点坐标之间的关系,再表示出BM 与BN 的斜率,得其和为0,从而说明BM 与BN 两条直线的斜率互为相反数,进而可知两角相等.【母题来源三】【2017年高考全国Ⅰ卷文数】设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.【答案】(1)1;(2)7y x =+.【解析】(1)设A (x 1,y 1),B (x 2,y 2),则12x x ≠,2114x y =,2224x y =,x 1+x 2=4,于是直线AB 的斜率12121214y y x x k x x -+===-.(2)由24x y =,得2x y'=.设M (x 3,y 3),由题设知312x =,解得32x =,于是M (2,1). 设直线AB 的方程为y x m =+,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|.将y x m =+代入24xy =得2440x x m --=.当16(1)0m ∆=+>,即1m >-时,1,22x =±从而12||AB x x -=由题设知||2||AB MN =,即2(1)m =+,解得7m =. 所以直线AB 的方程为7y x =+.【名师点睛】本题主要考查直线与圆锥曲线的位置关系,主要利用根与系数的关系:因为直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用根与系数的关系及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用根与系数的关系直接解决,但应注意不要忽视判别式的作用. (1)设A (x 1,y 1),B (x 2,y 2),由两点斜率公式求AB 的斜率;(2)联立直线与抛物线方程,消y ,得12||AB x x -=m 即可.【命题意图】(1)掌握直线方程的几种形式,掌握确定圆的几何要素,掌握圆的标准方程与一般方程,能用直线和圆的方程解决一些简单的问题.(2)了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用.(3)掌握抛物线的定义、几何图形、标准方程及简单性质.(4)了解圆锥曲线的简单应用.(5)理解数形结合的思想.【命题规律】解析几何的解答题一般难度较大,多为试卷的压轴题之一,常考查直线与圆锥曲线的位置关系及最值范围、定点、定值、存在性问题及证明问题,多涉及最值求法,综合性强.从近三年高考情况来看,多考查直线与圆或抛物线的位置关系,但也要注意对椭圆知识的考查,解题时,充分利用数形结合思想,转化与化归思想.同时注重数学思想在解题中的指导作用,以及注重对运算能力的培养.【方法总结】(一)求直线方程的常用方法有(1)直接法:根据已知条件灵活选用直线方程的形式,写出方程.(2)待定系数法:先根据已知条件设出直线方程,再根据已知条件构造关于待定系数的方程(组)求系数,最后代入求出直线方程.(3)直线在x(y)轴上的截距是直线与x(y)轴交点的横(纵)坐标,所以截距是一个实数,可正、可负,也可为0,而不是距离.(4)求直线方程时,如果没有特别要求,求出的直线方程应化为一般式Ax+By+C=0,且A≥0.(二)求圆的方程(1)求圆的方程必须具备三个独立的条件.从圆的标准方程来看,关键在于求出圆心坐标和半径,从圆的一般方程来讲,能知道圆上的三个点即可求出圆的方程,因此,待定系数法是求圆的方程常用的方法.(2)用几何法求圆的方程,要充分运用圆的几何性质,如“圆心在圆的任一条弦的垂直平分线上”,“半径、弦心距、弦长的一半构成直角三角形”.(三)求椭圆的方程有两种方法:(1)定义法.根据椭圆的定义,确定a2,b2的值,结合焦点位置可写出椭圆方程.(2)待定系数法.这种方法是求椭圆的方程的常用方法,其一般步骤是:第一步,做判断.根据条件判断椭圆的焦点在x轴上,还是在y轴上,还是两个坐标轴都有可能(这时需要分类讨论).第二步,设方程.根据上述判断设方程为22221(0)x ya ba b+=>>或22221(0)y xa ba b+=>>.第三步,找关系.根据已知条件,建立关于,,a b c 的方程组(注意椭圆中固有的等式关系222c a b =-). 第四步,得椭圆方程.解方程组,将解代入所设方程,即为所求.【注意】用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,可进行分类讨论或把椭圆的方程设为22100()mx ny m n m n >>+≠=,且. (四)用待定系数法求抛物线标准方程的步骤:若无法确定抛物线的位置,则需分类讨论.特别地,已知抛物线上一点的坐标,一般有两种标准方程. (五)直线与圆锥曲线的弦长问题有三种解法:(1)过圆锥曲线的焦点的弦长问题,利用圆锥曲线的定义可优化解题.(2)将直线的方程与圆锥曲线的方程联立,求出两交点的坐标,再运用两点间距离公式求弦长. (3)它体现了解析几何中的设而不求的思想,其实质是利用两点之间的距离公式以及一元二次方程根与系数的关系.(六)圆锥曲线中的定点、定值问题定点、定值问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点、定值等问题的证明.解决此类问题的关键是引进参变量表示所求问题,根据等式的恒成立、数式变换等寻找不受参数影响的量.可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.同时,也要掌握巧妙利用特殊值解决相关的定点、定值问题,如将过焦点的弦特殊化,变成垂直于对称轴的弦来研究等.1.【湖南省郴州市2019届高三第二次教学质量监测试卷数学试题】已知抛物线2:2(0)C x py p =>的焦点为F ,过F 的直线交抛物线于A ,B 两点.(1)若以A ,B 为直径的圆的方程为22(2)(3)16x y -+-=,求抛物线C 的标准方程;(2)过A ,B 分别作抛物线的切线1l ,2l ,证明:1l ,2l 的交点在定直线上.2.【山东省临沂市2019年普通高考模拟考试(三模)数学试题】已知直线l 过圆()22:21M x y ++=的圆心且平行于x 轴,曲线C 上任一点P 到点(0,1)F 的距离比到l 的距离小1. (1)求曲线C 的方程;(2)过点P (异于原点)作圆M 的两条切线,斜率分别为12,k k ,过点P 作曲线C 的切线,斜率为0k ,若102,,k k k 成等差数列,求点P 的坐标.3.【河北省保定市2019届高三第二次模拟考试数学试题】已知抛物线E :28y x =,直线l :4y kx =-.(1)若直线l 与抛物线E 相切,求直线l 的方程;(2)设(4,0)Q ,0k >,直线l 与抛物线E 交于不同的两点()11,A x y ,()22,B x y ,若存在点C ,使得四边形OACB 为平行四边形(O 为原点),且AC QC ⊥,求2x 的取值范围.4.【山东省安丘市、诸城市、五莲县、兰山区2019届高三5月校际联合考试数学试题】已知椭圆()2222:10x y E a b a b +=>>经过点()0,1C ,且离心率为2. (1)求椭圆E 的方程; (2)若直线1:3l y kx =-与椭圆E 相交于A ,B 两点,线段AB 的中点为M ,是否存在常数λ,使∠∠AMC ABC =⋅λ恒成立,并说明理由.5.【山西省晋城市2019届高三第三次模拟考试数学试题】已知△ABC 的周长为6,B ,C 关于原点对称,且(1,0)B -,点A 的轨迹为Γ. (1)求Γ的方程;(2)若(2,0)D -,直线l :(1)(0)y k x k =-≠与Γ交于E ,F 两点,若1DEk ,k λ,1DFk 成等差数列,求λ的值.6.【安徽省泗县第一中学2019届高三高考最后一模数学试题】已知椭圆M :22221(0)x y a b a b+=>>的离P 的坐标为2⎫⎪⎪⎭. (1)求椭圆M 的方程;(2)设直线l 与椭圆M 交于A ,B 两点,且以线段AB 为直径的圆过椭圆的右顶点C ,求△ABC 面积的最大值.7.【江西省南昌市江西师范大学附属中学2019届高三三模数学试题】已知离心率为2的椭圆()2222:10x y C a b a b +=>>过点2⎫⎪⎪⎭,,A B 分别为椭圆C 的右顶点和上顶点,点P 在椭圆C 上且不与四个顶点重合. (1)求椭圆C 的标准方程;(2)若直线PA 与y 轴交于N ,直线PB 与x 轴交于M ,试探究AM BN ⋅是否为定值?若是,请求出该定值;若不是,请说明理由.8.【福建省厦门市厦门外国语学校2019届高三最后一模数学试题】如图,椭圆C :22143x y +=的右焦点为F ,过点F 的直线l 与椭圆C 交于A 、B 两点,直线n :x =4与x 轴相交于点E ,点M 在直线n 上,且满足BM ∥x 轴.(1)当直线l 与x 轴垂直时,求直线AM 的方程; (2)证明:直线AM 经过线段EF 的中点.9.【湖南省株洲市2019届高三第二次教学质量检测(二模)数学试题】已知抛物线()2:20E y px p =>经过点()1,2A ,过A 作两条不同直线12,l l ,其中直线12,l l 关于直线1x =对称. (1)求抛物线E 的方程及准线方程;(2)设直线12,l l 分别交抛物线E 于、B C 两点(均不与A 重合),若以线段BC 为直径的圆与抛物线E 的准线相切,求直线BC 的方程.10.【河南省开封市2019届高三上学期第一次模拟考试数学试题】已知抛物线2:2(0)C y px p =>的焦点F与椭圆22143x y +=的右焦点重合,抛物线C 的动弦AB 过点F ,过点F 且垂直于弦AB 的直线交抛物线的准线于点M .(1)求抛物线的标准方程; (2)求AB MF的最小值.。
2019版高考数学地区10.5 圆锥曲线的综合问题

所以y1,y2为方程
y y0 2
1
2
=4·4
y2 x0 2
即y2-2y0y+8x0- y02 =0的两个不同的实根.
所以y1+y2=2y0,因此,PM垂直于y轴.
(2)由(1)可知
y1 y1
y2
y2
2 y0 , 8x0 y02
,
所以|PM|= 18 ( y12
解析 (1)证明:依题意可设直线AB的方程为y=kx+2,代入x2=4y,得x2=4(kx+2),即x2-4kx-8=0.
设A(x1,y1),B(x2,y2),则有x1x2=-8,
直线AO的方程为y= xy11 x,直线BD的方程为x=x2.
解得交点D的坐标为
x2 ,
y1x2 x1
·P F
=0,即O Q
⊥P F
.
又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.
思路分析
(1)设出P、M的坐标,利用 NP
= 2
NM
得到P、M坐标间的关系,由点M在C上求解
点P的轨迹方程.(2)利用向量的坐标运算得 OQ· PF =0,进而证明直线l过曲线C的左焦点F.
设B(t,u),由 AP =2 PB ,易得A(-2t,3-2u).
∵点A,B都在椭圆上,∴
t2 u2 m, 4 4t2 (3 2u)2 4
m,
从而有 3t2 +3u2-12u+9=0,即 t 2 +u2=4u-3.
2019年高考数学(文)第十章 圆锥曲线与方程 课时撬分练10-2习题及答案

………………………………………………………………………………………………时间:60分钟基础组1.已知双曲线x 2a 2 -y 2b2=1的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为( )A .5x 2-4y25=1B.x 25-y 24=1 C.y 25-x 24=1 D .5x 2-5y24=1答案 D解析 ∵抛物线的焦点为F (1,0),∴c =1.又c a =5,∴a =15,∴b 2=c 2-a 2=1-15=45. 故所求方程为5x 2-5y24=1,故选D.2.“m <8”是“方程x 2m -10-y 2m -8=1表示双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件答案 A 解析 方程x 2m -10-y 2m -8=1表示双曲线,则(m -8)(m -10)>0,解得m <8或m >10,故“m <8”是“方程x 2m -10-y 2m -8=1表示双曲线”的充分不必要条件,故选A.3. 已知点M (-3,0)、N (3,0)、B (1,0),动圆C 与直线MN 相切于点B ,分别过点M 、N 且与圆C 相切的两条直线相交于点P ,则点P 的轨迹方程为( )点击观看解答视频A .x 2-y 28=1(x >1)B .x 2-y 210=1(x >0)C .x 2-y 28=1(x >0)D .x 2-y 210=1(x >1)答案 A解析 如图所示,设两切线分别与圆相切于点S 、T ,则|PM |-|PN |=(|PS |+|SM |)-(|PT |+|TN |)=|SM |-|TN |=|BM |-|BN |=2=2a ,所以所求曲线为双曲线的右支且不能与x 轴相交,a =1,c =3,所以b 2=8,故点P 的轨迹方程为x 2-y 28=1(x >1).4.以正三角形ABC 的顶点A ,B 为焦点的双曲线恰好平分边AC ,BC ,则双曲线的离心率为( )A.3-1B .2C.3+1 D .2 3答案 C解析 如图,设|AB |=2c ,显然|AD |=c ,|BD |=3c ,即(3-1)c =2a ,∴e =23-1=3+1,∴选C.5.已知双曲线y 2a 2-x 2b2=1(a >0,b >0)的离心率为3,则双曲线的渐近线方程为( )A .y =±22xB .y =±2xC .y =±2xD .y =±12x答案 A解析 由题意得,双曲线的离心率e =c a =3,故a b =22,故双曲线的渐近线方程为y =±22x ,选A.6. 已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的焦距为25,抛物线y=116x 2+1与双曲线C 的渐近线相切,则双曲线C 的方程为( )点击观看解答视频A.x 28-y 22=1 B.x 22-y 28=1C .x 2-y 24=1D.x 24-y 2=1 答案 D解析 由对称性,取一条渐近线y =b a x 即可,把y =b ax 代入y =116x 2+1,得116x 2-b a x +1=0,由题意得Δ=b 2a 2-4×116×1=0,即a 2=4b 2,又c =5,∴c 2=a 2+b 2=5b 2=5,∴b 2=1,a 2=4,选D.7.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F 1,左、右顶点分别为A 1、A 2,P 为双曲线上任意一点,则分别以线段PF 1,A 1A 2为直径的两个圆的位置关系为( )A .相交B .相切C .相离D .以上情况都有可能答案 B解析 设以线段PF 1,A 1A 2为直径的两圆的半径分别为r 1,r 2,若P 在双曲线左支,如图所示,则|O 2O 1|=12|PF 2|=12(|PF 1|+2a )=12|PF 1|+a =r 1+r 2,即圆心距为半径之和,两圆外切,若P 在双曲线右支,同求得|O 2O 1|=r 1-r 2,故此时,两圆相内切,综上,两圆相切,故选B.8.已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( )A.14B.35 C.34 D.45答案 C解析 由题意可知a =b =2,∴c =2. ∵|PF 1|=2|PF 2|,又|PF 1|-|PF 2|=22, ∴|PF 1|=42,|PF 2|=22,|F 1F 2|=4. 由余弦定得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=22+22-422×22×42=34,故选C. 9.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .4 2B .8 3C .24D .48答案 C解析 双曲线的实轴长为2,焦距为|F 1F 2|=2×5=10.据题意和双曲线的定义知,2=|PF 1|-|PF 2|=43|PF 2|-|PF 2|=13|PF 2|,∴|PF 2|=6,|PF 1|=8. ∴|PF 1|2+|PF 2|2=|F 1F 2|2, ∴PF 1⊥PF 2,∴S △PF 1F 2=12|PF 1|·|PF 2|=12×6×8=24,故选C.10.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,若双曲线左支上存在一点P 与点F 2关于直线y =bax 对称,则该双曲线的离心率为( )A.52B. 5C. 2 D .2答案 B解析 由题意可知渐近线为PF 2的中垂线,设M 为PF 2的中点,所以OM ⊥PF 2.tan ∠MOF 2=MF 2OM =ba,因为OF 2=c ,所以MF 2=b ,OM =a .因此PF 2=2b ,PF 1=2a ,又因为PF 2-PF 1=2a ,所以b =2a ,则c 2=a 2+b 2=5a 2,即c =5a ,故e =ca= 5.11.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点到一条渐近线的距离等于焦距的14,则该双曲线的离心率为________.答案 233解析 双曲线的一条渐近线方程为bx -ay =0,一个焦点坐标为(c,0).根据题意:|bc -a ×0|b 2+a2=14×2c ,所以c =2b ,a =c 2-b 2=3b ,所以e =c a =23=233.12.双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1和F 2,左、右顶点分别为A 1和A 2,过焦点F 2与x 轴垂直的直线和双曲线的一个交点为P ,若|PA 1→|是|F 1F 2→|和|A 1F 2→|的等比中项,则该双曲线的离心率为________.答案2解析 由题意可知|PA 1→|2=|F 1F 2→|×|A 1F 2→|,即⎝ ⎛⎭⎪⎫b 2a 2+(a +c )2=2c (a +c ),又c 2=a 2+b 2,则a 2=b 2,所以e =ca=c 2a 2=a 2+b 2a2=2.能力组13.双曲线C :x 2a 2-y 2b2=1(a >0,b >0)与抛物线y 2=2px (p >0)相交于A ,B 两点,公共弦AB 恰好过它们的公共焦点F ,则双曲线C 的离心率为( )A. 2 B .1+ 2 C .2 2 D .2+ 2答案 B解析 抛物线的焦点为F ⎝ ⎛⎭⎪⎫p 2,0,且c =p 2,所以p =2c .根据对称性可知公共弦AB ⊥x 轴,且AB 的方程为x =p 2,当x =p2时,y A =p ,所以A ⎝ ⎛⎭⎪⎫p 2,p .又因为双曲线左焦点F 1的坐标为⎝ ⎛⎭⎪⎫-p 2,0,所以|AF 1|=⎝ ⎛⎭⎪⎫-p 2-p 22+p 2=2p ,又|AF |=p ,所以2p -p =2a ,即(2-1)×2c =2a ,所以c a =12-1=2+1,选B.14.焦点为(0,6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( )A.x 212-y 224=1B.y 212-x 224=1C.y 224-x 212=1 D.x 224-y 212=1 答案 B解析 设所求双曲线方程为x 22-y 2=λ(λ≠0),因为焦点为(0,6),所以|3λ|=36,又焦点在y 轴上,所以λ=-12,选B.或利用排除法:因为焦点为(0,6),故排除A 、D ,又x 22-y 2=1的渐近线为y =±22x ,故选B.15.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点O 为双曲线的中心,点P 在双曲线右支上,△PF 1F 2内切圆的圆心为Q ,圆Q 与x 轴相切于点A ,过F 2作直线PQ 的垂线,垂足为B ,则下列结论成立的是( )A .|OA |>|OB | B .|OA |<|OB |C .|OA |=|OB |D .|OA |与|OB |大小关系不确定 答案 C解析 如图,由于点Q 为三角形PF 1F 2内切圆的圆心,故过点F 2作PQ 的垂线并延长交PF 1于点N ,易知垂足B 为F 2N 的中点,连接OB ,则|OB |=12|F 1N |=12(|F 1P |-|F 2P |)=a ,又设内切圆与PF 1,PF 2分别切于G ,H ,则由内切圆性质可得|PG |=|PH |,|F 1G |=|F 1A |,|F 2A |=|F 2H |, 故|F 1P |-|F 2P |=|F 1A |-|F 2A |=2a , 设|OA |=x ,则有x +c -(c -x )=2a , 解得|OA |=a ,故有|OA |=|OB |=a ,故选C.16. 已知F 1,F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦点,过F 2作垂直于x轴的直线交双曲线于点P和Q.且△F1PQ为正三角形,则双曲线的渐近线方程为________.点击观看解答视频答案y=±2x解析解法一:设F2(c,0)(c>0),P(c,y0),代入方程得y0=±b2 a,∵PQ⊥x轴,∴|PQ|=2b2 a.在Rt△F1F2P中,∠PF1F2=30°,∴|F1F2|=3|PF2|,即2c=3·b2 a.又∵c2=a2+b2,∴b2=2a2或2a2=-3b2(舍去),∵a>0,b>0,∴ba= 2.故所求双曲线的渐近线方程为y=±2x.解法二:∵在Rt△F1F2P中,∠PF1F2=30°,∴|PF1|=2|PF2|. 由双曲线定义知|PF1|-|PF2|=2a,∴|PF2|=2a,由已知易得|F1F2|=3|PF2|,∴2c=23a,∴c2=3a2=a2+b2,∴2a2=b2,∵a>0,b>0,∴ba=2,故所求双曲线的渐近线方程为y=±2x.。
圆锥曲线专题(理科)之2019高考真题分专题
2019圆锥曲线专题(理)1.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为( )A B C . D .2.设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为( )A B C .2 D3.渐近线方程为x ±y =0的双曲线的离心率是( )A B .1C D .24.已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为( )25.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( )A .2B .3C .4D .86.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y += B .22132x y += C .22143x y += D .22154x y += 7.已知椭圆()222210x y a b a b +=>>的离心率为12,则( )A .22.2a b =B .2 2.34a b=C .2a b =D .34a b =8.数学中有许多形状优美、寓意美好的曲线,曲线C :x 2+y 2=1+x y 就是其中之一(如图)。
给出下列三个结论:① 曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);② 曲线C ③ 曲线C 所围城的“心形”区域的面积小于3. 其中,所有正确结论的序号是( )A .①B .②C .①②D .①②③9.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方, 若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.10.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 .11.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C的两条渐近线分别交于A ,B 两点.若1F A AB =uuu r uu u r ,120F B F B ⋅=uuu r uuu r,则C 的离心率为____________.12.设12F F ,为椭圆C :22+13620x y=的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.13.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点, 则点P 到直线x +y =0的距离的最小值是 .14.已知抛物线C :y 2=3x 的焦点为F ,斜率为的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若4AF BF +=,求l 的方程;(2)若3AP PB =uu u r uu r,求AB .15.已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.16.如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交32于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.17.已知抛物线2:2C x py =-经过点(2,-1). (I) 求抛物线C 的方程及其准线方程;(II)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =-1分别交直线OM ,ON 于点A 和点B ,求证:以AB 为直径的圆经过y 轴上的两上定点.17.已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;12(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:是直角三角形; (ii )求面积的最大值.18.如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 右侧.记,AFG CQG △△的面积为12,S S . (1)求p 的值及抛物线的准线方程; (2)求12S S 的最小值及此时点G 的坐标.19.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离(Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点PQG △PQG△N在y轴的负半轴上.若||||⊥,求直线PB的斜率.ON OF=(O为原点),且OP MN。
卓顶精文-2019年全国高考文科数学复习试题及答案-新课标.doc
绝密★启封并使用完毕前2019年普通高等学校招生全国统一考试文科数学本复习试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在复习复习试题卷上作答,答案无效。
3.考试结束,监考员将复习复习试题卷、答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={G|G=3n+2,n∈N},B={6,8,12,14},则集合A⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC= (A)(-7,-4)(B)(7,4)(C)(-1,4)(D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2-I(B)-2+I(C)2-I(D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8G的焦点重合,A,B是C的准线与E的两个焦点,则|AB|=(A)3(B)6(C)9(D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)已知是公差为1的等差数列,则=4,=(A)(B)(C)10(D)12(8)函数f(G)=的部分图像如图所示,则f(G)的单调递减区间为(A)(k-,k-),k(A)(2k-,2k-),k(A)(k-,k-),k(A)(2k-,2k-),k(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5(B)6(C)7(D)8(10)已知函数,且f(a)=-3,则f(6-a)=(A)-74(B)-54(C)-34(D)-14(11)圆柱被一个平面截去一部分后与半球(半径为Y)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则Y=(A)1(B)2(C)4(D)8(12)设函数y=f(G)的图像关于直线y=-G对称,且f(-2)+f(-4)=1,则a=(A)-1(B)1(C)2(D)4第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上作答。
十年高考真题分类汇编(2010-2019) 数学(文) 专题12 圆锥曲线 Word版含解析
十年高考真题分类汇编(2010—2019)数学专题12圆锥曲线1.(2019·全国·理T 10文T 12)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B|,|AB|=|BF 1|,则C 的方程为( )A.x 22+y 2=1B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1【答案】B【解析】如图,由已知可设|F 2B|=n ,|BF 1|=m. 由|AB|=|BF 1|,则|AF 2|=m-n ,|AB|=m. 又|AF 1|+|AF 2|=|BF 1|+|BF 2|,故|AF 1|=2n. 由椭圆的定义及|AF 2|=2|F 2B|, 得{m -n =2n ,m +n =2a ,解得{m =3a2,n =a 2.∴|AF 1|=a ,|AF 2|=a.∴点A 为(0,-b). ∴k AF 2=b1=b.过点B 作x 轴的垂线,垂足为点P.由题意可知△OAF 2∽△PBF 2. 又|AF 2|=2|F 2B|,∴|OF 2|=2|F 2P|. ∴|F 2P|=12. 又k AF 2=|BP ||F 2P |=|BP |12=b ,∴|BP|=12b.∴点B (32,12b).把点B 坐标代入椭圆方程x 2a 2+y 2b2=1中,得a 2=3.又c=1,故b2=2.所以椭圆方程为x 23+y 22=1. 2.(2019·全国1·文T 10)双曲线C: x 2a 2−y 2b2=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C 的离心率为( ) A.2sin 40° B.2cos 40° C.1sin50° D.1cos50°【答案】D【解析】由已知可得-b a=tan 130°=-tan 50°, 则e=c a=√1+(ba )2=√1+tan 250° =√1+sin 250°cos 250°=√sin 250°+cos 250°cos 250°=1cos50°. 故选D.3.(2019·北京·文T 5)已知双曲线x 2a 2-y 2=1(a>0)的离心率是√5,则a=( )A.√6B.4C.2D.12【答案】D【解析】∵双曲线的离心率e=ca =√5,c=√a 2+1, ∴√a 2+1a=√5,【解析】得a=12,故选D.4.(2019·天津·理T 5文T 6)已知抛物线y 2=4x 的焦点为F ,准线为l.若l 与双曲线x 2a 2−y 2b2=1(a>0,b>0)的两条渐近线分别交于点A 和点B ,且|AB|=4|OF|(O 为原点),则双曲线的离心率为( ) A.√2 B.√3 C.2 D.√5【答案】D【解析】由抛物线方程可得l 的方程为x=-1.由{y =ba x ,x =-1,得y 1=-b a .由{y =-ba x ,x =-1,得y 2=b a . ∴AB=2ba .由|AB|=4|OF|得2b a =4,故ba =2.c a2=a 2+b2a 2=5a 2a 2.∴e=√5,故选D.5.(2018·全国1·理T 11)已知双曲线C:x 23-y 2=1,O 为坐标原点,F为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N.若△OMN 为直角三角形,则|MN|=( ) A.32B.3C.2√3D.4【答案】B【解析】由条件知F(2,0),渐近线方程为y=±√33x ,所以∠NOF=∠MOF=30°,∠MON=60°≠90°. 不妨设∠OMN=90°,则|MN|=√3|OM|.又|OF|=2,在Rt △OMF 中,|OM|=2cos 30°=√3, 所以|MN|=3.6.(2018·全国2·理T 5文T 6)双曲线x 2a2−y 2b2=1(a>0,b>0)的离心率为√3,则其渐近线方程为()A.y=±√2xB.y=±√3xC.y=±√22x D.y=±√32x【答案】A 【解析】∵e 2=c 2a 2=b 2+a 2a 2=(b a )2+1=3,∴ba =√2.∵双曲线焦点在x 轴上, ∴渐近线方程为y=±b ax , ∴渐近线方程为y=±√2x.7.(2018·全国3·理T 11)设F 1,F 2是双曲线C:x 2a 2−y 2b2=1(a>0,b>0)的左、右焦点,O是坐标原点,过F 2作C 的一条渐近线的垂线,垂足为P.若|PF 1|=√6|OP|,则C 的离心率为( ) A.√5 B.2C.√3D.√2【答案】C【解析】如图,过点F 1作OP 的反向延长线的垂线,垂足为P',连接P'F 2,由题意可知,四边形PF 1P'F 2为平行四边形,且△PP'F 2是直角三角形. 因为|F 2P|=b ,|F 2O|=c ,所以|OP|=a. 又|PF 1|=√6a=|F 2P'|,|PP'|=2a , 所以|F 2P|=√2a=b ,所以c=√a 2+b 2=√3a ,所以e=ca =√3.8.(2018·浙江·T2)双曲线x 23-y 2=1的焦点坐标是( ) A.(-√2,0),(√2,0) B.(-2,0),(2,0)C.(0,-√2),(0,√2)D.(0,-2),(0,2) 【答案】B【解析】∵c 2=a 2+b 2=3+1=4,∴c=2. 又焦点在x 轴上,∴焦点坐标为(-2,0),(2,0).9.(2018·全国2·理T12)已知F 1,F 2是椭圆C:x 2a 2+y 2b2=1(a>b>0)的左、右焦点,A是C 的左顶点,点P 在过A 且斜率为√36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P=120°,则C 的离心率为( )A.23 B.12 C.13D.14【答案】D【解析】∵A(-a ,0),△PF 1F 2为等腰三角形, ∴|PF 2|=|F 1F 2|=2c. 过点P 作PE ⊥x 轴,∵∠F 1F 2P=120°,∴∠PF 2E=60°. ∴F 2E=c ,PE=√3c ,∴P(2c ,√3c). ∵k PA =√36,∴PA 所在直线方程为y=√36(x+a). ∴√3c=√36(2c+a).∴e=c a =14.10.(2018·全国2·文T11)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( ) A.1-√32B.2-√3C.√3-12 D.√3-1【答案】D【解析】不妨设椭圆方程为x 2a 2+y 2b2=1(a>b>0),∵∠F 2PF 1=90°,∠PF 2F 1=60°,∴|PF 2|=c ,|PF 1|=√3c , ∴√3c+c=2a ,即(√3+1)c=2a. ∴e=ca =√3+1=√3-(√3-1)(√3+1)=√3-1.11.(2018·上海·T13)设P 是椭圆x 25+y 23=1上的动点,则P 到该椭圆的两个焦点的距离之和为( ) A.2√2 B.2√3 C.2√5 D.4√2【答案】C【解析】由椭圆的定义可知,椭圆上的任意点P 到两个焦点的距离之和为2a=2√5,故选C. 12.(2018·天津·理T 7文T 7)已知双曲线x 2a2−y 2b2=1(a>0,b>0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( ) A.x 24−y 212=1 B.x 212−y 24=1 C.x 23−y 29=1 D.x 29−y 23=1【答案】C【解析】由双曲线的对称性,不妨取渐近线y=ba x.如图所示,|AD|=d 1,|BC|=d 2,过点F 作EF ⊥CD 于点E. 由题易知EF 为梯形ABCD 的中位线, 所以|EF|=12(d 1+d 2)=3. 又因为点F(c ,0)到y=b ax 的距离为√a 2+b =b ,所以b=3,b 2=9.因为e=c a =2,c 2=a 2+b 2,所以a2=3,所以双曲线的方程为x 23−y 29=1.故选C.13.(2018·全国1·理T8)设抛物线C:y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM ⃗⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗ =( ) A.5 B.6 C.7 D.8【答案】D【解析】易知F(1,0),过点(-2,0)且斜率为23的直线方程为y=23(x+2).联立抛物线方程y 2=4x ,得{y 2=4x ,y =23(x +2),解得{x =1,y =2,或{x =4,y =4.不妨设M(1,2),N(4,4),所以FM ⃗⃗⃗⃗⃗⃗ =(0,2),FN ⃗⃗⃗⃗⃗ =(3,4),所以FM⃗⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗ =8. 14.(2017·全国1·理T10)已知F 为抛物线C:y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB|+|DE|的最小值为( ) A.16 B.14 C.12 D.10【答案】A【解析】由题意,易知直线l 1,l 2斜率不存在时,不合题意. 设直线l 1方程为y=k 1(x-1), 联立抛物线方程,得{y 2=4x ,y =k 1(x -1),消去y ,得k 12x 2-2k 12x-4x+k 12=0,所以x 1+x 2=2k 12+4k 12.同理,直线l 2与抛物线的交点满足x 3+x 4=2k 22+4k 22.由抛物线定义可知|AB|+|DE|=x 1+x 2+x 3+x 4+2p=2k 12+4k 12+2k 22+4k 22+4=4k 12+4k 22+8≥2√16k 12k 22+8=16,当且仅当k 1=-k 2=1(或-1)时,取得等号.15.(2017·全国3·理T 5)已知双曲线C:x 2a 2−y 2b2=1(a>0,b>0)的一条渐近线方程为y=√52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A.x 28−y 210=1 B.x 24−y 25=1C.x 25−y 24=1 D.x 24−y 23=1 【答案】B【解析】由题意得b a =√52,c=3. 又a 2+b 2=c 2,所以a 2=4,b 2=5, 故C的方程为x 24−y 25=1.16.(2017·全国1·文T 5)已知F 是双曲线C:x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( ) A.13 B.12C.23D.32【答案】D【解析】由c 2=a 2+b 2=4,得c=2,所以点F 的坐标为(2,0).将x=2代入x 2-y 23=1,得y=±3,所以PF=3.又点A 的坐标是(1,3),故△APF 的面积为12×3×(2-1)=32.故选D. 17.(2017·天津·理T5)已知双曲线x 2a 2−y 2b2=1(a>0,b>0)的左焦点为F ,离心率为√2,若经过F 和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )A.x 24−y 24=1 B.x 28−y 28=1 C.x 24−y 28=1 D.x 28−y 24=1【答案】B 【解析】∵e2=1+b 2a 2=2,∴ba=1,a=b. ∵F(-c ,0),P(0,4),∴k PF =4c =ba =1. ∴c=4.又a 2+b 2=c 2=16,∴a 2=b 2=8.∴所求双曲线的方程为x 28−y 28=1.18.(2017·全国3·理T10文T11)已知椭圆C: x 2a2+y 2b2=1(a>b>0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx-ay+2ab=0相切,则C 的离心率为( ) A.√63 B.√33C.√23D.13【答案】A【解析】以线段A 1A 2为直径的圆的方程是x 2+y 2=a 2. 因为直线bx-ay+2ab=0与圆x 2+y 2=a 2相切, 所以圆心到该直线的距离d=√b +a 2=a ,整理,得a 2=3b 2,即a 2=3(a 2-c 2),所以c 2a 2=23,从而e=c a =√63.故选A.19.(2017·全国1·文T12)设A ,B 是椭圆C:x 23+y 2m=1长轴的两个端点.若C 上存在点M 满足∠AMB=120°,则m 的取值范围是( )A.(0,1]∪[9,+∞)B.(0, ]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0, ]∪[4,+∞)【答案】A【解析】由题意,可知当点M 为短轴的端点时,∠AMB 最大.当0<m<3时,椭圆C 的焦点在x 轴上,要使椭圆C 上存在点M 满足∠AMB=120°,则a b ≥tan 60°=√3,即√3√m ≥√3,解得0<m≤1;当m>3时,椭圆C 的焦点在y 轴上,要使椭圆C 上存在点M 满足∠AMB=120°,则ab ≥tan 60°=√3,即√m√3≥√3,解得m≥9.综上m的取值范围为(0,1]∪[9,+∞).故选A. 20.(2017·浙江·理T2文T2)椭圆x 29+y 24=1的离心率是( )A.√133 B.√53C.23 D.59【答案】B【解析】e=√9-43=√53,故选B. 21.(2017·全国2·理T9)若双曲线C: x 2a 2−y 2b2=1(a>0,b>0)的一条渐近线被圆(x-2)2+y 2=4所截得的弦长为2,则C 的离心率为( ) A.2 B.√3 C.√2 D.2√33【答案】A【解析】可知双曲线C 的渐近线方程为bx±ay=0,取其中的一条渐近线方程为bx+ay=0,则圆心(2,0)到这条渐近线的距离为√a 2+b =√22-12=√3,即2b c=√3,所以c=2a ,所以e=2.故选A.22.(2017·全国2·文T5)若a>1,则双曲线x 2a2-y 2=1的离心率的取值范围是( ) A.(√2,+∞) B.(√2,2) C.(1,√2) D.(1,2)【答案】C【解析】由题意得e 2=c 2a 2=a 2+1a 2=1+1a2.因为a>1,所以1<1+1a 2<2. 所以1<e<√2.故选C.23.(2016·全国1·理T10)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB|=4√2 ,|DE|=2√5,则C 的焦点到准线的距离为( )A.2B.4C.6D.8【答案】B【解析】不妨设抛物线C的方程为y2=2px(p>0),圆的方程为x2+y2=R2. 因为|AB|=4√2,所以可设A(m,2√2).又因为|DE|=2√5,所以{R2=5+p24,m2+8=R2,8=2pm,【解析】得p2=16.故p=4,即C的焦点到准线的距离是4.24.(2016·全国2·文T5)设F为抛物线C:y2=4x的焦点,曲线y=kx(k>0)与C交于点P,PF⊥x轴,则k=( )A.12B.1 C.32D.2【答案】D【解析】因为F为抛物线y2=4x的焦点,所以F(1,0).又因为曲线y=kx(k>0)与抛物线交于点P,PF⊥x轴,如图所示,可知P(1,2),故k1=2,解得k=2,故选D.25.(2016·全国1·理T 5)已知方程x 2m2+n −y23m2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(-1,3)B.(-1,√3)C.(0,3)D.(0,√3)【答案】A【解析】因为双曲线的焦距为4,所以c=2,即m2+n+3m2-n=4,解得m2=1.又由方程表示双曲线得(1+n)(3-n)>0,解得-1<n<3,故选A.26.(2016·天津·理T 6)已知双曲线x 24−y2b2=1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形ABCD的面积为2b,则双曲线的方程为( )A.x 24−3y24=1 B.x24−4y23=1 C.x24−y24=1 D.x24−y212=1【答案】D 【解析】{x 2+y 2=4y =b2x ⇒{x =4√b 2+4y =√b 2+4b 2, 则xy=16b 2+4·b 2=b2⇒b 2=12.故所求双曲线的方程为x 24−y 212=1.故选D.27.(2016·全国2·理T11)已知F 1,F 2是双曲线E:x 2a 2−y 2b2=1的左、右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( ) A.√2 B.32 C.√3 D.2【答案】A【解析】如图,因为MF 1与x 轴垂直,所以|MF 1|=b2a .又sin ∠MF 2F 1=13,所以|MF 1||MF 2|=13,即|MF 2|=3|MF 1|.由双曲线的定义得2a=|MF 2|-|MF 1|=2|MF 1|=2b2a,所以b 2=a 2,则c 2=b 2+a 2=2a 2,得离心率e=ca =√2.28.(2016·全国3·理T11文T12)已知O 为坐标原点,F 是椭圆C:x 2a 2+y 2b2=1(a>b>0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E.若直线BM 经过OE 的中点,则C 的离心率为( ) A.13B.12C.23D.34【答案】A【解析】由题意,不妨设直线l 的方程为y=k(x+a),k>0,分别令x=-c 与x=0,得|FM|=k(a-c),|OE|=ka. 设OE 的中点为G , 由△OBG ∽△FBM ,得12|OE ||FM |=|OB ||BF |, 即ka2k (a -c )=aa+c ,整理,得ca =13, 故椭圆的离心率e=13,故选A.29.(2016·全国1·文T5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A.13 B.12C.23D.34【答案】B【解析】设椭圆的一个顶点坐标为(0,b),一个焦点坐标为(c ,0),则直线l 的方程为x c +yb =1,即bx+cy-bc=0, 短轴长为2b ,由题意得√b +c 2=14×2b,与b 2+c 2=a 2联立得a=2c ,故e=12.30.(2015·福建·文T11)已知椭圆E:x 2a 2+y 2b2=1(a>b>0)的右焦点为F ,短轴的一个端点为M ,直线l:3x-4y=0交椭圆E 于A ,B 两点.若|AF|+|BF|=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A.(0,√32] B.(0,34] C.[√32,1) D.[34,1)【答案】A【解析】如图,取椭圆的左焦点F 1,连接AF 1,BF 1. 由椭圆的对称性知四边形AF 1BF 是平行四边形, ∴|AF|+|BF|=|AF 1|+|AF|=2a=4.∴a=2. 不妨设M(0,b),则√3+4≥45,∴b≥1.∴e=c a=√1-(b a)2≤√1-(12)2=√32.又0<e<1,∴0<e≤√32.故选A.31.(2015·安徽高考·文T8)直线3x +4y =b 与圆222210x y x y +--+=相切,则b =( ) (A )-2或12 (B )2或-12 (C )-2或-12 (D )2或12 【答案】D【解析】∵直线b y x =+43与圆心为(1,1),半径为1的圆相切,∴224343+-+b =1⇒2=b 或12,故选D .32.(2015·福建高考·理T3)若双曲线22:1916x y E -= 的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2PF 等于( )A .11B .9C .5D .3 【答案】B【解析】由双曲线定义得1226PF PF a -==,即236PF -=,解得29PF =,故选B .33.(2015·四川高考·理T5)过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =( )(C)6 (D )【答案】D【解析】双曲线的右焦点为(2,0)F ,过F 与x 轴垂直的直线为2x =,渐近线方程为2203y x -=,将2x =代入2203y x -=得:212,||y y AB ==±∴=.选D.34.(2015·广东高考·理T7)已知双曲线C :12222=-b y a x 的离心率54e =,且其右焦点()25,0F ,则双曲线C 的方程为( )A .13422=-y x B. 191622=-y x C. 116922=-y x D. 14322=-y x【答案】B【解析】因为所求双曲线的右焦点为()25,0F 且离心率为54c e a ==,所以5c =,4a =,2229b c a =-=所以所求双曲线方程为221169x y -=,故选B .35.(2015·新课标全国卷I ·理T5)已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF •<,则0y 的取值范围是( )(A )( (B )()(C )() (D )() 【答案】A36.(2015·湖北高考·理T8)将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( ) A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e > 【答案】D【解析】依题意,2221)(1ab a b a e +=+=,2222)(1)()(m a m b m a m b m a e +++=++++=, 因为)()()(m a a a b m m a a am ab bm ab m a m b a b +-=+--+=++-,由于0>m ,0>a ,0>b , 所以当b a >时,10<<a b ,10<++<m a m b ,m a m b a b ++<,22)()(ma mb a b ++<,所以12e e <;当b a <时,1>a b ,1>++m a m b ,而m a m b a b ++>,所以22)()(ma mb a b ++>,所以12e e >.所以当a b >时,12e e <;当a b <时,12e e >.37.(2015·四川高考·理T10)设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )(A )()13,(B )()14, (C )()23, (D )()24, 【答案】D【解析】显然当直线l 的斜率不存在时,必有两条直线满足题设.当直线l 的斜率存在时,设斜率为k .设11221200(,),(,),,(,)A x y B x y x x M x y ≠,则21122244y x y x ⎧=⎪⎨=⎪⎩,相减得121212()()4()y y y y x x +-=-.由于12x x ≠,所以12121222y y y y x x +-⋅=-,即02ky =.圆心为(5,0)C ,由CM AB ⊥得000001,55y k ky x x -⋅=-=--,所以0025,3x x =-=,即点M 必在直线3x =上.将3x =代入24y x =得2012,y y =∴-<<.因为点M 在圆()()22250x y rr -+=>上,所以22222000(5),412416x y r r y -+==+<+=.又2044y +>(由于斜率不存在,故00y ≠,所以不取等号),所以204416,24y r <+<∴<<.选D.38.(2015·天津高考·理T6)已知双曲线()222210,0x y a b a b-=>> 的一条渐近线过点( ,且双曲线的一个焦点在抛物线2y = 的准线上,则双曲线的方程为( )(A )2212128x y -= (B )2212821x y -=(C )22134x y -=(D )22143x y -=【答案】D【解析】双曲线()222210,0x y a b a b-=>> 的渐近线方程为by x a =±,由点(在渐近线上,所以b a =,双曲线的一个焦点在抛物线2y =准线方程x =上,所以c =,由此可解得2,a b ==22143x y -=,故选D. 39.(2015·安徽高考·理T4)下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是( )(A )2214y x -= (B )2214x y -= (C )2214y x -= (D )2214x y -= 【答案】C【解析】由题意,选项,A B 的焦点在x 轴,故排除,A B ,C 项的渐近线方程为2204y x -=,即2y x =±,故选C.40.(2015·浙江高考·理T5)如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( )A. 11BF AF --B. 2211BF AF --C. 11BF AF ++ D. 2211BF AF ++ 【答案】A.【解析】S ∆BCF S ∆ACF=BC AC =X B X A=BF−1AF−1,故选A41.(2015·新课标全国卷II ·理T11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A .2 C D 【答案】D【解析】设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,AB BM =,0120ABM ∠=,过点M 作MN x ⊥轴,垂足为N ,在Rt BMN ∆中,BN a =,MN =,故点M 的坐标为(2)M a ,代入双曲线方程得2222a b a c ==-,即222c a =,所以e =D .42.(2015·新课标全国卷I ·文T5)已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB =( )(A )3(B )6(C )9(D )12 【答案】B【解析】∵抛物线2:8C y x =的焦点为(2,0),准线方程为2x =-,∴椭圆E 的右焦点为(2,0),∴椭圆E 的焦点在x 轴上,设方程为22221(0)x y a b a b+=>>,c=2,∵12c e a ==,∴4a =,∴22212b a c =-=,∴椭圆E 方程为2211612x y +=,将2x =-代入椭圆E 的方程解得A (-2,3),B (-2,-3),∴|AB|=6,故选B.43.(2015·重庆高考·文T9)设双曲线22221(a 0,b 0)x y a b 的右焦点是F ,左、右顶点分别是12A ,A ,过F 做12A A 的垂线与双曲线交于B ,C 两点,若12A B A C ⊥,则双曲线的渐近线的斜率为( )(A)12 (B) 22(C) 1 (D) 2【答案】C【解析】由已知得右焦点(,0)F c (其中)0,222>+=c b a c ,)0,(),0,(21a A a A -,),(),,(22ab c C a b c B -,从而),(),,(2221a b a c C A a b a c B A -=-+=,又因为12A B A C ⊥,所以021=•C A B A ,即0)()()()(22=⋅-++⋅-a b a b a c a c ,化简得到1122±=⇒=a bab ,即双曲线的渐近线的斜率为1±,故选C.44.(2015·四川高考·文T7)过双曲线2213y x -=的右焦点且与x 轴垂直的直线交该双曲线的两条渐近线于A 、B 两点,则|AB |=( )(A B C )6 (D 【答案】D【解析】由题意,a =1,b c =2,渐近线方程为y x将x =2代入渐近线方程,得y 1,2=±,故|AB |=,选D45.(2015·陕西高考·文T3)已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( )A .(1,0)-B .(1,0)C .(0,1)-D .(0,1)【答案】B【解析】 由抛物线22(0)y px p =>得准线2px =-,因为准线经过点(1,1)-,所以2p =,所以抛物线焦点坐标为(1,0),故答案选B46.(2015·广东高考·文T8)已知椭圆222125x y m +=(0m >)的左焦点为()1F 4,0-,则m =( )A .9B .4C .3D .2 【答案】C【解析】 由题意得:222549m =-=,因为0m >,所以3m =,故选C .47.(2015·天津高考·文T5)已知双曲线22221(0,0)x y a b ab 的一个焦点为(2,0)F ,且双曲线的渐近线与圆222y 3x 相切,则双曲线的方程为( )(A)221913x y (B) 221139x y (C)2213x y(D) 2213y x【答案】D【解析】由双曲线的渐近线0bx ay -=与圆222y 3x =,由2c ==,解得1,a b == D.48.(2015·湖南高考·文T6)若双曲线22221x y a b-=的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A B 、54 C 、43 D 、53【答案】D【解析】因为双曲线22221x y a b-=的一条渐近线经过点(3,-4),2225349163c b a c a a e a ∴=∴-=∴=,(),=.故选D. 49.(2015·安徽高考·文T6)下列双曲线中,渐近线方程为2y x =±的是( )(A )2214y x -= (B )2214x y -=(C )2212y x -= (D )2212x y -=【答案】A【解析】由双曲线的渐进线的公式可行选项A 的渐进线方程为x y 2±=,故选A .50.(2015·湖北高考·文T9)将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( ) A .对任意的,a b ,12e e > B .当a b >时,12e e >;当a b <时,12e e < C .对任意的,a b ,12e e < D .当a b >时,12e e <;当a b <时,12e e >【答案】D【解析】不妨设双曲线1C 的焦点在x 轴上,即其方程为:22221x y a b-=,则双曲线2C 的方程为:22221()()x y a m b m -=++,所以1e ==,2e ==,当a b >时, ()()()0()()b m b b m a b a m a b m a m a a m a a m a ++-+--==>+++,所以b m b a m a +>+,所以22b m b a m a +⎛⎫⎛⎫> ⎪ ⎪+⎝⎭⎝⎭,所以21e e >;当a b <时,()()()0()()b m b b m a b a m a b m a m a a m a a m a ++-+--==<+++,所以b m b a m a +<+,所以22b m b a m a +⎛⎫⎛⎫< ⎪ ⎪+⎝⎭⎝⎭,所以21e e <;故应选D.51.(2015·福建高考·文T11)已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A .B .3(0,]4C .D .3[,1)4【答案】A【解析】设左焦点为F ,连接1AF ,1BF .则四边形1BF AF 是平行四边形,故1AF BF =,所以142AF AF a +==,所以2a =,设(0,)M b ,则4455b ≥,故1b ≥,从而221ac -≥,203c <≤,0c <≤,所以椭圆E 的离心率的取值范围是,故选A . 52.(2015·安徽·理T 4)下列双曲线中,焦点在y 轴上且渐近线方程为y=±2x 的是( ) A.x 2-y 24=1 B.x 24-y 2=1 C.y 24-x 2=1 D.y 2-x 24=1【答案】C【解析】A ,B 选项中双曲线的焦点在x 轴上,不符合要求.C ,D 选项中双曲线的焦点在y 轴上,且双曲线y 24-x 2=1的渐近线方程为y=±2x;双曲线y 2-x 24=1的渐近线方程为y=±12x.故选C.53.(2015·浙江·理T5)如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1【答案】A【解析】设A(x 1,y 1),B(x 2,y 2),由抛物线定义,得|AF|=x 1+1,|BF|=x 2+1,则S △BCF S △ACF=BC AC=x 2x 1=|BF |-1|AF |-1,故选A.54.(2014·全国1·理T10)已知抛物线C:y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点.若FP ⃗⃗⃗⃗⃗ =4FQ ⃗⃗⃗⃗⃗ ,则|QF|=( ) A.72 B.3C.52D.2【答案】B【解析】如图,由抛物线的定义知焦点到准线的距离p=|FM|=4. 过Q 作QH ⊥l 于H ,则|QH|=|QF|.由题意,得△PHQ ∽△PMF , 则有|HQ ||MF |=|PQ ||PF |=34,∴|HQ|=3.∴|QF|=3.55.(2014·全国1·文T10)已知抛物线C:y 2=x 的焦点为F ,A(x 0,y 0)是C 上一点,|AF|=54x 0,则x 0=( ) A.1 B.2 C.4 D.8 【答案】A【解析】由抛物线方程y 2=x 知,2p=1,p2=14,即其准线方程为x=-14.因为点A 在抛物线上,由抛物线的定义知|AF|=x 0+p2=x 0+14,于是54x 0=x 0+14,解得x 0=1,故选A. 56.(2014·天津·理T 5)已知双曲线x 2a 2−y 2b2=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A.x 25−y 220=1B.x 220−y 25=1C.3x 225−3y 2100=1 D.3x 2100−3y 225=1 【答案】A【解析】由于双曲线焦点在x 轴上,且其中一个焦点在直线y=2x+10上,所以c=5. 又因为一条渐近线与l 平行,因此b a=2,可解得a 2=5,b 2=20,故双曲线方程为x 25−y 220=1.故选A.57.(2014·大纲全国·理T6文T9)已知椭圆C:x 2a2+y 2b2=1(a>b>0)的左、右焦点为F 1,F 2,离心率为√33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为4√3,则C 的方程为( ) A.x 23+y 22=1B.x 23+y 2=1C.x 212+y 28=1 D.x 212+y 24=1【答案】A【解析】∵x 2a 2+y 2b2=1(a>b>0)的离心率为√33,∴e2=1-b 2a2=13.∴b 2=23a 2.又∵过F 2的直线l 交椭圆于A ,B 两点, △AF 1B 的周长为4√3, ∴4a=4√3,∴a=√3.∴b=√2,∴椭圆方程为x 23+y 22=1,选A.58.(2014·福建高考理科·T9).设Q P ,分别为圆()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是()A.25B.246+C.27+D.26 【答案】D【解析】圆心M (0,6),设椭圆上的点为(,)Q x y ,则MQ ===当2[1,1]3y =-∈-时,max MQ =.所以max PQ ==. 59.(2014·重庆高考文科·T8)设12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,双曲线上存在一点P 使得()22123,PF PF b ab -=-则该双曲线的离心率为( )4 【答案】D【解析】由双曲线的定义知,()22124,PF PF a -=又()22123,PF PF b ab -=-所以2243a b ab =-等号两边同除2a ,化简得2340b b a a ⎛⎫-•-= ⎪⎝⎭,解得4,b a =或1b a =-(舍去)故离心率c e a =====60.(2014·天津文·T6理T5))已知双曲线)0,0(12222>>=-b a by a x 的一条渐近线平行于直线,102:+=x y l 双曲线的一个焦点在直线l 上,则双曲线的方程为()A.120522=-y x B.152022=-y x C.1100325322=-y x D.1253100322=-y x 【答案】A【解析】因为双曲线的一个焦点在直线l 上,所以0210,c =+即5,c =又因为渐近线平行于直线,102:+=x y l 故有2,ba=结合222,c a b =+得225,20,a b ==所以双曲线的标准方程为120522=-y x 61.(2014·湖北高考理科·T9)已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A.3B.3C.3D.2 【答案】A【解析】设椭圆的长半轴长为a ,双曲线的实半轴长为1a (1a a >),半焦距为c ,由椭圆、双曲线的定义得a PF PF 2||||21=+,121||||2PF PF a -=,所以11||a a PF +=,12||a a PF -=, 因为123F PF π∠=,由余弦定理得22211114()()2()()cos3c a a a a a a a a π=++--+-,所以212234a a c +=,即2122122221)(2124ca c a c a c a c a +≥+=-,所以212148)11(e e e-≤+,. 62.(2014·广东高考理科·T10)若实数k 满足0<k<9,则曲线225x -29y k-=1与曲线225x k --29y =1的 ( )A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等 【答案】A【解析】因为0<k<9,所以曲线225x -29y k-=1与曲线225x k --29y =1都表示焦点在x 轴上的双曲线,且25≠25-k ,9-k ≠9,但a 2+b 2=34-k ,故两双曲线的焦距相等.63.(2014·山东高考理科·T10)已知a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b -=,1C 与2C ,则2C 的渐近线方程为( )A 、0x =B 0y ±=C 、20x y ±=D 、20x y ±= 【答案】A【解析】椭圆的离心率为2222221a b a a c e -==,双曲线的离心率为2222222ab a ac e +==,所以()43444221=+=a b a e e ,所以444b a =. 所以22±=a b .双曲线的渐近线方程为x y 22±=,即02=±y x ,故选A.64.(2014·江西高考文科·T9)过双曲线12222=-by a x C :的右顶点作x 轴的垂线与C 的一条渐近线相交于点A.若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为 ( )A.112422=-y x B.19722=-y x C.18822=-y x D.141222=-y x 【答案】A【解析】设右焦点为F ,由题意得|OF|=|AF|=4,即a 2+b 2=16,又A(a ,b),F(4,0)可得(a-4)2+b 2=16,故a=2,b 2=12,所以方程为112422=-y x . 65.(2014·安徽高考文科·T3)抛物线214yx 的准线方程是( ) A. 1-=y B. 2-=y C. 1-=x D. 2-=x 【答案】A 【解析】22144yx x y ,所以抛物线的准线方程是y=-1.66. (2014·新课标全国卷Ⅱ高考文科数学·T10) (2014·新课标全国卷Ⅱ高考文科数学·T10)设F 为抛物线C:y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则AB = ( )A.3B.6C.12D.【答案】C【解析】设AF=2m ,BF=2n ,F 2≠a .则由抛物线的定义和直角三角形知识可得,2m=2·34,2n=2·34,解得m=32),n=32),所以m+n=6. AB=AF+BF=2m+2n=12.故选C.67. (2014·新课标全国卷Ⅱ高考理科数学·T10)设F 为抛物线C:y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )C.6332D.94【答案】D【解析】选D.设点A ,B 分别在第一和第四象限,AF=2m ,BF=2n ,则由抛物线的定义和直角三角形知识可得,2m=2·34,2n=2·34,解得m=32),n=32),所以m+n=6.所以 S △OAB =1324⋅·(m+n)=94.故选D.68. (2014·四川高考理科·T10)已知F 为抛物线x y =2的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( )A.2B.3C.8【答案】 B【解析】选B. 可设直线AB 的方程为:x ty m =+,点11(,)A x y ,22(,)B x y ,又1(,0)4F ,则直线AB 与x轴的交点(,0)M m ,由220x ty my ty m y x=+⎧⇒--=⎨=⎩,所以12y y m =-,又21212121222()20OA OB x x y y y y y y ⋅=⇒+=⇒+-=,因为点A ,B 在该抛物线上且位于x 轴的两侧,所以122y y =-,故2m =,于是122111211111112224224ABO AFO S S x y x y y y y y ∆∆+=-+⨯⨯=⨯⨯-+⨯⨯=111218y y y ++119238y y =+≥=,当且仅当11192483y y y =⇔=时取“=”, 所以ABO ∆与AFO ∆面积之和的最小值是3.69. (2014·四川文·T10理T10)已知F 为抛物线x y =2的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( )【答案】 B【解析】选B.可设直线AB 的方程为:x ty m =+,点11(,)A x y ,22(,)B x y ,又1(,0)4F ,则直线AB 与x 轴的交点(,0)M m ,由220x ty my ty m y x=+⎧⇒--=⎨=⎩,所以12y y m =-,又21212121222()20OA OB x x y y y y y y ⋅=⇒+=⇒+-=,因为点A ,B 在该抛物线上且位于x 轴的两侧,所以122y y =-,故2m =,于是122111211111112224224ABO AFO S S x y x y y y y y ∆∆+=-+⨯⨯=⨯⨯-+⨯⨯=111218y y y ++119238y y =+≥=,当且仅当11192483y y y =⇔=时取“=”, 所以ABO ∆与AFO ∆面积之和的最小值是3.70. (2014·辽宁高考理科·T10)已知点(2,3)A -在抛物线2:2C y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为1134()()()()2343A B C D【答案】D【解析】根据已知条件得22p-=-,所以 4.p =从而抛物线方程为28y x =,其焦点(2,0)F . 设切点00(,)B x y,由题意,在第一象限内28y x y =⇒=.由导数的几何意义可知切线的斜率为AB x x k y ='==003(2)AB y k x -=--又因为切点00(,)B x y 在曲线上,所以2008y x =.由上述条件解得008x y ==.即(8,8)B .从而直线BF 的斜率为804823-=-. 71. (2014·湖北高考文科·T8)设a ,b 是关于t 的方程t 2cos θ+tsin θ=0的两个不等实根,则过A(a ,a 2),B(b ,b 2)两点的直线与双曲线22cos x θ-22sin y θ=1的公共点的个数为 ( )A.0B.1C.2D.3 【答案】A【解析】由于a ,b 是关于t 的方程t 2cos θ+tsin θ=0的两个不等实根, 所以a+b=-sin cos θθ,ab=0, 过A(a ,a 2),B(b ,b 2)两点的直线为y-a 2=22b a b a-- (x-a),即y=(b+a)x-ab ,即y=-sin cos θθx , 因为双曲线22cos x θ-22sin y θ=1的一条渐近线方程为y=-sin cos θθx , 所以过A(a ,a 2),B(b ,b 2)两点的直线与双曲线22cos x θ-22sin y θ=1的公共点的个数为0. 72.(2013·广东·文T9)已知中心在原点的椭圆C 的右焦点为F(1,0),离心率等于12,则C 的方程是( )A.x 23+y 24=1 B.x 24+2√3=1C.x 24+y 22=1 D.x 24+y 23=1【答案】D【解析】由右焦点F(1,0)知,焦点在x 轴上,且c=1. 又离心率等于12,则c a =12,得a=2. 由b 2=a 2-c 2=3,故椭圆C 的方程为x 24+y 23=1.73.(2013·福建高考理·T3)双曲线x 24-y 2=1的顶点到其渐近线的距离等于( )A.25B.45C.255D.455 【答案】C【解析】本题考查双曲线的图象与性质,点到直线的距离等基础知识,意在考查考生的数形结合能力、转化和化归能力以及运算求解能力.双曲线x 24-y 2=1的渐近线方程为y =±x2,即x ±2y =0,所以双曲线的顶点(±2,0)到其渐近线距离为25=255.74.(2013·浙江高考·T9)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A.2B.3C.32D.62【答案】D【解析】本题考查椭圆、双曲线的定义,几何图形和标准方程,简单几何性质,考查转化与化归思想、数形结合思想、函数与方程思想以及运算求解能力.设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0)①,点A 的坐标为(x 0,y 0).由题意得a 2+b 2=3=c 2②,则|OA |=c =3,所以⎩⎪⎨⎪⎧x 20+y 20=3,x 20+4y 20=4,解得x 20=83,y 20=13,又点A 在双曲线上,代入①得,83b 2-13a 2=a 2b 2③,联立②③解得a =2,所以e =c a =62,故选D.75.(2013·全国2·理T11)设抛物线C:y 2=2px(p>0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A.y 2=4x 或y 2=8xB.y 2=2x 或y 2=8x C.y 2=4x 或y 2=16x D.y 2=2x 或y 2=16x 【答案】C【解析】设点M 的坐标为(x 0,y 0),由抛物线的定义,得|MF|=x 0+p2=5,则x 0=5-p2. 又点F 的坐标为(p2,0),所以以MF 为直径的圆的方程为(x-x 0)(x -p 2)+(y-y 0)y=0.将x=0,y=2代入得px 0+8-4y 0=0,即y 022-4y 0+8=0,所以y 0=4.由y 02=2px 0,得16=2p (5-p2),解之得p=2,或p=8.所以C 的方程为y 2=4x 或y 2=16x.故选C.76.(2013·新课标Ⅰ高考理·T4)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12x D .y =±x【答案】C【解析】本题考查双曲线的标准方程和几何性质,意在考查考生对于双曲线的几何性质的熟练掌握和运算求解能力.解题时,先根据双曲线的标准方程判断出双曲线的焦点位置,再由双曲线的离心率的概念得到a ,c 之间的关系,再根据双曲线中a ,b ,c 之间的关系转化为a 与b 之间的关系,从而求出其渐近线方程.因为双曲线x 2a 2-y 2b 2=1的焦点在x 轴上,所以双曲线的渐近线方程为y =±b a x .又离心率为e =c a =a 2+b 2a=1+⎝ ⎛⎭⎪⎫b a2=52,所以b a =12,所以双曲线的渐近线方程为y =±12x ,选择C. 77.(2013·新课标Ⅰ高考理·T10)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 【答案】D【解析】本题考查直线与椭圆的位置关系、斜率公式、焦点弦和中点弦问题,意在考查考生通过解方程组求解弦的中点的能力.运用两点式得到直线的方程,代入椭圆方程,消去y ,由根与系数的关系得到a ,b 之间的关系,并由a ,b ,c 之间的关系确定椭圆方程.因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝ ⎛⎭⎪⎫a24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中。
圆锥曲线高考真题总汇编(2013--2019新课标卷)(2019)
解析几何高考真题1、【2019年新2文理】若抛物线22y px =(p>0)的焦点是椭圆2213x y p p+=的一个焦点,则p=( ) A.2 B.3 C.4 D.82、【2019年新2文理】设F 为双曲线C:22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P,Q 两点,若PQ OF =,则C 的离心率为( )B.C. 2 3、【2019新1文理】已知双曲线C:22221(0,0)x y a b a b-=>>D 的左、右焦点分别为12,F F ,过1F 的直线与C 的两条渐近线分别交于A,B 两点,若112,0F A AB FB F B =⋅=,则C 的离心率为________4、【2019新1文理】已知椭圆C 的焦点为12(1,0),(1,0)F F -,过2F 的直线与C 交于A,B 两点2212,AF F B AB BF ==,则C 的方程为( )A.2212x y += B.22132x y += C.22143x y += D.22154x y += 5、【2019新3文理】10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O为坐标原点,若=PO PF ,则△PFO 的面积为( )A .4B .2C .D .6、【2019新3文理】15.设12F F ,为椭圆C :22+13620x y=的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.7、【2018新2文理】5.双曲线22221(0,0)x y a b a b-=>>则其渐近线方程为( )A .y =B .y =C .2y x = D .y =8、【2018新2理】12.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A 的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12C .13D .149、【2018新2文】11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A .1B .2CD 110、【2018新1理】8.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5B .6C .7D .811、【2018新1理】11.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |=( )A .32B .3C .D .412、【2018新1文】4.已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12C D 13、【2018新1文】15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________ 14、【2018新3文理】6.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值围是( )A .[]26,B .[]48,C .D .⎡⎣ 15、【2018新3理】11.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF =,则C 的离心率为( )AB .2CD16、【2018新3理】16.已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.17、【2018新3文】10.已知双曲线22221(00)x y C a b a b-=>>:,,则点(4,0)到C 的渐近线的距离为( )AB .2C .2D .18、【2017新2理】9. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2BCD .319、【2017新2理】16. 已知F 是抛物线C :28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则FN = .20、【2017新1理】10.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线12,l l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16B .14C .12D .1021、【2017新1理】15.已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,以A 为圆心,b为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学圆锥曲线测试高考题一、选择题:1.(20XX 全国II )已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =43x ,则双曲线的离心率为()(A )53(B )43(C )54(D )322.(20XX 全国II )已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是() (A )23(B )6(C )43(D )123.(20XX 全国卷I )抛物线2y x =-上的点到直线4380x y +-=距离的最小值是()A .43B .75C .85D .3 4.(20XX 广东高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于()A.2B.223C.2D.4 5.(20XX 辽宁卷)方程22520x x -+=的两个根可分别作为() A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率6.(20XX 辽宁卷)曲线221(6)106x y m m m +=<--与曲线221(59)59x y m m m+=<<--的() (A)焦距相等(B)离心率相等(C)焦点相同(D)准线相同7.(20XX 安徽高考卷)若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为() A .2-B .2C .4-D .48.(20XX 辽宁卷)直线2y k =与曲线2222918k x y k x +=(,)k R ∈≠且k 0的公共点的个数为()(A)1(B)2(C)3(D)4 二、填空题:9.(20XX 全国卷I )双曲线221mx y +=的虚轴长是实轴长的2倍,则m = 。
10.(20XX 上海卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(3,0)F -,右顶点为(2,0)D ,设点11,2A ⎛⎫⎪⎝⎭,则求该椭圆的标准方程为 。
11.(20XX 年高考全国新课标卷理科14)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为22。
过l 的直线交于,A B 两点,且2ABF 的周长为16,那么C 的方程为 。
12.(20XX 年高考四川卷理科14)双曲线22x y =1P 46436-上一点到双曲线右焦点的距离是,那么点P 到左准线的距离是 .13.(上海卷)已知双曲线中心在原点,一个顶点的坐标为(3,0),且焦距与虚轴长之比为5:4,则双曲线的标准方程是____________________.14.(20XX 年高考全国卷理科15)已知F 1、F 2分别为双曲线C :29x -227y =1的左、右焦点,点A 为C 上一点,点M 的坐标为(2,0),AM 为∠F 1AF 2的角平分线.则|AF 2|= . 三、解答题:15.已知抛物线关于y 轴对称,它的顶点在坐标原点,并且经过点M (32,3-),求它的标准方程。
16.(20XX 浙江理数)已知m >1,直线2:02m l x my --=,椭圆222:1x C y m+=,1,2F F 分别为椭圆C 的左、右焦点。
(Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.17.(20XX 江苏卷)在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F 。
设过点T (m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y 。
(1)设动点P 满足422=-PB PF ,求点P 的轨迹; (2)设31,221==x x ,求点T 的坐标; (3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关)。
18.中心在原点,焦点在x 轴上的一个椭圆与一双曲线有共同的焦点F 1,F 2,且13221=F F ,椭圆的长半轴与双曲线的半实轴之差为4,离心率之比为3:7。
求这两条曲线的方程。
19.(20XX 年高考辽宁卷理科20)(本小题满分12分)如图,已知椭圆C1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C2的短轴为MN ,且C1,C2的离心率都为e ,直线l ⊥MN ,l 与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D.(I )设12e =,求BC 与AD 的比值; (II )当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由20.(20XX 上海卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(3,0)F -,右顶点为(2,0)D ,设点11,2A ⎛⎫⎪⎝⎭. (1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 中点M 的轨迹方程; (3)过原点O 的直线交椭圆于点,B C ,求ABC ∆面积的最大值。
高二数学圆锥曲线高考题选讲答案1.双曲线焦点在x 轴,由渐近线方程可得224345,333b c e a a +====可得,故选A 2.(数形结合)由椭圆的定义椭圆上一点到两焦点的距离之和等于长轴长2a,可得ABC ∆的周长为4a=43,所以选C3.设抛物线2y x =-上一点为(m ,-m 2),该点到直线4380x y +-=的距离为2|438|5m m --,当m=32时,取得最小值为43,选A. 4.依题意可知3293,322=+=+==b a c a ,2332===a c e ,故选C. 5.方程22520x x -+=的两个根分别为2,12,故选A 6.由221(6)106x y m m m +=<--知该方程表示焦点在x 轴上的椭圆,由221(59)59x y m m m+=<<--知该方程表示焦点在y 轴上的双曲线,故只能选择答案A 。
7.椭圆22162x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D 。
8.将2y k =代入2222918k x y k x +=得:22229418k x k k x +=29||1840x x ⇒-+=,显然该关于||x 的方程有两正解,即x 有四解,所以交点有4个,故选择答案D 。
9.双曲线221mx y +=的虚轴长是实轴长的2倍,∴m<0,且双曲线方程为2214x y -+=,∴m=14-。
10.椭圆的标准方程为1422=+y x 11.答案:181622=+y x解析:由椭圆的的定义知,4,164=∴==∆a a C ,又因为离心率22,22=∴=c a c ,8222=-=∴c a b 因此,所求椭圆方程为:181622=+y x ;12.答案:16解析:由双曲线第一定义,|PF 1|-|PF 2|=±16,因|PF 2|=4,故|PF 1|=20,(|PF 1|=-12舍去),设P 到左准线的距离是d ,由第二定义,得20108d =,解得16d =. 13.双曲线中心在原点,一个顶点的坐标为(3,0),则焦点在x 轴上,且a=3,焦距与虚轴长之比为5:4,即:5:4c b =,解得5,4c b ==,则双曲线的标准方程是221916x y -=. 14.【答案】6 【解析】:12(6,0),(6,0)F F -,由角平分线的性质得1122824AF F M AF MF === 又12236AF AF -=⨯=26AF ∴=15.解:因为抛物线关于y 轴对称,它的顶点在坐标原点,并且经过点M (32,3-),所以可设它的标准方程为:)0(22>=p px y ,又因为点M 在抛物线上,所以)32(2)3(2--=x p即43=p ,因此所求方程是y x 232-=。
16.(Ⅰ)解:因为直线:l 202m x my --=经过22(1,0)F m -,所以2212m m -=,得22m =, 又因为1m >,所以2m =,故直线l 的方程为22202x y --=。
(Ⅱ)解:设1122(,),(,)A x y B x y 。
由222221m x my x y m ⎧=+⎪⎪⎨⎪+=⎪⎩,消去x 得 222104m y my ++-=则由2228(1)804m m m ∆=--=-+>,知28m <,且有212121,282m m y y y y +=-=-。
由于12(,0),(,0),F c F c -, 故O 为12F F 的中点, 由2,2AG GO BH HO ==, 可知1121(,),(,),3333x y x y G h 2221212()()99x x y y GH --=+设M 是GH 的中点,则1212(,)66x x y y M ++, 由题意可知2,MO GH <即222212121212()()4[()()]6699x x y y x x y y ++--+<+ 即12120x x y y +<而2212121212()()22m m x x y y my my y y +=+++ 221(1()82m m =+-)所以21082m -< 即24m <又因为1m >且0∆> 所以12m <<。
所以m 的取值范围是(1,2)。
17.[解析]本小题主要考查求简单曲线的方程,考查方直线与椭圆的方程等基础知识。
考查运算求解能力和探究问题的能力。
满分16分。
(1)设点P (x ,y ),则:F (2,0)、B (3,0)、A (-3,0)。
由422=-PB PF ,得2222(2)[(3)]4,x y x y -+--+=化简得92x =。
故所求点P 的轨迹为直线92x =。
(2)将31,221==x x 分别代入椭圆方程,以及0,021<>y y 得:M (2,53)、N (13,209-) 直线MTA 方程为:0352303y x -+=+-,即113y x =+, 直线NTB 方程为:032010393y x --=---,即5562y x =-。
联立方程组,解得:7103x y =⎧⎪⎨=⎪⎩,所以点T 的坐标为10(7,)3。
(3)点T 的坐标为(9,)m 直线MTA 方程为:03093y x m -+=-+,即(3)12my x =+, 直线NTB 方程为:03093y x m --=--,即(3)6my x =-。