上海市虹口区2018届九年级上期末质量监控数学试题含答案

合集下载

2018九年级上学期末考试数学试题

2018九年级上学期末考试数学试题

2018-2019九年级上学期末考试数学试题一、精心选一选(每小题3分,共36分)1、下列图形中,既是轴对称又是中心对称图形的是( )2、盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同,从中任意拿出一支笔芯,则拿出黑色笔芯的概率为 ( ) A 32 B 51 C 52 D 53 3、用配方法解一元二次方程2660x x -+=时,配方后得到的方程是( )A 2(3)x -=6B 2(3)x +=3C 2(3)x -=3D 2(3)x -=-34、抛物线)0)(3)(1(≠-+=a x x a y 的对称轴是直线( )A x =1B x =-1C x =3D x =-35、如图,四边形ABCD 是⊙O 的内接四边形,若∠B=110°,则∠ADE 的度数为( )A 55°B 70°C 90°D 110°第5题 第6题 第7题 第8题 第9题6、已知:如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧上不同于点C 的任意一点,则∠BPC 的度数是( ) A 45° B 60° C 75° D 90°7、如图,四边形PAOB 是扇形OMN 的内接矩形,顶点P 在MN ,且不与M ,N 重合,当P 点在MN 上移动时,矩形PAOB 的形状、大小随之变化,则AB 的长度( )A 变大B 变小C 不变D 不能确定8、如图是二次函数y=ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1,下列结论:①24b ac >;②20a b +=;③0a b c ++>;④若B (﹣5,1y )、C (﹣1,2y )为函数图象上的两点,则12y y <.其中正确结论是( )A ②④B ①③④C ①④D ②③9、如图,已知AB 是⊙O 的直径,AD 切⊙O 于点A ,点C 是EB 的中点,则下列结论:①OC ∥AE ;②EC =BC ;③∠DAE =∠ABE ;④AC ⊥OE ,其中正确的有( )A 1个B 2个C 3个D 4个10、某种药品零售价经过两次降价后的价格为降价前的81%,则平均每场降价( )A 10%B 19%C 9.5%D 20%11、如图,I 是△ABC 的内心,AI 的延长线和△ABC 的外接圆相交于点D ,连接BI ,BD ,DC 。

2018年人教版九年级上册数学期末考试卷(含答案)

2018年人教版九年级上册数学期末考试卷(含答案)

九年级上册期末考试数学模拟试卷一、选择题1、下列图形中,既是轴对称图形又是中心对称图形的是( )A B C D 2、下列方程是一元二次方程的是( ) A 、20ax bx c ++= B 、2221x x x +=-C 、(1)(3)0x x --= D 、212x x-=3、用配方法解一元二次方程2x +8x+7=0,则方程可变形为( ) A 、2(4)x -=9 B 、2(4)x +=9 C 、2(8)x -=16 D 、2(8)x +=574、抛物线223y x =-的顶点在( )A 、第一象限B 、 第二象限C 、 x 轴上D 、 y 轴上 5、一元二次方程332=+-x x 的根的情况是 ( ).A 、有两个相等的实数根B 、有两个不相等的实数根C 、只有一个相等的实数根D 、没有实数根 6、把抛物线2y x=-向右平移一个单位,再向上平移3个单位,得到抛物线的解析式为( )A 、2(1)3y x =--+ B 、2(1)3y x =-+C 、2(1)3y x =-++ D 、2(1)3y x =++7.圆心在原点O ,半径为5的⊙O 。

点P (-3,4)与⊙O 的位置关系是( ).A. 在OO 内B. 在OO 上C. 在OO 外D. 不能确定8.下列成语所描述的事件是必然发生的是( ).A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖 9.一元二次方程x 2﹣x ﹣2=0的解是( )A 、x 1=1,x 2=2B 、x 1=1,x 2=﹣2C 、x 1=﹣1,x 2=﹣2D 、x 1=﹣1,x 2=210.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率。

设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A 、 100)1(1442=-x B 、 144)1(1002=-xC 、100)1(1442=+x D 、 144)1(1002=+x二、填空题 11.一元二次方程22(1)3x x --=+化成一般形式20ax bx c ++=后,若a=2 ,则b+c的值是12.抛物线y=2(x+1)2-3,的顶点坐标为__ ___。

2018-2019学年九年级(上)期末数学试卷5套及答案解析

2018-2019学年九年级(上)期末数学试卷5套及答案解析

2018-2019学年九年级(上)期末数学试卷一、选择题(每小题3分,共30分) 2018.11.61.某几何体的主视图和左视图如图所示,则该几何体可能是()A.长方体B.圆锥C.正方体D.球2.关于的一元二次方程的一个根是,则的值为()A. B. C. D.3.已知为矩形的对角线,则图中与一定不相等的是()A. B.C. D.4.一个三角形三遍的长分别为,,,另一个与它相似的三角形的最长边是,则该三角形的最短边是()A. B. C. D.5.下列各点不在反比例函数上的是()A. B. C. D.6.如图,在的正方形网格中,连接两格点,,线段与网格线的交点为点,则为()A. B. C. D.7.小敏不慎将一块矩形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的矩形玻璃,他带了两块碎玻璃,其编号应该是()A.①②B.?①③C.③④D.‚②④8.如图所示电路,任意闭合两个开关,能使灯亮起来的概率是()A. B. C. D.9.如图,是三个反比例函数,,在轴上方的图象,由此观察得到、、的大小关系为()A. B.C. D.10.如图,矩形的周长是,以,为边向外作正方形和正方形,若正方形和的面积之和为,那么矩形的面积是()A. B. C. D.二、填空题(每小题4分,共20分)11.方程的二次项系数是________.12.如图所示,此时的影子是在________下(太阳光或灯光)的影子,理由是________.13.在平面直角坐标系中,直线与反比例函数的图象的一个交点,则的值为________.14.小明和小花在玩纸牌游戏,有两组牌,每组各有两张,分别标有数字,,每天每次从每组中抽出一张,两张牌的数字之积为的概率为________.15.如图,在平行四边形中,交于交于,,,则的长为________.三、解答题(满分50分)16.如图,已知,利用尺规作出一个新三角形,使新三角形与对应线段比为(不写作法,保留作图痕迹).17.一只不透明的袋子中装有个质地,大小均相同的小球,这些小球分别标有,,,,甲,乙两人每次同时从袋中各随机取出个小球,并计算两个小球数字之和.记录后将小球放回袋中搅匀.进行重复实验,实验数据如表:解答下列问题:如果实验继续进行下去,根据上表提供数据,出现和为的频率将稳定在它的概率附近,估计出现和为的概率是.如果摸出这两个小球上数字之和为的概率是,那么的值可以取吗?请用列表或画树状图的方法说明理由.18.如图所示,某小区计划在一块长米,宽米的矩形荒地上建造一个花园,使得花园所占面积为荒地面积的一半,其中花园每个角上的扇形都相同,则每个扇形的半径是多少?(精确到 . )19.已知,如图,,,.请你添加一个条件,使相似于,你添加的条件是________;若,,在的条件下,求的长度.20.如图,已知平行四边形中,对角线,交于点,是延长线上的点,且是等边三角形.(1)求证:四边形是菱形;(2)若,求证:四边形是正方形.21.如图,在平面直角坐标系中,一次函数与轴轴分别交于点,与反比例函数在第一象限交于点.写出点,,的坐标.过轴上的点作平行于轴的直线分别与直线和反比例函数交于点,求的面积.22.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.已知:如图,四边形是“等对角四边形”,,,.则________度,________度.在探究“等对角四边形”性质时:小红画了一个“等对角四边形 ”(如图),其中,,此时她发现成立.请你证明此结论;已知:在“等对角四边形 ”中,,,,.求对角线的长.答案1. 【答案】A【解析】根据常见几何体的三视图确定即可得.【解答】解:、长方体的主视图和左视图均为矩形,符合题意;、圆锥的主视图和左视图均为等腰三角形,不符合题意;、正方体的主视图和左视图均为正方形,不符合题意;、球的主视图和左视图均为圆,不符合题意;故选:.2. 【答案】B【解析】根据一元二次方程的解的定义把代入方法得到关于的一次方程,然后解一次方程即可.【解答】解:把代入方程得,解得.故选.3. 【答案】D【解析】根据矩形的性质,逐一进行判断即可求解.【解答】解:、对顶角相等,一定相等,故不符合题意;、不确定,可能相等,也可能不相等,故不符合题意;、不确定,可能相等,也可能不相等,故不符合题意;、一定不相等,因为,,故符合题意.故选:.4. 【答案】B【解析】首先设与它相似的三角形的最短边的长为,然后根据相似三角形的对应边成比例,即可得方程,解此方程即可求得答案.【解答】解:设与它相似的三角形的最短边的长为,∵一个三角形三边的长分别为,,,另一个与它相似的三角形的最长边是,∴,解得:.故选.5. 【答案】C【解析】分别把各点坐标代入反比例函数的解析式进行检验即可.【解答】解:、∵ 时,,∴此点在反比例函数的图象上,故本选项不符合题意;、∵ 时,,∴此点在反比例函数的图象上,故本选项不符合题意;、∵ 时,,∴此点不在反比例函数的图象上,故本选项符合题意;、∵ 时,,∴此点在反比例函数的图象上,故本选项不符合题意.故选.6. 【答案】C【解析】构建如图所示的图形,利用平行线分线段成比例得到.【解答】解:如图,∵ ,∴.故选.7. 【答案】B【解析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【解答】解:∵只有①③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带①③两块碎玻璃,就可以确定平行四边形的大小.故选.8. 【答案】C【解析】先根据题意画出树状图,得出共有种情况,再根据能使灯亮起来的情况有种,即可得出能使灯亮起来的概率.【解答】解:根据题意画树状图如下:∵共有种情况,能使灯亮起来的情况有种,∴能使灯亮起来的概率是,故选:.9. 【答案】C【解析】根据反比例函数图象上点的坐标特点可得,进而可分析、、的大小关系.【解答】解:读图可知:三个反比例函数的图象在第二象限;故;,在第一象限;且,的图象距原点较远,故有:;综合可得:.故选:.10. 【答案】B【解析】设,,根据题意列出方程,,利用完全平方公式即可求出的值.【解答】解:设,,∵正方形和的面积之和为∴ ,∵矩形的周长是∴ ,∵ ,∴ ,∴ ,∴矩形的面积为:故选11. 【答案】【解析】先找出方程的二次项,再找出项的系数即可.【解答】解:方程的二次项系数是,故答案为:.12. 【答案】太阳光,通过作图发现相应的直线是平行关系【解析】连接两个实物顶点与像的对应顶点,得到的两条直线平行可得为太阳光下的投影.【解答】解:此时的影子是在太阳光下(太阳光或灯光)的影子,理由是:通过作图发现相应的直线是平行关系.13. 【答案】【解析】将代入中求出值,进而即可得出点的坐标,由点的坐标利用反比例函数图象上点的坐标特征即可求出值,此题得解.【解答】解:当时,,∴点的坐标为.∵点在反比例函数的图象上,∴ .故答案为:.14. 【答案】【解析】先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:画树形图得:由树状图可知共有种可能,两张牌的和为的有种,所以概率,故答案为:.15. 【答案】【解析】由于,所以,又因为,所以,所以,从而可求出的长度.【解答】解:∵ ,∴ ,∵ ,∴ ,∴∴,,∴故答案为:16. 【答案】解:如图,即为所求作三角形.【解析】平面内任取一点,作射线、、,再射线上分别截取、、,顺次连接、、即可得.【解答】解:如图,即为所求作三角形.17. 【答案】; 假设,则(和为),所以,的值不能为.【解析】利用频率估计概率结合表格中数据得出答案即可;; 假设,根据题意先列出树状图,得出和为的概率,再与进行比较,即可得出答案.【解答】解:根据随着实验的次数不断增加,出现“和为 ”的频率是,故出现“和为 ”的概率是;; 假设,则(和为),所以,的值不能为.18. 【答案】每个扇形的半径大约是 . .【解析】根据个扇形的面积是长方形荒地面积的一半即可得出关于的一元二次方程,解之即可得出结论.【解答】解:根据题意得:,解得: . , . (舍去).19. 【答案】; ∵ ,,,∴,即,解得.【解析】根据相似三角形的判定定理即可得出结论;; 根据相似三角形的性质即可得出结论.【解答】解: ∵ ,,∴ ,∴可以添加的条件是.; ∵ ,,,∴,即,解得.20. 【答案】证明:(1)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ (三线合一),即,∴四边形是菱形(对角线互相垂直的平行四边形是菱形).; (2)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ 平分(三线合一),∴,又∵∴ ,∴ (三角形的一一个外角等于和它外角不相邻的两内角之和),∵四边形是菱形,∴ ,∴平行四边形是正方形.【解析】(1)根据对角线互相垂直的平行四边形是菱形.由题意易得,∴ ,∴ ,∴四边形是菱形;; (2)根据有一个角是的菱形是正方形.由题意易得,∵四边形是菱形,∴ ,∴四边形是正方形.【解答】证明:(1)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ (三线合一),即,∴四边形是菱形(对角线互相垂直的平行四边形是菱形).; (2)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ 平分(三线合一),∴,又∵∴ ,∴ (三角形的一一个外角等于和它外角不相邻的两内角之和),∵四边形是菱形,∴ ,∴平行四边形是正方形.21. 【答案】解:当时,,∴点的坐标为;当时,,∴点的坐标为;联立两函数解析式成方程组,,解得:或,∴点的坐标为.; 当时,,∴点的坐标为;当时,,∴点的坐标为.∴,,∴.【解析】分别将、代入中求出与之对应的、的值,由此即可得出点、的坐标,再联立两函数解析式成方程组,解之取其正值即可得出点的坐标;; 将分别代入一次函数和反比例函数解析式中求出值,由此即可得出点、的坐标,进而即可得出的长度,由点、的坐标即可得出线段的长度,再利用三角形的面积公式即可求出的面积.【解答】解:当时,,∴点的坐标为;当时,,∴点的坐标为;联立两函数解析式成方程组,,解得:或,∴点的坐标为.; 当时,,∴点的坐标为;当时,,∴点的坐标为.∴,,∴.22. 【答案】,【解析】过点于点,交于点点作于,则即的最小再根据,分可知是等腰角三角形,由锐角角函数的定义即可出的长.【解答】解:过点作于,于点,点作于,则即为的最值,∵,,平分,等腰角三角形,故的最小值为.。

[试卷合集3套]上海市浦东新区2018年九年级上学期数学期末质量跟踪监视试题

[试卷合集3套]上海市浦东新区2018年九年级上学期数学期末质量跟踪监视试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x ,可列方程为( )A .300(1+x%)2=950B .300(1+x 2)=950C .300(1+2x )=950D .300(1+x )2=950【答案】D【解析】设2016年到2018年该地区居民年人均收入平均增长率为x ,那么根据题意得2018年年收入为:300(1+x )2,列出方程为:300(1+x )2=1.故选D .2.抛物线2221y x x =++的图像与坐标轴的交点个数是( )A .无交点B .1个C .2个D .3个 【答案】B【分析】已知二次函数的解析式,令x=0,则y=1,故与y 轴有一个交点,令y=0,则x 无解,故与x 轴无交点,题目求的是与坐标轴的交点个数,故得出答案.【详解】解:∵2221y x x =++∴令x=0,则y=1,故与y 轴有一个交点∵令y=0,则x 无解∴与x 轴无交点∴与坐标轴的交点个数为1个故选B .【点睛】本题主要考查二次函数与坐标轴的交点,熟练二次函数与x 轴和y 轴的交点的求法以及仔细审题是解决本题的关键.3.用配方法解一元二次方程245x x -=时,此方程可变形为( )A .()221x +=B .()221x -=C .()229x +=D .()229x -= 【答案】D【解析】试题解析: 245,x x -=24454,x x -+=+2(2)9.x -=故选D.4.若270x y -=. 则下列式子正确的是( )A .72x y =B .27x y =C .27x y =D .27x y = 【答案】A【分析】直接利用比例的性质分别判断即可得出答案.【详解】∵2x-7y=0,∴2x=7y .A .72x y =,则2x=7y ,故此选项正确; B .27x y=,则xy=14,故此选项错误; C .27x y =,则2y=7x ,故此选项错误; D .27x y =,则7x=2y ,故此选项错误. 故选A .【点睛】本题考查了比例的性质,正确将比例式变形是解题的关键.5.-4的相反数是( )A .14B .14-C .4D .-4【答案】C【分析】根据相反数的定义即可求解.【详解】-4的相反数是4,故选C.【点晴】此题主要考查相反数,解题的关键是熟知相反数的定义.6.如图,从点A 看一山坡上的电线杆PQ ,观测点P 的仰角是45°,向前走6m 到达B 点,测得顶端点P 和杆底端点Q 的仰角分别是60°和30°,则该电线杆PQ 的高度( )A .623+B .63C .103-D .83+【答案】A【分析】延长PQ 交直线AB 于点E ,设PE=x 米,在直角△APE 和直角△BPE 中,根据三角函数利用x 表示出AE 和BE ,根据AB=AE-BE 即可列出方程求得x 的值,再在直角△BQE 中利用三角函数求得QE 的长,则PQ 的长度即可求解.【详解】解:延长PQ 交直线AB 于点E ,设PE=x .在直角△APE 中,∠PAE=45°,则AE=PE=x ;∵∠PBE=60°∴∠BPE=30°在直角△BPE 中,33BE PE x ==, ∵AB=AE-BE=6, 则363x x -=解得:933x =+ ∴333BE =在直角△BEQ 中,33(333)3333QE BE ===+ 933(33)63PQ PE QE ∴=-=++=+故选:A【点睛】本题考查解直角三角形的应用-仰角俯角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.7.在Rt △ABC 中,∠C=90°,sinA=35,BC=6,则AB=( ) A .4B .6C .8D .10 【答案】D【详解】解:在Rt △ABC 中,∠C=90°,sinA=BC AB =35,BC=6 ∴AB=36sin 5BC A =÷=10,故选D .考点:解直角三角形;8.如图,是抛物线2y ax bx c =++的图象,根据图象信息分析下列结论:①20a b +=;②0abc >;③240b ac ->;④420a b c ++<.其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④【答案】D 【分析】采用数形结合的方法解题,根据抛物线的开口方向,对称轴,与x 、y 轴的交点,通过推算进行判断. 【详解】①根据抛物线对称轴可得12b x a=-= ,20a b +=,正确; ②当x=0 ,c 0y =< ,根据二次函数开口向下和12b a -=得,0a < 和0b > ,所以0abc >,正确; ③二次函数与x 轴有两个交点,故240b ac =-> ,正确;④由题意得,当x 0= 和x=2 时,y 的值相等,当x 0=,y 0< ,所以当x=2,y 420a b c =++< ,正确;故答案为:D .【点睛】本题考查了二次函数的性质和判断,掌握二次函数的性质是解题的关键.9.下列图形中,是中心对称的图形的是( )A .直角三角形B .等边三角形C .平行四边形D .正五边形【答案】C 【分析】根据中心对称的定义,结合所给图形即可作出判断.【详解】解:A .直角三角形不是中心对称图象,故本选项错误;B.等边三角形不是中心对称图象,故本选项错误;C.平行四边形是中心对称图象,故本选项正确;D.正五边形不是中心对称图象,故本选项错误.故选:C.【点睛】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.10.下列命题中,不正确的是()A.对角线相等的矩形是正方形B.对角线垂直平分的四边形是菱形C.矩形的对角线平分且相等D.顺次连结菱形各边中点所得的四边形是矩形【答案】A【分析】利用矩形的判定、菱形的判定、正方形的判定及平行四边形的判定定理分别进行判定后即可确定正确的选项.【详解】A. 对角线相等的菱形是正方形,原选项错误,符合题意;B. 对角线垂直平分的平行四边形是菱形,正确,不符合题意;C. 正方形的对角线平分且相等,正确,不符合题意;D. 顺次连结菱形各边中点所得的四边形是平行四边形,正确,不符合题意;故选A.【点睛】本题考查正方形、矩形、平行四边形、菱形的性质定义,根据其性质对选项进行判断是解题关键. 11.如图,在圆O中,弦AB=4,点C在AB上移动,连接OC,过点C作CD⊥OC交圆O于点D,则CD 的最大值为()A.22B.2 C.32D5【答案】B【分析】连接OD,利用勾股定理得到CD,利用垂线段最短得到当OC⊥AB时,OC最小,根据垂径定理计算即可.【详解】连接OD,如图,设圆O的半径为r,∵CD⊥OC,∴∠DCO=90°,∴CD=2222OD OC r OC-=-,∴当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B重合,则由垂径定理可得:CD=CB=AC=12AB=1,∴CD的最大值为1.故答案为:1.【点睛】本题考查垂径定理和勾股定理,作辅助线构造直角三角形应用勾股定理,并熟记垂径定理内容是解题的关键.12.如图,已知一次函数y=kx-2 的图象与x 轴、y 轴分别交于A,B 两点,与反比例函数4(0) y xx=>的图象交于点C,且AB=AC,则k 的值为( )A.1 B.2 C.3 D.4【答案】B【分析】如图所示,作CD⊥x轴于点D,根据AB=AC,证明△BAO≌△CAD(AAS),根据一次函数解析式表达出BO=CD=2,OA=AD=2k,从而表达出点C的坐标,代入反比例函数解析式即可解答.【详解】解:如图所示,作CD⊥x轴于点D,∴∠CDA=∠BOA=90°,∵∠BAO=∠CAD,AB=AC,∴△BAO≌△CAD(AAS),∴BO=CD,对于一次函数y=kx-2,当x=0时,y=-2,当y=0时,x=2k,∴BO=CD=2,OA=AD=2k,∴OD=224k k k+= ∴点C (4k ,2), ∵点C 在反比例函数4(0)y x x =>的图象上, ∴424k⨯=,解得k=2, 故选:B .【点睛】本题考查了反比例函数与一次函数的交点问题,全等三角形的判定与性质,反比例函数图象上点的坐标特征,难度适中.表达出C 点的坐标是解题的关键.二、填空题(本题包括8个小题)13.已知方程x 2+mx+3=0的一个根是1,则它的另一个根是______.【答案】1【解析】试题分析:设方程的另一个解是a ,则1×a=1,解得:a=1.故答案是:1.考点:根与系数的关系.14.若关于x 的一元二次方程()23x c +=有实数根,则c 的值可以为________(写出一个即可). 【答案】5(答案不唯一,只有0c ≥即可)【解析】由于方程有实数根,则其根的判别式△≥1,由此可以得到关于c 的不等式,解不等式就可以求出c 的取值范围.【详解】解:一元二次方程化为x 2+6x+9-c=1,∵△=36-4(9-c )=4c ≥1,解上式得c ≥1.故答为5(答案不唯一,只有c ≥1即可).【点睛】本题考查了一元二次方程ax 2+bx+c=1(a≠1)的根的判别式∆=b 2﹣4ac 与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>1时,一元二次方程有两个不相等的实数根;当∆=1时,一元二次方程有两个相等的实数根;当∆<1时,一元二次方程没有实数根.关键在于求出c 的取值范围.15.某一建筑物的楼顶是“人”字型,并铺上红瓦装饰.现知道楼顶的坡度超过0.5时,瓦片会滑落下来.请你根据图中数据判断这一楼顶铺设的瓦片是否会滑落下来?________.(填“会”或“不会”)【答案】不会【分析】根据斜坡的坡度的定义,求出坡度,即可得到答案.【详解】∵∆ABC 是等腰三角形,AB=AC=13m ,AH ⊥BC ,∴CH=12BC=12m , ∴2213125-=m ,∴楼顶的坡度=50.512AH CH =<, ∴这一楼顶铺设的瓦片不会滑落下来.故答案是:不会.【点睛】本题主要考查斜坡坡度的定义,掌握坡度的定义,是解题的关键.16.某校共1600名学生,为了解学生最喜欢的课外体育活动情况,学校随机抽查了200名学生,其中有92名学生表示喜欢的项目是跳绳,据此估计全校喜欢跳绳这项体育活动的学生有____________人.【答案】736【分析】由题意根据样本数据的比值和相对应得总体数据比值相同进行分析求解即可.【详解】解:设全校喜欢跳绳这项体育活动的学生有m 人,由题意可得:200160092m=,解得736m =. 所以全校喜欢跳绳这项体育活动的学生有736人.故答案为:736.【点睛】本题考查的是通过样本去估计总体对应的数据,熟练掌握通过样本去估计总体对应数据的方法是解题的关键.17.已知m 为一元二次方程x²-3x-2020=0的一个根,则代数式2m²-6m+2的值为___________【答案】1【分析】由题意可得m 2-3m=2020,进而可得2m 2-6m=4040,然后整体代入所求式子计算即可.【详解】解:∵m 为一元二次方程x 2-3x -2020=0的一个根,∴m 2-3m -2020=0,∴m 2-3m=2020,∴2m 2-6m=4040,∴2m 2-6m+2=4040+2=1.故答案为:1.【点睛】本题考查了一元二次方程的解和代数式求值,熟练掌握基本知识、灵活应用整体思想是解题的关键. 18.分解因式:25a a -=__________.【答案】()5a a -【分析】提取公因式a 进行分解即可.【详解】解:a 2−5a =a (a−5).故答案是:a (a−5).【点睛】本题考查了因式分解−提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.三、解答题(本题包括8个小题)19.某经销商销售一种成本价为10元/kg 的商品,已知销售价不低于成本价,且物价部门规定这种产品的销售价不得高于18元/kg .在销售过程中发现销量y (kg )与售价x (元/kg )之间满足一次函数关系,对应关系如下表所示:⑴求y 与x 之间的函数关系式,并写出自变量x 的取值范围;⑵若该经销商想使这种商品获得平均每天168元的利润,求售价应定为多少元/kg ?⑶设销售这种商品每天所获得的利润为W 元,求W 与x 之间的函数关系式;并求出该商品销售单价定为多少元时,才能使经销商所获利润最大?最大利润是多少?【答案】(1)y=-2x+1,10≤x ≤2;(2)16元/kg ;(3)W=-2(x-20)2+200,2元,192元.【分析】(1)根据一次函数过(12,36)(14,32)可求出函数关系式,然后验证其它数据是否符合关系式,进而确定函数关系式,(2)根据总利润为168元列方程解答即可,(3)先求出总利润W 与x 的函数关系式,再依据函数的增减性和自变量的取值范围确定何时获得最大利润,但应注意抛物线的对称轴,不能使用顶点式直接求.【详解】(1)设关系式为y=kx+b ,把(12,36),(14,32)代入得:12361432k b k b +⎧⎨+⎩==,解得:k=-2,b=1,∴y 与x 的之间的函数关系式为y=-2x+1,通过验证(15,30)(17,26)满足上述关系式,因此y 与x 的之间的函数关系式就是y=-2x+1.自变量的取值范围为:10≤x ≤2.(2)根据题意得:(x-10)(-2x+1)=168,解得:x=16,x=24舍去,答:获得平均每天168元的利润,售价应定为16元/kg ;(3)W=(x-10)(-2x+1)=-2x 2+80x-10=-2(x-20)2+200,∵a=-2<0,抛物线开口向下,对称轴为x=20,在对称轴的左侧,y 随x 的增大而增大,∵10≤x ≤2,∴当x=2时,W 最大=-2(2-20)2+200=192元,答:W 与x 之间的函数关系式为W=-2(x-20)2+200,当该商品销售单价定为2元时,才能使经销商所获利润最大,最大利润是192元.【点睛】考查一次函数、二次函数的性质,求出相应的函数关系式和自变量的取值范围是解决问题的关键,在求二次函数的最值时,注意自变量的取值范围,容易出错.20.如图,在平面直角坐标系中,点O 为坐标原点,每个小方格的边长为1个单位长度,在第二象限内有横、纵坐标均为整数的A B 、两点,点()2,3B -,点A 的横坐标为2-, 且5OA =.()1在平面直角坐标系中标出点A ,写出A 点的坐标并连接,,AB AO BO ;()2画出OAB 关于点O 成中心对称的图形11△OA B .【答案】(1)作图见解析;(2)作图见解析.【分析】(1)根据勾股定理求得点A 的纵坐标,即可在坐标系中描出点A ,并连接,,AB AO BO ; (2)将OA 、OB 分别延长相等的长度,连接后即可得到中心对称的图形.【详解】(1)∵点A 的横坐标为2-,∴OA=2,∵5OA=,∴点A的纵坐标为22(5)21-=,–21,∴点A坐标()(2)如图,【点睛】此题考查中心对称图形的画法,掌握中心对称的特点即可正确画出图形.21.某校为响应全民阅读活动,利用节假日面向社会开放学校图书馆,据统计,第一个月进馆200人次,此后进馆人次逐月增加,到第三个月进馆达到288人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不得超过400人次,若进馆人次的月平均增长率不变,到第几个月时,进馆人数将超过学校图书馆的接纳能力,并说明理由.【答案】(1)进馆人次的月平均增长率为20%;(2)到第五个月时,进馆人数将超过学校图书馆的接纳能力,见解析【分析】(1)设进馆人次的月平均增长率为x,根据第三个月进馆达到288次,列方程求解;(2)根据(1)所计算出的月平均增长率,计算出第五个月的进馆人次,再与400比较大小即可.【详解】(1)设进馆人次的月平均增长率为x,根据题意,得:200 (1+x)2=288解得:x1=0.2,x2=﹣2.2(舍去).答:进馆人次的月平均增长率为20%.(2)第四个月进馆人数为288(1+0.2)=345.6(人次),第五个月进馆人数为288(1+0.2)2=414.1(人次),由于400<414.1.答:到第五个月时,进馆人数将超过学校图书馆的接纳能力.【点睛】本题考查了一元二次方程的应用-增长率问题,列出方程是解答本题的关键.本题难度适中,属于中档题. 22.已知双曲线m y (m 0)x=≠经过点B (2,1). (1)求双曲线的解析式;(2)若点()111,A x y 与点()222,A x y 都在双曲线m y (m 0)x =≠上,且120x x <<,直接写出1y 、2y 的大小关系.【答案】(1)2y x=;(2)12y y > 【分析】(1)把点B 的坐标代入m y x =可求得函数的解析式; (2)根据反比例函数1y x=,可知函数图象在第一、三象限,在每一个象限内,y 随x 的增大而减小,进而得到1y ,2y 的大小关系.【详解】解:(1)将2B (,1)代入m y x =,得2m =,则双曲线的解析式为2y x = (2)∵反比例函数2y x=, ∴函数图象在第一、三象限,在每一个象限内,y 随x 的增大而减小,又∵120x x <<∴12y y >故答案为:.12y y >.【点睛】本题考查了待定系数法求函数解析式、反比例函数的增减性,利用函数的性质比较函数值的大小,解题的关键是明确题意,掌握待定系数法求函数解析式、能利用反比例函数的性质解答.23.某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x 轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.【答案】(1)水柱所在抛物线(第一象限部分)的函数表达式为y=﹣15(x﹣3)2+5(0<x<8);(2)为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内;(3)扩建改造后喷水池水柱的最大高度为28920米.【解析】分析:(1)根据顶点坐标可设二次函数的顶点式,代入点(8,0),求出a值,此题得解;(2)利用二次函数图象上点的坐标特征,求出当y=1.8时x的值,由此即可得出结论;(3)利用二次函数图象上点的坐标特征可求出抛物线与y轴的交点坐标,由抛物线的形状不变可设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣15x2+bx+165,代入点(16,0)可求出b值,再利用配方法将二次函数表达式变形为顶点式,即可得出结论.详解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x﹣3)2+5(a≠0),将(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣15,∴水柱所在抛物线(第一象限部分)的函数表达式为y=﹣15(x﹣3)2+5(0<x<8).(2)当y=1.8时,有﹣15(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.(3)当x=0时,y=﹣15(x﹣3)2+5=165.设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣15x2+bx+165.∵该函数图象过点(16,0),∴0=﹣15×162+16b+165,解得:b=3,∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣15x2+3x+165=﹣15(x﹣152)2+28920,∴扩建改造后喷水池水柱的最大高度为28920米.点睛:本题考查了待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数图象上点的坐标特征求出当y=1.8时x的值;(3)根据点的坐标,利用待定系数法求出二次函数表达式.24.如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(6,0),B(4,3),C(0,3).动点P从点O出发,以每秒32个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒1个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.(1)直接写出y 关于t 的函数解析式及t 的取值范围: ;(2)当PQ =10时,求t 的值;(3)连接OB 交PQ 于点D ,若双曲线y k x=(k≠0)经过点D ,问k 的值是否变化?若不变化,请求出k 的值;若变化,请说明理由.【答案】(1)22520254y t t =-+(0≤t ≤4);(2)t 1=2,t 2=65;(2)经过点D 的双曲线k y x =(k ≠0)的k 值不变,为10825. 【分析】(1)过点P 作PE ⊥BC 于点E ,由点P ,Q 的出发点、速度及方向可找出当运动时间为t 秒时点P ,Q 的坐标,进而可得出PE ,EQ 的长,再利用勾股定理即可求出y 关于t 的函数解析式(由时间=路程÷速度可得出t 的取值范围);(2)将PQ=10代入(1)的结论中可得出关于t 的一元二次方程,解之即可得出结论;(2)连接OB ,交PQ 于点D ,过点D 作DF ⊥OA 于点F ,求得点D 的坐标,再利用反比例函数图象上点的坐标特征即可求出k 值,此题得解.【详解】解:(1)过点P 作PE ⊥BC 于点E ,如图1所示.当运动时间为t 秒时(0≤t≤4)时,点P 的坐标为(32t ,0),点Q 的坐标为(4-t ,2), ∴PE=2,EQ=|4-t-32t|=|4-52t|, ∴PQ 2=PE 2+EQ 2=22+|4-52t|2=254t 2-20t+21, ∴y 关于t 的函数解析式及t 的取值范围:y =254t 2−20t+21(0≤t≤4);故答案为:y=25 4t2−20t+21(0≤t≤4).(2)当PQ=10时,254t2−20t+21=(10)2整理,得1t2-16t+12=0,解得:t1=2,t2=65.(2)经过点D的双曲线y=kx(k≠0)的k值不变.连接OB,交PQ于点D,过点D作DF⊥OA于点F,如图2所示.∵OC=2,BC=4,∴OB22OC BC1.∵BQ∥OP,∴△BDQ∽△ODP,∴2332BD BQ ttOD OP===,∴OD=2.∵CB∥OA,∴∠DOF=∠OBC.在Rt△OBC中,sin∠OBC=35OCOB=,cos∠OBC=BCOB=45,∴OF=OD•cos∠OBC=2×45=125,DF=OD•sin∠OBC=2×35=95,∴点D的坐标为(125,95),∴经过点D的双曲线y=kx(k≠0)的k值为125×95=10825..【点睛】此题考查勾股定理、解直角三角形、解一元二次方程、相似三角形的判定与性质、平行线的性质以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用勾股定理,找出y关于t的函数解析式;(2)通过解一元二次方程,求出当10t的值;(2)利用相似三角形的性质及解直角三角形,找出点D的坐标.25.如图,点D是∠AOB的平分线OC上任意一点,过D作DE⊥OB于E,以DE为半径作⊙D,①判断⊙D 与OA 的位置关系,并证明你的结论.②通过上述证明,你还能得出哪些等量关系?【答案】(1)⊙D 与OA 的位置关系是相切 ,证明详见解析;(2)∠DOA=∠DOE, OE=OF.【分析】①首先过点D 作DF ⊥OA 于F ,由点D 是∠AOB 的平分线OC 上任意一点,DE ⊥OB ,根据角平分线的性质,即可得DF=DE ,则可得D 到直线OA 的距离等于⊙D 的半径DE ,则可证得⊙D 与OA 相切.②根据切线的性质解答即可.【详解】解:①⊙D 与OA 的位置关系是相切 ,证明:过D 作DF ⊥OA 于F ,∵点D 是∠AOB 的平分线OC 上任意一点,DE ⊥OB ,∴DF=DE ,即D 到直线OA 的距离等于⊙D 的半径DE ,∴⊙D 与OA 相切.②∠DOA=∠DOE ,OE=OF .26.某商店购进一批单价为16元的日用品,销售一段时间后,为了获取更多利润, 商店决定提高销售价格,经试验发现,若按每件20元的价格销售时,每月能卖360件; 若按每件25元的价格销售时,每月能卖210件.假定每月销售件数y(件)是价格x( 元/件)的一次函数.(1)试求y 与x 之间的函数关系式;(2)在商品不积压,且不考虑其他因素的条件下,问销售价格为多少时,才能使每月获得最大利润?每月的最大利润是多少?(总利润=总收入-总成本).【答案】(1)30960y x =-+;(2)241920.【分析】(1)先利用待定系数法确定每月销售量y 与x 的函数关系式y=-30x+960;(2)根据每月获得的利润等于销售量乘以每件的利润得到w=(-30x+960)(x-16),接着展开后进行配方得到顶点式P=-30(x-24)2+1920,然后根据二次函数的最值问题求解.【详解】(1)设y=kx+b ,∵当x=20时,y=360;x=25时,y=210∴36020{21025k b k b =+=+,解得30{960k b =-= ∴y=-30x+960(16≤x≤32);(2)设每月所得总利润为w 元,则 w=(x-16)y=(x-16)(-30x+960)=-30(x-24)2+ 1920.∵-30<0∴当x=24时,w 有最大值.即销售价格定为24元/件时,才能使每月所获利润最大, 每月的最大利润为1920元.27.如图,已知,在直角坐标系xOy 中,直线483y x =+与x 轴、y 轴分别交于点,A C ,点P 从A 点开始以1个单位/秒的速度沿x 轴向右移动,点Q 从O 点开始以2个单位/秒的速度沿y 轴向上移动,如果,P Q 两点同时出发,经过几秒钟,能使PQO ∆的面积为8个平方单位.【答案】2秒,4秒或317【分析】首先求得直线与两坐标轴的交点坐标,然后表示出三角形的两边利用三角形的面积计算公式列出方程计算即可.【详解】解:直线AC 与x 轴交于点A (-6,0),与y 轴交于点C (0,1),所以,OA =6,OC =1.设经过x 秒钟,则OQ 为2x .当06x <<时,点P 在线段OA 上,底OP =6x -,可列方程2(6)82x x -=, 解得122,4x x ==.当6x ≥时,点P 与点O 重合或在线段OA 的延长线上,底OP =6x -, 可列方程2(6)82x x -=,解得1233x x ==,而23x =综上所述,经过2秒,4秒或3+秒能使△PQO 的面积为1个平方单位.【点睛】本题考查了一次函数和一元二次方程的应用,解题的关键是能够根据直线的解析式确定直线与两坐标轴的交点,从而求得有关的线段的长,注意分类讨论,难度不大.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.边长相等的正方形与正六边形按如图方式拼接在一起,则ABC ∠的度数为( )A .10︒B .15︒C .20︒D .30【答案】B 【解析】利用多边形的内角和定理求出正方形与正六边形的内角和,进而求出每一个内角,根据等腰三角形性质,即可确定出所求角的度数.【详解】正方形的内角和为360°,每一个内角为90°;正六边形的内角和为720°,每一个内角为120°,则BAC ∠ =360°-120°-90°=150°,因为AB=AC,所以ABC ∠=ACB ∠=15°故选B【点睛】此题考查了多边形内角和外角,等腰三角形性质,熟练掌握多边形的内角和定理是解本题的关键. 2.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .【答案】B【解析】根据中心对称图形的定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,直接判断即可.【详解】解:A .不是中心对称图形;B .是中心对称图形;C .不是中心对称图形;D .不是中心对称图形.故选:B .本题考查的知识点是中心对称图形的判定,这里需要注意与轴对称图形的区别,轴对称形是:一定要沿某直线折叠后直线两旁的部分互相重合;中心对称图形是:图形绕某一点旋转180°后与原来的图形重合. 3.如图,直角坐标平面内有一点(2,4)P,那么OP与x轴正半轴的夹角α的余切值为()A.2B.12C.55D.5【答案】B【分析】作PA⊥x轴于点A,构造直角三角形,根据三角函数的定义求解.【详解】过P作x轴的垂线,交x轴于点A,∵P(2,4),∴OA=2,AP=4,.∴4 tan22APOAα===∴1 cot2=α.故选B.【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.4.如图,在Rt△ABC中,CE是斜边AB上的中线,CD⊥AB,若CD=5,CE=6,则△ABC的面积是()A.24 B.25 C.30 D.36【分析】根据题意及直角三角形斜边上的中线等于斜边的一半可得:AB=2CE=12再根据三角形面积公式,即△ABC 面积=12AB×CD=30.故选C. 【详解】解:∵CE 是斜边AB 上的中线,∴AB =2CE =2×6=12,∴S △ABC =12×CD×AB =12×5×12=30, 故选:C .【点睛】本题的考点是直角三角形斜边上的中线性质及三角形面积公式.方法是根据题意求出三角形面积公式中的底,再根据面积公式即可得出答案.5.二次函数22y x =-图像的顶点坐标为( )A .(0,-2)B .(-2,0)C .(0,2)D .(2,0) 【答案】A【分析】根据顶点式的坐标特点,直接写出顶点坐标即对称轴.【详解】解:抛物线y=x 2-2是顶点式,根据顶点式的坐标特点可知,顶点坐标为(0,-2),故选A .【点睛】此题考查了二次函数的性质,二次函数y=a (x-h )2+k 的顶点坐标为()h k ,,对称轴为x=h . 6.若关于的一元二次方程2210kx x +-= 有两个不相等的实数根,则k 的取值范围是( ) A .1k >-B .1k >-且0k ≠C .1k <D .1k <且0k ≠【答案】B【分析】根据一元二次方程的定义和根的判别式列出不等式求解即可.【详解】由题意得:20,4440k b ac k ≠∆=-=+>解得:1k >-且0k ≠故选:B .【点睛】本题考查了一元二次方程的根的判别式,熟记根的判别式是解题关键.对于一般形式20(a 0)++=≠ax bx c 有:(1)当240b ac ∆=->时,方程有两个不相等的实数根;(2)当240b ac ∆=-=时,方程有两个相等的实数根;(3)当240b ac ∆=-<时,方程没有实数根.7.如图,以点O 为位似中心,将△ABC 缩小后得到△A ′B ′C ′,已知OB =3OB ′,则△A ′B ′C ′与△ABC 的周长比为 ( )A .1:3B .1:4C .1:8D .1:9【答案】A 【分析】以点O 为位似中心,将△ABC 缩小后得到△A′B′C′,OB=1OB′,可得△A′B′C′与△ABC 的位似比,然后由相似三角形的性质可得△A′B′C′与△ABC 的周长比.【详解】∵以点O 为位似中心,将△ABC 缩小后得到△A′B′C′,OB=1OB′,,∴△A′B′C′与△ABC 的位似比为:1:1,∴△A′B′C′与△ABC 的周长比为:1:1.故选:A .【点睛】此题考查了位似图形的性质.此题难度不大,注意三角形的周长比等于相似比.8.如图,已知双曲线(0)k y k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为A .12B .9C .6D .4【答案】B 【解析】∵点(6,4)A -,D 是OA 中点∴D 点坐标(3,2)-∵(3,2)D -在双曲线(0)k y k x =<上,代入可得23k =- ∴6k =-∵点C 在直角边AB 上,而直线边AB 与x 轴垂直。

新人教2018届九年级上期末数学试题含答案

新人教2018届九年级上期末数学试题含答案

2017~2018学年度第一学期期末练习初三数学一、选择题(本题共16分,每小题2分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.如果32a b =(0ab ≠),那么下列比例式中正确的是 A .32a b = B .23b a = C .23a b = D .32a b = 2.将抛物线y = x 2向上平移2个单位后得到新的抛物线的表达式为 A .22y x =+ B .22y x =- C .()22y x =+D .()22y x =-3.如图,在Rt △ABC 中,∠C =90°,AB =5,BC =3,则tan A 的值为A .35B .34C .45D .434.“黄金分割”是一条举世公认的美学定律. 例如在摄影中,人们常依据黄金分割进行构图,使画面整体和谐.目前,照相机和手机自带的九宫格就是黄金分割的简化版.要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的位置 A .①B .②C .③D .④5.如图,点A 为函数ky x=(x >0)图象上的一点,过点A 作x 轴的平行线交y 轴于点B ,连接OA ,如果△AOB 的面积为2,那么k 的值为 A .1 B .2 C .3D .46.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC 相似的是CB A②① ③ ④ ABCAB CD7.如图,A ,B 是⊙O 上的两点,C 是⊙O 上不与A ,B 重合的任意一点. 如果∠AOB =140°,那么∠ACB 的度数为 A .70° B .110° C .140°D .70°或110°8.已知抛物线2y ax bx c =++上部分点的横坐标x 与纵坐标y 的对应值如下表:①抛物线2y ax bx c =++的开口向下;②抛物线2y ax bx c =++的对称轴为直线1x =-; ③方程20ax bx c ++=的根为0和2; ④当y >0时,x 的取值范围是x <0或x >2. 其中正确的是 A .①④B .②④C .②③D .③④二、填空题(本题共16分,每小题2分) 9.如果sin α=12,那么锐角α=.10.半径为2的圆中,60°的圆心角所对的弧的弧长为. 11.如图1,物理课上学习过利用小孔成像说明光的直线传播.现将图1抽象为图2,其中线段AB 为蜡烛的火焰,线段A 'B '为其倒立的像. 如果蜡烛火焰AB 的高度为2cm ,倒立的像A 'B '的高度为5cm ,点O 到AB 的距离为4cm ,那么点O 到A 'B '的距离为 cm.12.如图,等边三角形ABC 的外接圆⊙O 的半径OA 的长为2,则其内切圆半径的长为.13.已知函数的图象经过点(2,1),且与x 轴没有交点,写出一个满足题意的函数的表达式.14.在平面直角坐标系中,过三点A (0,0),B (2,2),C (4,0)的圆的圆心坐标为.15.在北京市治理违建的过程中,某小区拆除了自建房,改建绿地. 如图,自建房占地是边长为8m 的正方形ABCD ,改建的绿地是矩形AEFG ,其中点E 在AB 上,点G 在AD 16图2图1A B'A'BO请回答以下问题:(1)连接OA ,OB ,可证∠OAP =∠OBP =90°,理由是; (2)直线P A ,PB 是⊙O 的切线,依据是.三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26,27题,每小题7分,第28题8分) 17.计算:2cos30sin 45tan 60︒+︒-︒.18.如图,△ABC 中,DE ∥BC ,如果AD =2,DB =3,AE =4,求AC 的长.19.已知二次函数y =x 2- 4x +3.(1)用配方法将y =x 2- 4x +3化成y =a (x -h )2+k 的形式; (2)在平面直角坐标系xOy 中画出该函数的图象; (3)当0≤x ≤3时,y 的取值范围是.20知大小,以锯锯之,深一寸,锯道长一尺,问径几何?” 用现代语言表述为:如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,AE =1寸,CD =10寸,求直径AB 的长. 请你解答这个问题.21.在平面直角坐标系xOy 中,直线1y x =+与双曲线ky x=的一个交点为P (m ,2). (1)求k 的值;(2)M (2,a ),N (n ,b )是双曲线上的两点,直接写出当a >b 时,n 的取值范围.D CA E22.在北京市开展的“首都少年先锋岗”活动中,某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度. 方法如下:如图,首先在测量点A 处用高为1.5m 的测角仪AC 测得人民英雄纪念碑MN 顶部M 的仰角为35°,然后在测量点B 处用同样的测角仪BD 测得人民英雄纪念碑MN 顶部M 的仰角为45°,最后测量出A ,B 两点间的距离为15m ,并且N ,B ,A 三点在一条直线上,连接CD 并延长交MN 于点E . 请你利用他们的测量结果,计算人民英雄纪念碑MN 的高度. (参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)23.如图,人工喷泉有一个竖直的喷水枪AB ,喷水口A 距地面2m ,喷出水流的运动路线是抛物线. 如果水流的最高点P 到喷水枪AB 所在直线的距离为1m ,且到地面的距离为3.6m ,求水流的落地点C 到水枪底部B 的距离.24.如图,AB 是⊙O 的直径,点C 是»AB 的中点,连接AC 并延长至点D ,使CD AC =,点E 是OB 上一点,且23OE EB =,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH . (1)求证:BD 是⊙O 的切线;(2)当2OB =时,求BH 的长.25.如图,点E 是矩形ABCD 边AB 上一动点(不与点B 重合),过点E 作EF ⊥DE 交BC于点F ,连接DF .已知AB =4cm ,AD =2cm ,设A ,E 两点间的距离为x cm ,△DEF 面积为y cm 2.小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.C D ABNMED C BAEF下面是小明的探究过程,请补充完整: (1)确定自变量x 的取值范围是;(2)通过取点、画图、测量、分析,得到了x 与y 的几组值,如下表:(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF 面积最大时,AE 的长度为cm .26.在平面直角坐标系xOy 中,抛物线2y x bx c =-++经过点(2,3),对称轴为直线x =1.(1)求抛物线的表达式;(2)如果垂直于y 轴的直线l 与抛物线交于两点A (1x ,1y ),B (2x ,2y ),其中01<x ,02>x ,与y 轴交于点C ,求BC -AC 的值;(3)将抛物线向上或向下平移,使新抛物线的顶点落在x 轴上,原抛物线上一点P 平移后对应点为点Q ,如果OP =OQ ,直接写出点Q 的坐标.27.如图,∠BAD=90°,AB=AD ,CB=CD ,一个以点C 为顶点的45°角绕点C 旋转,角的两边与BA ,DA 交于点M ,N ,与BA ,DA 的延长线交于点E ,F ,连接AC . (1)在∠FCE 旋转的过程中,当∠FCA =∠ECA 时,如图1,求证:AE =AF ; (2)在∠FCE 旋转的过程中,当∠FCA ≠∠ECA 时,如图2,如果∠B=30°,CB=2,用等式表示线段AE ,AF 之间的数量关系,并证明.EMN F AEMNFA28.对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:如果⊙C 的半径为r ,⊙C外一点P 到⊙C 的切线长小于或等于2r ,那么点P 叫做⊙C 的“离心点”. (1)当⊙O 的半径为1时,①在点P 1(12,P 2(0,-2),P 30)中,⊙O 的“离心点”是; ②点P (m ,n )在直线3y x =-+上,且点P 是⊙O 的“离心点”,求点P 横坐标m 的取值范围;(2)⊙C 的圆心C 在y 轴上,半径为2,直线121+-=x y 与x 轴、y 轴分别交于点A ,B .如果线段AB 上的所有点都是⊙C 的“离心点”,请直接写出圆心C 纵坐标的取值范围.图2图12017—2018学年度第一学期期末练习初三数学参考答案一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9. 30°;10. 2π3;11. 10;12. 1;13.2yx=或245y x x=-+等,答案不唯一;14.(2,0);15.22864(08)y x x x=-++<<(可不化为一般式),2;16.直径所对的圆周角是直角;经过半径的外端,并且垂直于这条半径的直线是圆的切线.三、解答题(本题共68分,第17-24题每小题5分,第25题6分,第26,27题每小题7分,第28题8分)17. 解:2cos30sin45tan60︒+︒-︒=2+……3分-……4分……5分18.解:∵DE∥BC,∴AD AEDB EC=.……2分即243EC=.∴EC=6.……4分∴AC=AE+ EC=10.……5分其他证法相应给分.19.解:(1)2444+3y x x=-+-()221x=--. ……2分(2)如图:….3分(3)13y-≤≤….5分20.解:连接OC,∵AB为⊙O的直径,弦CD⊥AB于点E,且CD=10,∴∠BEC=90°,152CE CD==.……2分设OC=r,则OA=r,∴OE=1r-.在Rt OCE∆中,∵222OE CE OC+=,∴()22125r r-+=.∴=13r. …4分∴AB = 2r= 26(寸).答:直径AB的长26寸.…5分21. 解:(1) 一次函数1y x=+的图象经过点(,2)P m,∴1m=.……… 1分∴点P的坐标为(1,2). ……… 2分∵反比例函数kyx=的图象经过点P(1,2),∴2k=………3分(2)0n<或2n>…………5分22.解:由题意得,四边形ACDB,ACEN为矩形,∴EN=AC=1.5.AB=CD=15.在Rt MED中,∠MED=90°,∠MDE=45°,∴∠EMD=∠MDE=45°.DCAEx+3OEABC DCDABNME∴ME =DE . …2分设ME =DE =x ,则EC =x +15. 在Rt MEC 中,∠MEC =90°, ∠MCE =35°,∵tan ME EC MCE =⋅∠, ∴()0.715x x ≈+.∴35x ≈. ∴35ME ≈.…4分 ∴36.5MN ME EN =+≈.∴人民英雄纪念碑MN .的高度约为36.5米.…5分23.解:建立平面直角坐标系,如图. 于是抛物线的表达式可以设为()2y a x h k =-+根据题意,得出A ,P 两点的坐标分别为A (0,2),P (1,3.6).……2分 ∵点P 为抛物线顶点, ∴1 3.6h k ==,. ∵点A 在抛物线上, ∴ 3.62a +=, 1.6a =-…3分∴它的表达式为()21.61 3.6y x =--+. ……4分当点C 的纵坐标y =0时,有()21.61 3.6=0x --+.10.5x =-(舍去),2 2.5x =.∴BC =2.5.∴水流的落地点C 到水枪底部B 的距离为2.5m.……5分24.(1)证明:连接OC ,∵AB 为⊙O 的直径,点C 是»AB 的中点,∴∠AOC =90°. ……1分 ∵OA OB =,CD AC =,∴OC 是ABD ∆的中位线. ∴OC ∥BD. ∴∠ABD =∠AOC =90°. ……2分 ∴AB BD ⊥.∴BD 是⊙O 的切线. ……3分 其他方法相应给分.(2)解:由(1)知OC ∥BD ,∴△OCE ∽△BFE. ∴OC OEBF EB=. ∵OB = 2,∴OC =OB = 2,AB = 4,∵23OE EB =,∴223BF =,∴BF =3. ……4分 在Rt ABF ∆中,∠ABF =90°,5AF .∵1122ABF S AB BF AF BH =⋅=⋅ ,∴AB BF AF BH ⋅=⋅.即435BH ⨯=. ∴BH =125. .……5分 其他方法相应给分.25.(1)04x ≤<;.……1分 (2)3.8,4.0; ……3分(3)如图 ……4分 (4)0或2. ……6分26. 解:(1)1,242 3.b bc ⎧=⎪⎨⎪-++=⎩……1分解得2,3.b c =⎧⎨=⎩. ……2分∴322++-=x x y . ……3分(2)如图,设l 与对称轴交于点M ,由抛物线的对称性可得,BM = AM. ……3分∴BC -AC = BM+MC -AC = AM+MC -AC= AC+CM+MC -AC =2 CM =2. ……5分 其他方法相应给分.(3)点Q的坐标为(12-)或(12-).……7分27.解:(1)证明:∵AB=AD ,BC=CD ,AC=AC ,∴△ABC ≌△ADC . …1分∴∠BAC =∠DAC =45°,可证∠FAC =∠EAC =135°. ……2分 又∵∠FCA =∠ECA ,∴△ACF ≌△ACE . ∴AE =AF .……3分 其他方法相应给分.(2)过点C 作CG ⊥AB 于点G ,求得AC =2.……4分∵∠FAC =∠EAC =135°,∴∠ACF +∠F =45°. 又∵∠ACF +∠ACE =45°,∴∠F =∠ACE . ∴△ACF ∽△AEC. ……5分 ∴ACAF AE AC =,即AF AE AC ⋅=2. ……6分 ∴2=⋅AF AE . ……7分28.解:(1)①2P ,3P ;……2分②设P (m ,-m +3),则()5322=+-+m m . …3分解得11=m ,22=m . ……4分 故1≤m ≤2. ……6分(2)圆心C 纵坐标C y 的取值范围为:521-≤C y <51-或3<C y ≤4. ……8分。

上海市虹口区2018学年九年级数学第一学期期中质量监控测试题新人教版精品

上海市虹口区2018学年九年级数学第一学期期中质量监控测试题新人教版精品


A. a // c,b // c
B. a b
C. a 2b
D. a 1 c , b 2c 2
5、如图,已知六边形 ABCDEF 与六边形 GHIJKL 相似,点 A 、 B 、 C 、 D 、 E 和 F 的对
应点
分别是点 G 、 H 、 I 、 J 、 K 和 L 。若它们的相似比为 2 :1 ,则下列结论中,正确的是
A
B
F
D
E
C
第 24 题图
25、已知:在梯形 ABCD 中, AD // BC , AB DC 5 , AD 3.5 , sin B 4 ,点 E 是 AB 5
边上一点, BE 3 , 点 P 是 BC 边上的一动点,联结 EP ,作 EPF ,使得 EPF B ,射线 PF 与 AD 边 交于点 F ,与 CD 的延长线交于点 G ,设 BP x , DF y .
13、如图,在 ABCD 中, E 是 AB 的延长线上的一点, DE 与边 BC 相交于点 F ,如图
BE 2 ,
AE 7
那么 BF 的值为 FC
14 、 已 知 点 D 、 E 分 别 在 △ ABC 的 边 AB 、 AC 上 , 且
AED
B, 若 AB 7 ,
AC 4 , AD 2 ,
则 AE B
A
D
( 1)求 DF 的长;
( 2)如果 AD 3 , EF 5 ,试求 BC 的长 .
E
F
B
C
第 20 题图
21 、已知:如图,在 △ ABC 中, BAC 的平分线 AE 交
BC 于点 D ,联结 EC ,且 B E .
A
求证: △ EAC ∽△ ECD .

(新课标人教版)2018-2019学年九年级上数学期末质量检测试卷(含答案)

2018-2019学年上学期九年级数学期末质量检测姓名:_______________班级:_______________考号:_______________一、选择题二、1、方程的左边配成完全平方后,得到的方程为().A. B. C.D.以上都不对2、在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为,则满足的方程是()A. B.C. D.3、如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△ADE可以由△ABC绕点 A顺时针旋转900得到,点D 与点B是对应点,点E与点C是对应点),连接CE,则∠CED的度数是( ) (A)45°(B)30°(C)25°(D)15°4、下列图形中,是中心对称图形的是()5、如图,A,B,C是⊙O上三个点,∠AOB=2∠BOC,则下列说法中正确的是A. ∠OBA=∠OCAB. 四边形OABC内接于⊙OC.. AB=2BCD. ∠OBA+∠BOC=90°6、在平面直角坐标系中,以点(3,2)为圆心,2为半径的圆与坐标轴的位置关系为()A.与x轴相离、与y轴相切 B.与x轴、y轴都相离C.与x轴相切、与y轴相离 D.与x轴、y轴都相切7、某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.则当x=________时,游戏对甲、乙双方公平( )A.3 B.4 C.5 D.68、.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac.其中正确的结论的有()A. 1个B. 2个C. 3个D. 4个9、如图,已知AB=12,点C,D在AB上,且AC=DB=2,点P从点C沿线段CD向点D运动(运动到点D停止),以AP、BP为斜边在AB的同侧画等腰Rt△APE和等腰Rt△PBF,连接EF,取EF的中点G,下列说法中正确的有()①△EFP的外接圆的圆心为点G;②四边形AEFB的面积不变;③EF的中点G移动的路径长为4;④△EFP的面积的最小值为8.A.1个 B.2个 C.3个 D.4个10、如图所示,二次函数的图像经过点(-1,2),且与轴交点的横坐标分别为,,其中,,下列结论:①;②;③;④其中正确的有( )A.1个 B.2个 C.3个 D.4个二、填空题11、方程有两个不等的实数根,则a的取值范围是________。

<合集试卷3套>2018年上海市长宁区九年级上学期数学期末质量跟踪监视试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,A 、B 、C 是⊙O 上的三点,已知∠O =50°, 则∠C 的大小是( )A .50°B .45°C .30°D .25°【答案】D 【分析】直接根据圆周角定理即可得出结论.【详解】解:∵∠C 与∠AOB 是同弧所对的圆周角与圆心角,∵∠AOB=2∠C=50°,∴∠C=12∠AOB=25°. 故选:D .【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.2.某商品原价为180元,连续两次提价后售价为300元,设这两次提价的年平均增长率为x ,那么下面列出的方程正确的是( )A .180(1+x )=300B .180(1+x )2=300C .180(1﹣x )=300D .180(1﹣x )2=300【答案】B【分析】本题可先用x 表示出第一次提价后商品的售价,再根据题意表示出第二次提价后的售价,然后根据已知条件得到关于x 的方程.【详解】当商品第一次提价后,其售价为:180(1+x );当商品第二次提价后,其售价为:180(1+x )1.∴180(1+x )1=2.故选:B .【点睛】本题主要考查一元二次方程的应用,要根据题意表示出第一次提价后商品的售价,再根据题意列出第二次提价后售价的方程,令其等于2即可.3.若关于x 的一元二次方程()22410k x x -++=有两个实数根则k 的取值范围是( ) A .k 6< B .k 6<且2k ≠ C .6k ≤且2k ≠ D .6k >【答案】C【分析】由二次项系数非零结合根的判别式△0≥,即可得出关于k 的一元一次不等式组, 解之即可得出结论 . 【详解】解:关于x 的一元二次方程2(2)410k x x -++=有两个不相等的实数根, ∴22044(2)0k k -≠⎧⎨=--≥⎩, 解得:6k ≤且2k ≠.故选:C .【点睛】本题考查了根的判别式以及一元二次方程的定义, 根据二次项系数非零结合根的判别式△0>,列出关于k 的一元一次不等式组是解题的关键 .4.下列方程没有实数根的是( )A .x 2﹣x ﹣1=0B .x 2﹣6x+5=0C .x 2﹣23x+3=0D .x 2+x+1=0【答案】D【解析】首先根据题意判断上述四个方程的根的情况,只要看根的判别式△= 2b -4ac 的值的符号即可.【详解】解:A 、∵△=b 2﹣4ac =1+4=5>0,∴方程有两个不相等的实数根,故本选项错误; B 、∵△=b 2﹣4ac =36﹣20=16>0,∴方程有两个不相等的实数根,故本选项错误;C 、∵△=b 2﹣4ac =12﹣12=0,∴方程有两个相等的实数根,故本选项错误;D 、∵△=b 2﹣4ac =1﹣4=﹣3<0,∴方程没有实数根,故本选项正确.故选:D .【点睛】本题考查根的判别式.一元二次方程2+00ax bx c a +=≠()的根与△= 2b -4ac 有如下关系:(1) △>0⇔方程有两个不相等的实数根;(2) △=0⇔方程有两个相等的实数根;(3) △<0⇔方程没有实数根.5.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan ∠ABC 的值为( )A .35B .43C 10D .34【答案】D【解析】如图,∠ABC 所在的直角三角形的对边AD=3,邻边BD=4,所以,tan∠ABC= 34.故选D.6.圆内接正三角形、正方形、正六边形的边长之比为()A.1:2:3 B.1:2:3C.3:2:1 D.无法确定【答案】C【分析】根据题意画出图形,设出圆的半径,再由正多边形及直角三角形的性质求解即可.【详解】解:设圆的半径为R,如图(一),连接OB,过O作OD⊥BC于D,则∠OBC=30°,BD=OB•cos30°3=R,故BC=2BD3=R;如图(二),连接OB、OC,过O作OE⊥BC于E,则△OBE是等腰直角三角形,2BE2=OB2,即BE2R =,故BC2=R;如图(三),连接OA、OB,过O作OG⊥AB,则△OAB是等边三角形,故AG=OA•cos60°12=R,AB=2AG=R,∴圆内接正三角形、正方形、正六边形的边长之比为3R:2R:R3=:2:1.【点睛】本题主要考查了正多边形和圆,掌握正多边形和圆是解题的关键.7.把抛物线2241y x x =-++的图象绕着其顶点旋转180︒,所得抛物线函数关系式是( ) A .2241y x x =-- B .2245y x x =-+ C .2241y x x =-+- D .2245y x x =--+【答案】B【分析】根据图象绕顶点旋转180°,可得函数图象开口方向相反,顶点坐标相同,可得答案.【详解】∵2241y x x =-++ ()222111x x =--+-+22(1)3x =--+,∴该抛物线的顶点坐标是(1,3),∴在旋转之后的抛物线解析式为: 222(1)3245y x x x =-+=-+.故选:B .【点睛】本题考查了二次函数图象的平移和旋转,解决本题的关键是理解绕抛物线的顶点旋转180°得到新函数的二次项的系数符号改变,顶点不变.8.矩形、菱形、正方形都一定具有的性质是( )A .邻边相等B .四个角都是直角C .对角线相等D .对角线互相平分 【答案】D【解析】矩形、菱形、正方形都是平行四边形,所以一定都具有的性质是平行四边形的性质,即对角线互相平分.故选D.9.已知反比例函数3m y x -=的图象在二、四象限,则m 的取值范围是( ) A .3m ≥B .3m >C .3m ≤D .3m < 【答案】D【分析】由题意根据反比例函数的性质即可确定3m -的符号,进行计算从而求解. 【详解】解:因为反比例函数3m y x-=的图象在二、四象限, 所以30m -<,解得3m <.故选:D.本题考查反比例函数的性质,注意掌握反比例函数k y x=(0)k ≠,当 k >0时,反比例函数图象在一、三象限;当k <0时,反比例函数图象在第二、四象限内.10.如图,△ABC 内接于⊙O ,连接OA 、OB ,若∠ABO =35°,则∠C 的度数为( )A .70°B .65°C .55°D .45°【答案】C 【分析】根据三角形的内角和定理和等腰三角形等边对等角求得∠O 的度数,再进一步根据圆周角定理求解.【详解】解:∵OA=OB ,∠ABO=35°,∴∠BAO=∠ABO=35°,∴∠O=180°-35°×2=110°,∴∠C=12∠O=55°. 故选:C .【点睛】本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.11.如图,一个几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为( )A .4πB .2πC .32πD .π【答案】D【分析】这个几何体的侧面是以底面圆周长为长、圆柱体的高为宽的矩形,根据矩形的面积公式计算即可.【详解】根据三视图可得几何体为圆柱,圆柱体的侧面积=底面圆的周长⨯圆柱体的高=11ππ⨯⨯= 故答案为:D .【点睛】本题考查了圆柱体的侧面积问题,掌握矩形的面积公式是解题的关键.12.点A(1,y 1)、B(3,y 2)是反比例函数y =9x 图象上的两点,则y 1、y 2的大小关系是( ) A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定 【答案】A【解析】∵反比例函数y =9x中的9>0, ∴经过第一、三象限,且在每一象限内y 随x 的增大而减小,又∵A(1,y ₁)、B(3,y ₂)都位于第一象限,且1<3,∴y ₁>y ₂,故选A.二、填空题(本题包括8个小题)13.已知:如图,△ABC 的面积为12,点D 、E 分别是边AB 、AC 的中点,则四边形BCED 的面积为_____.【答案】1【解析】设四边形BCED 的面积为x ,则S △ADE =12﹣x ,由题意知DE ∥BC 且DE=12BC ,从而得2ADEABC SDE S BC ⎛⎫= ⎪⎝⎭,据此建立关于x 的方程,解之可得. 【详解】设四边形BCED 的面积为x ,则S △ADE =12﹣x ,∵点D 、E 分别是边AB 、AC 的中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,且DE=12BC , ∴△ADE ∽△ABC ,则2ADEABC S DE S BC ⎛⎫= ⎪⎝⎭=14,即121124x -=, 解得:x=1,即四边形BCED 的面积为1,故答案为1.【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.14.动手操作:在矩形纸片ABCD 中,AB=3,AD=5.如图所示,折叠纸片,使点A 落在BC 边上的A’处,折痕为PQ ,当点A’在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定点P 、Q 分别在AB 、AD 边上移动,则点A’在BC 边上可移动的最大距离为 .【答案】2【解析】解:当点P 与B 重合时,BA′取最大值是3,当点Q 与D 重合时(如图),由勾股定理得A′C=4,此时BA′取最小值为1.则点A′在BC 边上移动的最大距离为3-1=2.15.在一个不透明的布袋中,有红球、白球共30个,除颜色外其它完全相同,小明通过多次摸球试验后发现,其中摸到红球的频率稳定在40%,则随机从口袋中摸出一个是红球的概率是_____.【答案】1.【分析】根据题意得出摸出红球的频率,继而根据频数=总数×频率计算即可.【详解】∵小明通过多次摸球试验后发现其中摸到红球的频率稳定在40%,∴口袋中红色球的个数可能是30×40%=1个.故答案为:1.【点睛】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.16.一元二次方程2340x x --=的解为________.【答案】14x =,21x =-【解析】利用“十字相乘法”对等式的左边进行因式分解.【详解】由原方程,得()()410x x -+=,则40x -=或10x +=,解得14x =,21x =-.故答案为:14x =,21x =-.【点睛】本题考查了解一元二次方程-因式分解法.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想). 17.周末小明到商场购物,付款时想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,则选择“微信”支付方式的概率为____________. 【答案】13【分析】利用概率公式直接写出答案即可.【详解】∵共“微信”、“支付宝”、“银行卡”三种支付方式, ∴选择“微信”支付方式的概率为13, 故答案为:13. 【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n . 18.已知线段a 、b 满足23a b =,则a b =________. 【答案】32【解析】此题考查比例知识23a b =32a b ∴=,3322b a b b == 答案32三、解答题(本题包括8个小题)19.某公司营销,A B 两种产品,根据市场调研,确定两条信息:信息1:销售A 种产品所获利润y (万元)与所销售产品x (吨)之间存在二次函数关系,如图所示 信息2:销售B 种产品所获利润y (万元)与销售产品x (吨)之间存在正比例函数关系0.3y x =根据以上信息,解答下列问题:(1)求二次函数的表达式;(2)该公司准备购进,A B 两种产品共10吨,请设计一个营销方案使销售,A B 两种产品获得的利润之和最大,最大利润是多少万元?【答案】(1)20.1 1.5y x x =-+;(2)购进A 产品6吨,购进B 产品4吨,利润之和最大,最大为6.6万元【分析】(1)由抛物线过原点可设y 与x 间的函数关系式为y=ax 2+bx+c ,再利用待定系数法求解可得;(2)设购进A 产品m 吨,购进B 产品(10−m)吨,销售A 、B 两种产品获得的利润之和为W 元,根据:A 产品利润+B 产品利润=总利润可得W=−0.1m 2+1.5m+0.3(10−m),配方后根据二次函数的性质即可知最值情况.【详解】解:(1)设二次函数的表达式为y=ax 2+bx+c ,由图象,得抛物线过点(0,0),(1,1.4),(3,3.6),将三点的坐标代入表达式, 得 1.493 3.60a b c a b c c ++=⎧⎪++=⎨⎪=⎩, 解得0.11.50a b c =-⎧⎪=⎨⎪=⎩所以二次函数的表达式为y=−0.1x 2+1.5x ;(2)设购进A 产品m 吨,购进B 产品(10−m)吨,销售A 、B 两种产品获得的利润之和为W 元,则W=−0.1m 2+1.5m+0.3(10−m),=−0.1m 2+1.2m+3,=−0.1(m−6)2+6.6,∵−0.1<0,∴∴当m=6时,W 取得最大值,最大值为6.6万元,答:购进A 产品6吨,购进B 产品4吨,销售A 、B 两种产品获得的利润之和最大,最大利润是6.6万元.【点睛】本题主要考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,(2)中整理得到所获利润与购进A 产品的吨数的关系式是解题的关键.20.如图,AB是⊙O的弦,AB=4,点P在AmB上运动(点P不与点A、B重合),且∠APB=30°,设图中阴影部分的面积为y.(1)⊙O的半径为;(2)若点P到直线AB的距离为x,求y关于x的函数表达式,并直接写出自变量x的取值范围.【答案】(1)4;(2)y=2x+83π-43(0<x≤23+4)【分析】(1)根据圆周角定理得到△AOB是等边三角形,求出⊙O的半径;(2)过点O作OH⊥AB,垂足为H,先求出AH=BH=12AB=2,再利用勾股定理得出OH的值,进而求解.【详解】(1)解:(1)∵∠APB=30°,∴∠AOB=60°,又OA=OB,∴△AOB是等边三角形,∴⊙O的半径是4;(2)解:过点O作OH⊥AB,垂足为H则∠OHA=∠OHB=90°∵∠APB=30°∴∠AOB=2∠APB=60°∵OA=OB,OH⊥AB∴AH=BH=12AB=2在Rt△AHO中,∠AHO=90°,AO=4,AH=2 ∴OH22AO AH3∴y=16×16 π-12312×4×x=2x +83π-43 (0<x≤23+4).【点睛】本题考查了圆周角定理,勾股定理、掌握一条弧所对的圆周角是这条弧所对的圆心角的一半是解题的关键. 21.如图,已知一次函数y 1=﹣x+a 与x 轴、y 轴分别交于点D 、C 两点和反比例函数2ky x=交于A 、B 两点,且点A 的坐标是(1,3),点B 的坐标是(3,m) (1)求a ,k ,m 的值;(2)求C 、D 两点的坐标,并求△AOB 的面积.【答案】(1)1,3,1;(2)(0,1),(1,3),1【分析】(1)由于已知一次函数y 1=-x+a 和反比例函数2ky x=交于A 、B 两点,且点A 的坐标是(1,3),把A 的坐标代入反比例函数解析式中即可确定k 的值,然后利用解析式即可确定点B 的坐标,最后利用A 或B 坐标即可确定a 的值;(2)利用(1)中求出的直线的解析式可以确定C ,D 的坐标,然后利用面积的割补法可以求出△AOB 的面积.【详解】解:(1)∵反比例函数2ky x=经过A 、B 两点,且点A 的坐标是(1,3), ∴3=1k, ∴k=3,而点B 的坐标是(3,m ),∴m=33=1, ∵一次函数y 1=﹣x+a 经过A 点,且点A 的坐标是(1,3), ∴3=﹣1+a , ∴a=1.(2)∵y 1=﹣x+1,当x=0时,y=1,当y=0时,x=1, ∴C 的坐标为(0,1),D 的坐标为(1,0), ∴S △AOB =S △COB ﹣S △COA =12×1×3﹣12×1×1=1. 【点睛】本题主要考查了待定系数法求反比例函数与一次函数的解析式和函数图象中的面积问题,求面积体现了数形结合的思想,做此类题一定要正确理解图形几何意义.22.如图,AB 是⊙O 的直径,点C 在⊙O 上,AD 垂直于过点C 的切线,垂足为D.(1)若∠BAD= 80°,求∠DAC 的度数; (2)如果AD=4,AB=8,则AC= . 【答案】(1)∠DAC=40°,(2)42【分析】(1)连结OC ,根据已知条件证明AD//OC ,结合OA=OC ,得到∠DAC=∠OAC=12∠DAB ,即可得到结果;(2)根据已知条件证明平行四边形ADCO 是正方形,即可求解; 【详解】解:(1)连结OC ,则OC ⊥DC ,又AD ⊥DC ,∴AD//OC ,∴∠DAC=∠OCA ; 又OA=OC ,∴∠OAC=∠OCA , ∴∠DAC=∠OAC=12∠DAB , ∴∠DAC=40°.(2)∵8AB =,AB 为直径, ∴4OA OB OC ===,∵4=AD , ∴AD OC =, ∵AD ∥OC ,∴四边形ADCO 是平行四边形, 又90D ∠=︒,OA OC =, ∴平行四边形ADCO 是正方形, ∴242AC OA ==故答案是2 【点睛】本题主要考查了切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.23.九年级甲班和乙班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球;将两班选手的进球数绘制成如下尚不完整的统计图表:进球数/个10 9 8 7 4 3乙班人数/个 1 1 2 4 1 1平均成绩中位数众数甲班7 7 c乙班 a b 7(1)表格中b=,c=并求a的值;(2)如果要从这两个班中选出一个成绩较为稳定的班代表年级参加学校的投篮比赛,争取夺得总进球数团体第一名,你认为应该选择哪个班,请说明理由;如果要争取个人进球数进入学校前三名,你认为应该选择哪个班,请说明理由.【答案】(1)1,1,a的值为1;(2)要选出一个成绩较稳定的班级争夺团体第一名,选择甲班,因为乙班数据的离散程度较大,发挥不稳定;要争取个人进球数进入学校前三名,则选择乙班,要看出现高分的可能性,乙班个人成绩在9分以上的人数比甲班多,因此选择乙班.【分析】(1)根据已知信息,将乙班的选手的进球数量从小到大排列,计算处在正中间的两个数的平均数即可;根据已知信息,甲班选手的进球数量中出现次数最多的进球数即为c的值;先计算乙班总进球数,再用总数除以人数即可;(2)从这两个班中选出一个成绩较为稳定的班代表年级参加学校的投篮比赛,要看两个班的数据离散程度;如果要争取个人进球数进入学校前三名,要根据个人进球数在9个以上的人数,哪个班多就从哪个班选.【详解】解:(1)乙班进球数从小到大排列后处在第5、6位的数都是1个,因此乙班进球数的中位数是77=21个;根据图表,甲班进球数出现次数最多的是1个,因此甲班进球数的众数为c=1;a=()11019182744131=710⨯⨯+⨯+⨯+⨯+⨯+⨯. 故答案为:1;1;a 的值为1.(2)要想选取成绩较稳定的班级来争夺总进球数团体第一名,选择甲班较好,甲班的平均数虽然与乙班相同,但是()()()()()()()()()()222222222221=9787877777777767675710S ⎡⎤-+-+-+-+-+-+-+-+-+-⎣⎦甲 =1.2()()()()()()()()()()222222222221=10797878777777777473710S ⎡⎤-+-+-+-+-+-+-+-+-+-⎣⎦乙 =4∴乙班数据的离散程度较大,发挥不稳定,因此选择甲班;要争取个人进球数进入学校前三名,则选择乙班,要看出现高分的可能性,乙班个人成绩在9分以上的人数比甲班多.因此选择乙班. 【点睛】本题主要考查平均数、中位数、众数以及方差的意义,掌握平均数、中位数、众数的求解方法以及方差的意义是解答本题的关键.24.如图,已知抛物线y =ax 2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x 轴的另一个交点为C ,顶点为D ,连结CD .(1)求该抛物线的表达式;(2)点P 为该抛物线上一动点(与点B 、C 不重合),设点P 的横坐标为t . ①当点P 在直线BC 的下方运动时,求△PBC 的面积的最大值;②该抛物线上是否存在点P ,使得∠PBC =∠BCD ?若存在,求出所有点P 的坐标;若不存在,请说明理由.【答案】 (1)y =x 2+6x+5;(2)①S △PBC 的最大值为278;②存在,点P 的坐标为P(﹣32,﹣74)或(0,5).【解析】(1)将点A 、B 坐标代入二次函数表达式,即可求出二次函数解析式;(2)①如图1,过点P 作y 轴的平行线交BC 于点G ,将点B 、C 的坐标代入一次函数表达式并解得:直线BC 的表达式为:y =x+1,设点G(t ,t+1),则点P(t ,t 2+6t+5),利用三角形面积公式求出最大值即可;②设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(﹣52,﹣32),过该点与BC垂直的直线的k值为﹣1,求出直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,、联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=1 2 x﹣1…⑤,联立⑤和y=x2+6x+5并解得:x=﹣32,即可求出P点;当点P(P′)在直线BC上方时,根据∠PBC=∠BCD求出BP′∥CD,求出直线BP′的表达式为:y=2x+5,联立y=x2+6x+5和y=2x+5,求出x,即可求出P.【详解】解:(1)将点A、B坐标代入二次函数表达式得:25550 16453a ba b-+=⎧⎨-+=-⎩,解得:16 ab=⎧⎨=⎩,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=12PG(x C﹣x B)=32(t+1﹣t2﹣6t﹣5)=﹣32t2﹣152t﹣6,∵-32<0,∴S△PBC有最大值,当t=﹣52时,其最大值为278;②设直线BP与CD交于点H,当点P 在直线BC 下方时, ∵∠PBC =∠BCD , ∴点H 在BC 的中垂线上, 线段BC 的中点坐标为(﹣52,﹣32), 过该点与BC 垂直的直线的k 值为﹣1, 设BC 中垂线的表达式为:y =﹣x+m ,将点(﹣52,﹣32)代入上式并解得: 直线BC 中垂线的表达式为:y =﹣x ﹣4…③, 同理直线CD 的表达式为:y =2x+2…④, 联立③④并解得:x =﹣2,即点H(﹣2,﹣2), 同理可得直线BH 的表达式为:y =12x ﹣1…⑤, 联立①⑤并解得:x =﹣32或﹣4(舍去﹣4), 故点P(﹣32,﹣74); 当点P(P′)在直线BC 上方时, ∵∠PBC =∠BCD ,∴BP′∥CD ,则直线BP′的表达式为:y =2x+s ,将点B 坐标代入上式并解得:s =5, 即直线BP′的表达式为:y =2x+5…⑥, 联立①⑥并解得:x =0或﹣4(舍去﹣4), 故点P(0,5); 故点P 的坐标为P(﹣32,﹣74)或(0,5). 【点睛】本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.25.如图,在ABC ∆中12,15,18,AC AB BC D BC ===是边上一点,2•AC BC CD = ,连接AD ,点E ,F 分别是,BC AB 的点(点F 不与点,A B 重合),CFE B ∠=∠,CF AD 与相交于点G .(1)求AD ,BD 的长; (2)求证:BEF ∆~AFG ∆;(3)当EF FG =时,请直接写出AG 的长.【答案】(1)AD=10,BD=10;(2)见解析;(3)453105-【分析】(1)由2•AC BC CD =可证明△ABC ∽△DAC ,通过相似比即可求出AD ,BD 的长; (2)由(1)可证明∠B=∠DAB ,再根据已知条件证明∠AFC=∠BEF 即可; (3)过点C 作CH ∥AB ,交AD 的延长线于点H ,根据平行线的性质得到CH CD HDAB BD AD==,计算出CH 和AH 的值,由已知条件得到BEF ∆≌AFG ∆,设AG=x ,则AF=15-x ,HG=18-x ,再由平行线的性质得到CH HGAF AG=,表达出即可解出x ,即AG 的值. 【详解】解:(1)∵2•AC BC CD =, ∴AC BCCD AC=, 又∵∠ACB=∠DCA , ∴△ABC ∽△DAC , ∴AC BC AB CD AC AD ==,即12181512CD AD==, 解得:CD=8,AD=10, ∴BD=BC-CD=18-8=10, ∴AD=10,BD=10;(2)由(1)可知,AD=BD=10, ∴∠B=∠DAB , ∵∠AFE=∠B+∠BEF , ∴∠AFC+∠CFE=∠B+∠BEF , ∵CFE B ∠=∠, ∴∠AFC=∠BEF , 又∵∠B=∠DAB ,∴BEF ∆~AFG ∆;(3)如图,过点C 作CH ∥AB ,交AD 的延长线于点H ,∴CH CD HDAB BD AD ==, 即8151010CH HD==,解得:CH=12,HD=8, ∴AH=AD+HD=18, 若EF FG =, 则BEF ∆≌AFG ∆; ∴BF=AG ,设AG=x ,则AF=15-x ,HG=18-x , ∵CH ∥AB , ∴CH HG AF AG =,即121815xx x-=-, 解得:1453105x -=,2453105x +=(舍去)∴AG=453105-.【点睛】本题考查了相似三角形的判定与性质以及平行线分线段成比例,解题的关键是熟悉相似三角形的判定,并灵活作出辅助线.26.如图,AB 是半圆O 的直径,AD 为弦,∠DBC=∠A .(1)求证:BC 是半圆O 的切线;(2)若OC ∥AD ,OC 交BD 于E ,BD=6,CE=4,求AD 的长. 【答案】(1)见解析;(2)AD=4.5.【分析】(1)若证明BC 是半圆O 的切线,利用切线的判定定理:即证明AB ⊥BC 即可;(2)因为OC ∥AD ,可得∠BEC=∠D=90°,再有其他条件可判定△BCE ∽△BAD ,利用相似三角形的性质:对应边的比值相等即可求出AD 的长. 【详解】(1)证明:∵AB 是半圆O 的直径, ∴BD ⊥AD ,∴∠DBA+∠A=90°, ∵∠DBC=∠A ,∴∠DBA+∠DBC=90°即AB ⊥BC , ∴BC 是半圆O 的切线; (2)解:∵OC ∥AD , ∴∠BEC=∠D=90°, ∵BD ⊥AD ,BD=6, ∴BE=DE=3, ∵∠DBC=∠A , ∴△BCE ∽△BAD ,∴=CE BE BD AD ,即436=AD; ∴AD=4.5 【点睛】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.27.(1)计算:|12cos45°+2sin30° (2)解方程:x 2﹣6x ﹣16=0【答案】(1);(1)x 1=8,x 1=﹣1【分析】(1)根据二次根式的乘法、加减法和特殊角的三角函数值可以解答本题; (1)根据因式分解法可以解答此方程.【详解】(1)|11cos45°+1sin30°﹣1×2+1×12+1=;(1)∵x 1﹣6x ﹣16=0, ∴(x ﹣8)(x+1)=0, ∴x ﹣8=0或x+1=0, 解得,x 1=8,x 1=﹣1. 【点睛】本题考查解一元二次方程、实数的运算、特殊角的三角函数值,解答本题的关键是明确它们各自的解答方法.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列美丽的壮锦图案是中心对称图形的是()A.B.C.D.【答案】A【解析】根据中心对称图形的定义逐项进行判断即可得.【详解】A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误,故选A.【点睛】本题主要考查了中心对称图形,熟练掌握中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.2.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A.252-B.25-C.251-D.52-【答案】A【解析】根据黄金比的定义得:51APAB-=,得514252AP-=⨯=-.故选A.3.如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为().A.20海里B.3C.2海里D.30海里【答案】C【分析】如图,根据题意易求△ABC是等腰直角三角形,通过解该直角三角形来求BC的长度.【详解】如图,∵∠ABE=15°,∠DAB=∠ABE,∴∠DAB=15°,∴∠CAB=∠CAD+∠DAB=90°.又∵∠FCB=60°,∠CBE=∠FCB=60°,∠CBA+∠ABE=∠CBE,∴∠CBA=45°.∴在直角△ABC中,sin∠ABC=ACBC=140222BC⨯=,∴BC=202海里.故选C.考点:解直角三角形的应用-方向角问题.4.已知三角形两边长为4和7,第三边的长是方程216550x x-+=的一个根,则第三边长是()A.5 B.5或11 C.6 D.11【答案】A【分析】求出方程的解x1=11,x2=1,分为两种情况:①当x=11时,此时不符合三角形的三边关系定理;②当x=1时,此时符合三角形的三边关系定理,即可得出答案.【详解】解:x2-16x+11=0,(x-11)(x-1)=0,x-11=0,x-1=0,解得:x1=11,x2=1,①当x=11时,∵4+7=11,∴此时不符合三角形的三边关系定理,∴11不是三角形的第三边;②当x=1时,三角形的三边是4、7、1,∵此时符合三角形的三边关系定理,∴第三边长是1.故选:A.【点睛】本题考查了解一元二次方程和三角形的三边关系定理的应用,注意:求出的第三边的长,一定要看看是否符合三角形的三边关系定理,即a+b>c,b+c>a,a+c>b,题型较好,但是一道比较容易出错的题目.5.已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有()①c>0;②b2-4ac<0;③ a-b+c>0;④当x>-1时,y随x的增大而减小.A.4个B.3个C.2个D.1个【答案】C【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧,y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a 与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.6.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是()A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2+5【答案】A【解析】结合向左平移的法则,即可得到答案.【详解】解:将抛物线y=x2+3向左平移2个单位可得y=(x+2)2+3,故选A.【点睛】此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答. 7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°【答案】B【解析】根据事件发生的可能性大小判断相应事件的类型.【详解】A.任意画一个三角形,其内角和为180°是必然事件;B.经过有交通信号的路口,遇到红灯是随机事件;C.太阳从东方升起是必然事件;D.任意一个五边形的外角和等于540°是不可能事件.故选B.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.关于x的一元二次方程x2﹣23x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<3 B.m>3 C.m≤3D.m≥3【答案】A【解析】分析:根据关于x的一元二次方程x2-23x+m=0有两个不相等的实数根可得△=(-23)2-4m >0,求出m的取值范围即可.详解:∵关于x的一元二次方程x2-23x+m=0有两个不相等的实数根,∴△=(-23)2-4m>0,∴m<3,故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.9.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使△ABE和△ACD相似的是()。

2018届九年级上学期期末考试数学试题 (4)

一、选择题(每小题4分,共48分)1、下列图形中既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆 2、把抛物线1212-=x y 先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为( )。

A 3)1(212-+=x y B 3)1-(212-=x y C 1)1(212-+=x y D 1)1(212+-=x y3、一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )。

A. B. C. D.(1)如图,在44⨯的正方形网格中,每个小正方形的边长为1,若将AOC ∆绕点O 顺时针旋转900得到BOD ∆,则的长为( )。

A.πB.6πC.3πD.1.5π(2)如图,已知O Θ的半径为10,弦12=AB ,M 是AB 上任意一点,则线段OM 的长可能是( )A. 5B. 7C. 9D. 116、某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为,则可列方程为( )。

A: 36)1(482=-x B: 36)1(482=+x C: 48)1(362=-x D: 48)1(362=+x7、二次函数n m x y ++=2)(a 的图象如图,则一次函数y=mx+n 的图象经过 A. 第一、二、三象限 B. 第一、二、四象限 C. 第二、三、四象限 D. 第一、三、四象限7题图 8题图 9题图 10题图8、在等腰直角三角形ABC 中,AB=AC=4,点O 为BC 的中点,以O 为圆心作半径交BC 于点M 、N ,半圆O 与AB 、AC 相切,切点分别为D 、E ,则半圆O 的半径和MND ∠的度数分别为( )。

A 2,22.50B 3,300C 3,22.50D 2,3009、如图,在平面直角坐标系xOy 中,半径为2的P Θ的圆心P 的坐标为(-3,0),将P Θ沿x 轴正方向平移,使P Θ与x 轴相切,则平移的距离为( ) A. 1 B. 1或5 C. 3 D. 5 10、如图,已知双曲线)0(<=k xky 经过直角三角形OAB 斜边OA 的中点D,且与直角边AB 相交于点C.若点A 的坐标为(-6,4),则AOC ∆的面积为( ) A. 12 B. 9 C. 6 D. 411、如图,二次函数2(0)y ax bx c a =++≠的图象的顶点在第一象限,且过点(0,1)和(-1,0)。

{3套试卷汇总}2018年上海市知名初中九年级上学期数学期末考前模拟试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,AB 是O 的直径,M 、N 是弧AB (异于A 、B )上两点,C 是弧MN 上一动点,ACB ∠的角平分线交O 于点D ,BAC ∠的平分线交CD 于点E .当点C 从点M 运动到点N 时,则C 、E 两点的运动路径长的比是( )A .2B .2πC .32D .5 【答案】A 【解析】连接BE ,由题意可得点E 是△ABC 的内心,由此可得∠AEB =135°,为定值,确定出点E 的运动轨迹是是弓形AB 上的圆弧,此圆弧所在圆的圆心在AB 的中垂线上,根据题意过圆心O 作直径CD ,则CD ⊥AB ,在CD 的延长线上,作DF =DA ,则可判定A 、E 、B 、F 四点共圆,继而得出DE =DA =DF ,点D 为弓形AB 所在圆的圆心,设⊙O 的半径为R ,求出点C 的运动路径长为R π,DA =2R ,进而求出点E 的运动路径为弧AEB ,弧长为22R π,即可求得答案. 【详解】连结BE ,∵点E 是∠ACB 与∠CAB 的交点,∴点E 是△ABC 的内心,∴BE 平分∠ABC ,∵AB 为直径,∴∠ACB =90°,∴∠AEB =180°-12(∠CAB+∠CBA)=135°,为定值,AD BD =,∴点E 的轨迹是弓形AB 上的圆弧,∴此圆弧的圆心一定在弦AB 的中垂线上,∵AD BD =,∴AD=BD,如下图,过圆心O作直径CD,则CD⊥AB,∠BDO=∠ADO=45°,在CD的延长线上,作DF=DA,则∠AFB=45°,即∠AFB+∠AEB=180°,∴A、E、B、F四点共圆,∴∠DAE=∠DEA=67.5°,∴DE=DA=DF,∴点D为弓形AB所在圆的圆心,设⊙O的半径为R,则点C的运动路径长为:Rπ,DA=2R,点E的运动路径为弧AEB,弧长为:90221802RRππ⨯=,C、E两点的运动路径长比为:22Rπ=,故选A.【点睛】本题考查了点的运动路径,涉及了三角形的内心,圆周角定理,四点共圆,弧长公式等,综合性较强,正确分析出点E运动的路径是解题的关键.2.如图,一张扇形纸片OAB,∠AOB=120°,OA=6,将这张扇形纸片折叠,使点A与点O重合,折痕为CD,则图中未重叠部分(即阴影部分)的面积为()A.93B.12π﹣93C.932D.6π﹣932【答案】A【分析】根据阴影部分的面积=S扇形BDO﹣S弓形OD计算即可.【详解】由折叠可知,S弓形AD=S弓形OD,DA=DO.∵OA=OD,∴AD=OD=OA,∴△AOD为等边三角形,∴∠AOD=60°.∵∠AOB=120°,∴∠DOB=60°.∵AD=OD=OA=6,∴AC=CO=3,∴3∴S弓形AD=S扇形ADO﹣S△ADO260613602π⋅=-⨯6×3=6π﹣3∴S弓形OD=6π﹣3阴影部分的面积=S扇形BDO﹣S弓形OD2606360π⋅=-(6π﹣33故选:A.【点睛】本题考查了扇形面积与等边三角形的性质,熟练运用扇形公式是解答本题的关键.3.如果53x yx+=,那么yx=()A.85B.38C.32D.23【答案】D【分析】直接利用已知进行变形进而得出结果.【详解】解:∵53x yx+=,∴3x+3y=5x,则3y=2x,那么yx=23.故选:D.【点睛】本题考查了比例的性质,正确将已知变形是解题的关键.4.在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()A.57B.2114C.3D.217【答案】B【解析】试题解析:延长BA过点C作CD⊥BA延长线于点D,∵∠CAB=120°,∴∠DAC=60°,∴∠ACD=30°,∵AB=4,AC=2,∴AD=1,3,BD=5,∴287∴sinB=3211427CDBC==.故选B.5.如图,△ABC中,∠ACB=90°,∠A=30°,将△ABC绕C点按逆时针方向旋转α角(0°<α<90°)得到△DEC,设CD交AB于点F,连接AD,当旋转角α度数为________,△ADF是等腰三角形.A.20°B.40°C.10°D.20°或40°【答案】D【分析】根据旋转的性质可得AC=CD,根据等腰三角形的两底角相等求出∠ADF=∠DAC,再表示出∠DAF,根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠AFD,然后分①∠ADF=∠DAF,②∠ADF=∠AFD,③∠DAF=∠AFD三种情况讨论求解.【详解】∵△ABC绕C点逆时针方向旋转得到△DEC,∴AC=CD,∴∠ADF=∠DAC=12(180°-α),∴∠DAF=∠DAC-∠BAC=12(180°-α)-30°,根据三角形的外角性质,∠AFD=∠BAC+∠DCA=30°+α,△ADF是等腰三角形,分三种情况讨论,①∠ADF=∠DAF时,1 2(180°-α)=12(180°-α)-30°,无解,②∠ADF=∠AFD时,12(180°-α)=30°+α,解得α=40°,③∠DAF=∠AFD时,12(180°-α)-30°=30°+α,解得α=20°,综上所述,旋转角α度数为20°或40°.故选:D.【点睛】本题考查了旋转的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,难点在于要分情况讨论.6.下列方程中,关于x 的一元二次方程是( )A .3(x +1)2=2(x +1)B .21x +1x -2=0C .ax 2+bx +c =0D .x 2+2x =x 2-1 【答案】A【分析】依据一元二次方程的定义判断即可.【详解】A. 3(x+1)2=2(x+1)是一元二次方程,故A 正确; B. 21x +1x-2=0是分式方程,故B 错误; C. 当a=0时,方程ax 2+bx+c=0不是一元二次方程,故C 错误;D. x 2+2x=x 2-1,整理得2x=-1是一元一次方程,故D 错误;故选A.【点睛】此题考查一元二次方程的定义,解题关键在于掌握其定义.7.已知4(0)a c b d b d ==+≠,则a c b d +=+( ) A .1B .2C .4D .8 【答案】C【分析】根据比例的性质得出44a b c d ==,再代入要求的式子,然后进行解答即可. 【详解】解:∵4a c b d==, ∴a=4b ,c=4d , ∴444a c b d b d b d++==++, 故选C .【点睛】此题考查了比例的性质,熟练掌握比例线段的性质是解题的关键,是一道基础题.8.下列事件中,属于必然事件的是( )A .2020年的除夕是晴天B .太阳从东边升起C .打开电视正在播放新闻联播D .在一个都是白球的盒子里,摸到红球【答案】B【分析】根据必然事件和随机事件的概念进行分析.【详解】A 选项:2020年的元旦是晴天,属于随机事件,故不合题意;B 选项:太阳从东边升起,属于必然事件,故符合题意;C 选项:打开电视正在播放新闻联播,属于随机事件,故不合题意;D 选项:在一个都是白球的盒子里,摸到红球,属于不可能事件,故不合题意.故选:B .【点睛】考查了确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件;注:事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.在一定条件下,可能发生也可能不发生的事件,称为随机事件.9.一张圆心角为α的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为4,已知4tan3α=,则扇形纸板和圆形纸板的半径之比是()A.1304B.22C.23D.672【答案】A【分析】分别求出扇形和圆的半径,即可求出比值.【详解】如图,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=4,∵4tan3α==ABOB,∴OB=34AB=3,∴CO=7由勾股定理得:OD224765+==r1;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=4,∴MC=MB=22=r2∴扇形和圆形纸板的半径比是65:22=130 4故选:A.【点睛】本题考查了正方形性质、圆内接四边形性质;解此题的关键是求出扇形和圆的半径,题目比较好,难度适中.10.3的倒数是()A.3B.3-C.13D.13-【答案】C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.11.反比例函数kyx=-与二次函数2y kx k=-(0)k≠在同一直角坐标系的图像可能是()A.B.C.D.【答案】C【分析】先根据反比例函数图象确定k的值,再分析二次函数图象是否符合,逐一判断即可【详解】A 、由反比例函数图象知:k >0,因此二次函数图象应开口向上,且与y 轴交于负半轴,故此选项错误;B 、由反比例函数图象知:k <0,因此二次函数图象应开口向下,故此选项错误;C 、由反比例函数图象知:k <0,因此二次函数图象应开口向下,且与y 轴交于正半轴,故此选项正确;D 、由反比例函数图象知:k >0,因此二次函数图象应开口向上,故此选项错误;故选C.【点睛】本题考查反比例函数、二次函数的图象与性质,比较基础.12.已知函数y =ax 2+bx+c (a≠1)的图象如图,给出下列4个结论:①abc >1; ②b 2>4ac ; ③4a+2b+c >1;④2a+b =1.其中正确的有( )个.A .1B .2C .3D .4【答案】C 【分析】二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点来确定,结合抛物线与x 轴交点的个数来分析解答. 【详解】解:①由抛物线的对称轴可知:2b a ->1, ∴ab <1,由抛物线与y 轴的交点可知:c >1,∴abc <1,故①错误;②由图象可知:△>1,∴b 2−4ac >1,即b 2>4ac ,故②正确;③∵(1,c )关于直线x =1的对称点为(2,c ),而x =1时,y =c >1,∴x =2时,y =c >1,∴y =4a +2b +c >1,故③正确; ④∵12b a-=, ∴b =−2a ,∴2a +b =1,故④正确.故选C .【点睛】本题考查了二次函数的图象与系数的关系,解题的关键是熟练运用二次函数的图象与性质,属于中等题型.二、填空题(本题包括8个小题)13.二次函数y =2(x ﹣3)2+4的图象的对称轴为x =______.【答案】1【分析】已知抛物线的顶点式,可知顶点坐标和对称轴.【详解】∵y =2(x ﹣1)2+4是抛物线的顶点式,根据顶点式的坐标特点可知,对称轴为直线x =1.故答案为1.【点睛】本题考查了二次函数的对称轴问题,掌握抛物线的顶点式是解题的关键.14.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随即抽取一张,以其正面数字作为a 的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b 的值,则点(a ,b )在第二象限的概率为_____. 【答案】13【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及点(a ,b )在第二象限的情况,再利用概率公式即可求得答案.【详解】解:画树状图图得:∵共有6种等可能的结果,点(a ,b )在第二象限的有2种情况,∴点(a ,b )在第二象限的概率为:2163=. 故答案为:13. 【点睛】本题考查的是利用公式计算某个事件发生的概率,注意找全所有可能出现的结果数作分母.在判断某个事件A 可能出现的结果数时,要注意审查关于事件A 的说法,避免多数或少数.15.如图,平行四边形,ABCD O 分别切,,CD AD BC 于点,,E F G ,连接CO 并延长交AD 于点H ,连接,AG AG 与HC 刚好平行,若4,5AB AD ==,则O 的直径为______.【答案】23【分析】先证得四边形AGCH 是平行四边形,则AH CG =,再证得DH DC =,求得1AH =, 3DE =,证得DO ⊥HC ,根据~Rt OCE Rt DOE ,即可求得半径,从而求得结论.【详解】∵四边形ABCD 是平行四边形,∴AD ∥BC ,∵AG ∥HC ,∴四边形AGCH 是平行四边形,∴AH CG =,∵CG CE 、是⊙O 的切线,且切点为G 、E ,∴CG CE AH ==,∠GCH=∠HCD ,∵AD ∥BC ,∴∠DHC=∠GCH ,∴∠DHC=∠HCD ,∴三角形DHC 为等腰三角形,∴4DH DC AB ===,∴541AH AD DH =-=-=,∴1CE AH ==,413DE DC CE =-=-=,连接OD 、OE ,如图,∵DE DF 、是⊙O 的切线,且切点为E 、F ,∴DO 是∠FDE 的平分线,又∵DH DC =,∴DO ⊥HC,∴∠DOC=90︒,∵CD切⊙O于E,∴OE⊥CD,∵∠OCE+∠COE=90︒,∠DOE+∠COE=90︒,∴∠OCE=∠DOE,∴~Rt OCE Rt DOE,∴OE CEDE OE=,即13OEOE=,∴3OE=,∴⊙O的直径为:23故答案为:23.【点睛】本题考查了平行四边形的判定和性质,切线长定理,相似三角形的判定和性质,等腰三角形的判定和性质,证得DHC为等腰三角形是解题的关键.16.已知点A(4,y 1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是.【答案】y3>y1>y2.【解析】试题分析:将A,B,C三点坐标分别代入解析式,得:y1=3,y2=5-4,y3=15,∴y3>y1>y2.考点:二次函数的函数值比较大小.17.如图,在⊙O中,半径OC与弦AN垂直于点D,且AB=16,OC=10,则CD的长是_____.【答案】4【解析】根据垂径定理以及勾股定理即可求答案.【详解】连接OA,设CD=x,∵OA=OC=10,∴OD=10﹣x,∵OC⊥AB,∴由垂径定理可知:AB=16,由勾股定理可知:102=82+(10﹣x)2∴x =4,∴CD =4,故答案为:4【点睛】本题考查垂径定理,解题的关键是熟练运用垂径定理以及勾股定理,本题属于基础题型.18.如图,一条公路的转弯处是一段圆弧AB ,点O 是这段弧所在圆的圆心,AB =40 m ,点C 是AB 的中点,且CD =10 m ,则这段弯路所在圆的半径为__________m .【答案】25m【分析】根据垂径定理可得△BOD 为直角三角形,且BD=12AB ,之后利用勾股定理进一步求解即可. 【详解】∵点C 是AB 的中点,∴OC 平分AB ,∴∠BOD=90°,BD=12AB=20m , 设OB=x ,则:OD=(x-10)m ,∴()2221020x x =-+,解得:25x =,∴OB=25m ,故答案为:25m.【点睛】本题主要考查了垂径定理与勾股定理的综合运用,熟练掌握相关概念是解题关键.三、解答题(本题包括8个小题)19.如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF=3m ,沿BD 方向到达点F 处再测得自己得影长FG=4m ,如果小明的身高为1.6m ,求路灯杆AB 的高度.【答案】6.4m【分析】由CD ∥EF ∥AB 得可以得到△CDF ∽△ABF ,△ABG ∽△EFG ,故CD DF AB BF =,EF FG AB BG =,证DF FG BF BG =,进一步得3437BD BD =++,求出BD ,再得1.6312AB =; 【详解】解:∵CD ∥EF ∥AB ,∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG ,∴CD DF AB BF =,EF FG AB BG=, 又∵CD=EF , ∴DF FG BF BG=, ∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7, ∴3437BD BD =++ ∴BD=9,BF=9+3=12 ∴1.6312AB = 解得,AB=6.4m因此,路灯杆AB 的高度6.4m .【点睛】考核知识点:相似三角形的判定和性质.理解相似三角形判定是关键.20. (1)问题:如图1,在四边形ABCD 中,点P 为AB 上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP .(2)探究:如图2,在四边形ABCD 中,点P 为AB 上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD 中,AB=12,AD=BD=10.点P 以每秒1个单位长度的速度,由点A 出发,沿边AB 向点B 运动,且满足∠DPC=∠A.设点P 的运动时间为t (秒),当以D 为圆心,以DC 为半径的圆与AB 相切,求t的值.【答案】(1)见解析;(2)结论AD·BC=AP·BP仍成立.理由见解析;(3)t的值为2秒或10秒.【分析】(1)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证得△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可证得△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(3)过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=6,根据勾股定理可得DE=8,由题意可得DC=DE=8,则有BC=10−8=2,易证∠DPC=∠A=∠B,根据AD·BC=AP·BP,即可求出t的值.【详解】(1)证明:∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠ADP=∠BPC,∴△ADP∽△BPC,∴AD AP BP BC=,∴AD·BC=AP·BP;(2)结论AD·BC=AP·BP仍成立理由:∵∠BPD=∠DPC+∠BPC,且∠BPD=∠A+∠ADP,∴∠DPC+∠BPC=∠A+∠ADP,∵∠DPC=∠A=θ,∴∠BPC=∠ADP,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴AD AP BP BC=,∴AD·BC=AP·BP;(3)如图3,过点D作DE⊥AB于点E,∵AD=BD=10,AB=12,.∴AE=BE=6,∴8DE==,∵以D为圆心,以DC为半径的圆与AB相切,∴DC=DE=8,∴BC=10-8=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A ,∴∠DPC=∠A=∠B ,由(1)(2)的经验得AD·BC=AP·BP , 又∵AP=t ,BP=12-t ,∴102(12)t t ⨯=-,解得:12t =,210t =,∴t 的值为2秒或10秒.【点睛】本题是对K 型相似模型的探究和应用,考查了相似三角形的判定与性质、切线的性质、等腰三角形的性质、勾股定理、等角的余角相等、三角形外角的性质、解一元二次方程等知识以及运用已有经验解决问题的能力,渗透了特殊到一般的思想.21.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE =40cm ,EF =20cm ,测得边DF 离地面的高度AC =1.5m ,CD =10m ,求树高AB .【答案】树高为6.5米.【分析】根据已知易得出△DEF ∽△DCB,利用相似三角形的对应边成比例可得BC DC EF DE =;然后将相关数据代入上式求出BC 的长,再结合树高=AC+BC 即可得出答案.【详解】解:∵∠DEF =∠BCD =90°∠D =∠D∴△DEF ∽△DCB ∴BC EF =DC DE∵DE =40cm =0.4m ,EF =20cm =0.2m ,AC =1.5m ,CD =10m ,∴0.2BC =100.4∴BC =5米,∴AB =AC+BC =1.5+5=6.5米∴树高为6.5米.【点睛】本题的考点是相似三角形的应用.方法是由已知条件得出两个相似三角形,再利用相似三角形的性质解答. 22.在平面直角坐标系xOy 中,抛物线2221y x mx m m =-+--+交 y 轴于点为A ,顶点为D ,对称轴与x 轴交于点H .(1)求顶点D 的坐标(用含m 的代数式表示);(2)当抛物线过点(1,-2),且不经过第一象限时,平移此抛物线到抛物线22y x x =-+的位置,求平移的方向和距离;(3)当抛物线顶点D 在第二象限时,如果∠ADH=∠AHO ,求m 的值.【答案】(1)顶点D (m ,1-m );(1)向左平移了1个单位,向上平移了1个单位;(3)m=-1或m=-1.【解析】试题分析:()1把抛物线的方程配成顶点式,即可求得顶点坐标.()2把点()1,2-代入求出抛物线方程,根据平移规律,即可求解.()3分两种情况进行讨论.试题解析:(1)∵()222211y x mx m m x m m =-+--+=---+,∴顶点D (m ,1-m ).(1)∵抛物线2221y x mx m m =-+--+过点(1,-1),∴22121m m m -=-+--+.即220m m --=,∴2m =或1m =-(舍去),∴抛物线的顶点是(1,-1).∵抛物线22y x x =-+的顶点是(1,1),∴向左平移了1个单位,向上平移了1个单位.(3)∵顶点D 在第二象限,∴0m <.情况1,点A 在y 轴的正半轴上,如图(1).作AG DH ⊥于点G ,∵A (0,21m m --+),D (m ,-m+1),∴H (,0m ),G (2,1m m m --+), tan ?tan ADH AHO ADH AHO ∠=∠∴∠=∠,,∴AG AO DG HO =.∴()22111m m m m m m m ---+=-----+. 整理得:20m m +=.∴1m =-或0m =(舍).情况1,点A 在y 轴的负半轴上,如图(1).作AG DH ⊥于点G ,∵A (0,21m m --+),D (m ,-m+1),∴H (,0m ),G (2,1m m m --+), tan ?tan ADH AHO ADH AHO ∠=∠∴∠=∠,,∴AG AO DG HO =.∴()22111m m m m m m m -+-=-----+. 整理得:220m m +-=.∴2m =-或1m =(舍),1m ∴=-或2m =-.23.如图,在Rt ABC ∆中,90ACB ︒∠=,D 为边AB 上的中点,DE AB ⊥交AC 于点E ,2AD DE =.(1)求sin B 的值;(2)若5CD =CE 的值.【答案】(125(2)32 【分析】(1)根据题意证出∠B=∠ADE ,进而设出DE 和AD 的值,再结合勾股定理求出AE 的值即可得出答案;(2)根据斜中定理求出AD 和AB 的值,结合∠B 和∠AED 的sin 值求出AC 和AE 的值,相减即可得出答案.【详解】(1)∵DE AB ⊥,∴90ACB ADE ︒∠=∠=.又∵A A ∠=∠,∴90B AED A ︒∠=∠=-∠.设DE x =,则22AD DE x ==.在Rt ADE ∆中,225AE AD DE x =+= , 则25sin sin 55AD B AED AE x=∠===. (2)∵D 为Rt ABC ∆斜边AB 上的中点, ∴5AD BD CD ===∴25AB = 则25sin 254AB B AC =⋅==, 55sin 522AD AE AED ===∠, ∴53422CE AC AE =-=-=. 【点睛】 本题考查的是解直角三角形,难度适中,需要熟练掌握直角三角形中的相关性质与定理.24.画出如图几何体的主视图、左视图、俯视图.【答案】如图所示,见解析.【分析】根据长对正、高平齐、宽相等来画三视图即可.【详解】如图所示:.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线. 25.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,并写出点C2的坐标;(3)△A1B1C1与△A2B2C2成中心对称吗?若成中心对称,写出对称中心的坐标.【答案】(1)见解析;(2)见解析,点C2的坐标为(1,3);(3)△A1B1C1与△A2B2C2成中心对称,对称中心为(12,12)【解析】(1)作出A、B、C关于x轴的对称点,然后顺次连接即可得到;(2)把A、B、C绕原点按逆时针旋转90度得到对应点,然后顺次连接即可得到,根据图可写出C2的坐标;(3)成中心对称,连续各对称点,连线的交点就是对称中心,从而可以找出对称中心的坐标.【详解】(1)如图所示,△A 1B 1C 1即为所求.(2)如图所示,△A 2B 2C 2即为所求,点C 2的坐标为(1,3);(3)△A 1B 1C 1与△A 2B 2C 2成中心对称,对称中心为(12,12). 【点睛】本题综合考查了轴对称图形和图形的旋转的作图,图形变换的性质,不管是哪一种变化,找对应点是关键.26.已知24(2)kk y k x +-=+是二次函数,且函数图象有最高点. (1)求k 的值;(2)当x 为何值时,y 随x 的增大而减少.【答案】(1)3k =-;(2)当0x >时,y 随x 的增大而减少【分析】(1)根据二次函数的定义得出k 2+k-4=2,再利用函数图象有最高点,得出k+2<0,即可得出k 的值;(2)利用(1)中k 的值得出二次函数的解析式,利用形如y=ax 2(a≠0)的二次函数顶点坐标为(0,0),对称轴是y 轴即可得出答案.【详解】(1)∵242kk y k x +-=+()是二次函数,∴k 2+k-4=2且k+2≠0,解得k=-1或k=2,∵函数有最高点,∴抛物线的开口向下,∴k+2<0,解得k <-2,∴k=-1.(2)当k=-1时,y=-x 2顶点坐标(0,0),对称轴为y 轴,当x>0时,y随x的增大而减少.【点睛】此题主要考查了二次函数的定义以及其性质,利用函数图象有最高点,得出二次函数的开口向下是解决问题的关键.27.为了解九年级学生的体能状况,从我县某校九年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题;(1)求本次测试共调查了多少名学生?并在答题卡上补全条形统计图;(2)经测试,全年级有4名学生体能特别好,其中有1名女生,学校准备从这4名学生中任选两名参加运动会,请用列表或画树状图的方法求出女生被选中的概率.【答案】(1)共调查了50名学生,补图见解析;(2)1 2 .【分析】(1)设本次测试共调查了x名学生,根据总体、个体、百分比之间的关系列出方程即可解决.用总数减去A、C、D中的人数,即可解决,画出条形图即可.(2)画树状图展示所有12种等可能的结果数,再找出恰好抽到有1名女生的结果数,然后根据概率公式计算.【详解】解:(1)设本次测试共调查了x名学生.由题意20%10x=,解得:50x=∴本次测试共调查了50名学生.则测试结果为B等级的学生数=501016618---=人.条形统计图如图所示,(2)画树状图:共有12种等可能的结果数,其中恰好抽到有1名女生的结果数6,所以恰好抽到有1名女生的概率=612=12.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.解题的关键是灵活运用这些知识解决问题.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,反比例函数y=mx的图象与一次函数y=kx+b的图象相交于点A,B,已知点A的坐标为(-2,1),点B的纵坐标为-2,根据图象信息可得关于x的方程mx=kx+b的解为()A.-2,1 B.1,1 C.-2,-2 D.无法确定【答案】A【分析】所求方程的解即为两个交点A、B的横坐标,由于点A的横坐标已知,故只需求出点B的横坐标即可,亦即求出反比例函数的解析式即可,由于点A坐标已知,故反比例函数的解析式可求,问题得解.【详解】解:把点A(﹣1,1)代入myx=,得m=﹣1,∴反比例函数的解析式是2yx =-,当y=﹣1时,x=1,∴B的坐标是(1,﹣1),∴方程mx=kx+b的解是x1=1,x1=﹣1.故选:A.【点睛】本题考查了求直线与双曲线的交点和待定系数法求反比例函数的解析式,属于常考题型,明确两个函数交点的横坐标是对应方程的解是关键.2.如图,点A,B,C,D四个点均在⊙O上,∠A=70°,则∠C为()A.35°B.70°C.110°D.120°【答案】C【分析】根据圆内接四边形的性质即可求出∠C.【详解】∵四边形ABCD是圆内接四边形,∴∠C=180°﹣∠A=110°,故选:C.【点睛】此题考查的是圆的内接四边形,掌握圆内接四边形的性质:对角互补,是解决此题的关键.3.二次函数2y x 的图象向左平移2个单位,得到新的图象的函数表达式是( ) A .22y x =+B .22y x =-C .2(2)y x =+D .2(2)y x =- 【答案】C【分析】根据向左平移横坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】解:∵二次函数2y x 的图象向左平移2个单位,∴平移后的抛物线的顶点坐标为(-2,0),∴新的图象的二次函数表达式是:2(2)y x =+;故选择:C.【点睛】本题考查了二次函数图象与几何变换,此类题目,利用顶点的变化确定函数解析式的变化更简便,平移的规律:左加右减,上加下减.4.常胜村2017年的人均收入为12000元,2019年的人均收入为15000元,求人均收入的年增长率.若设人均收入的年增长率为x ,根据题意列方程为( )A .()212000115000x +=B .()120001215000x +=C .()2150********x -=D .()212000115000x += 【答案】D 【分析】根据“每年的人均收入=上一年的人均收入⨯(1+年增长率)”即可得.【详解】由题意得:2018年的人均收入为12000(1)x +元2019年的人均收入为212000(1)(1)12000(1)x x x ++=+元则212000(1)15000x +=故选:D .【点睛】本题考查了列一元二次方程,理解题意,正确找出等式关系是解题关键.5.方程x (x ﹣1)=0的解是( ).A .x =1B .x =0C .x 1=1,x 2=0D .没有实数根 【答案】C【解析】根据因式分解法解方程得到x=0或x ﹣1=0,解两个一元一次方程即可.【详解】解:x (x ﹣1)=0x=0或x ﹣1=0∴x 1=1,x 2=0,故选C.【点睛】本题考查因式分解法解一元二次方程,熟练掌握一元二次方程的解法是关键.6.在△ABC 中,∠C =90°,tanA =13,那么sinA 的值是( ) A .12 B .13 C .10 D .310 【答案】C【分析】根据正切函数的定义,可得BC ,AC 的关系,根据勾股定理,可得AB 的长,根据正弦函数的定义,可得答案.【详解】tanA =BC AC =13,BC =x ,AC =3x , 由勾股定理,得AB =10x ,sinA =BC AB =10, 故选:C .【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x ,AC=3x 是解题关键.7.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC ,则线段 AC 的长为( )A .3B .2C .6D .4【答案】B 【分析】由已知条件可得ABC DAC △△,可得出AC BC DC AC=,可求出AC 的长. 【详解】解:由题意得:∠B=∠DAC ,∠ACB =∠ACD,所以ABCDAC △△,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC=8,得DC=4,代入可得AC=42故选B.【点睛】 本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.8.如图工人师傅砌门时,常用木条EF 固定长方形门框ABCD ,使其不变形,这样做的根据是( )A .两点之间线段最短B .两点确定一条直线C .三角形具有稳定性D .长方形的四个角都是直角【答案】C 【分析】根据三角形的稳定性,可直接选择.【详解】加上EF 后,原图形中具有△AEF 了,故这种做法根据的是三角形的稳定性.故选:C .9.如图,已知梯形ABCO 的底边AO 在x 轴上,BC ∥AO ,AB ⊥AO ,过点C 的双曲线k y x=交OB 于D ,且OD :DB=1:2,若△OBC 的面积等于3,则k 的值()A .等于2B .等于34C .等于245D .无法确定【答案】B 【解析】如图分别过D 作DE ⊥Y 轴于E,过C 作CF ⊥Y 轴于F,则△ODE ∽△OBF,∵OD :DB=1:2∴相似比= 1:3∴面积比= OD :DB=1:9即又2OCF ODE K S S ==∴3+9212K K =∴解得K=34故选B 10.已知一个三角形的两个内角分别是40°,60°,另一个三角形的两个内角分别是40°,80°,则这两个三角形( )A .一定不相似B .不一定相似C .一定相似D .不能确定【答案】C【解析】试题解析:∵一个三角形的两个内角分别是40,60,∴第三个内角为80,又∵另一个三角形的两个内角分别是40,80,∴这两个三角形有两个内角相等,∴这两个三角形相似.故选C.点睛:两组角对应相等,两三角形相似.11.下列事件是必然事件的是()A.通常加热到100℃,水沸腾B.抛一枚硬币,正面朝上C.明天会下雨D.经过城市中某一有交通信号灯的路口,恰好遇到红灯【答案】A【解析】解:A.通常加热到100℃,水沸腾,是必然事件,故A选项符合题意;B.抛一枚硬币,正面朝上,是随机事件,故B选项不符合题意;C.明天会下雨,是随机事件,故C选项不符合题意;D.经过城市中某一有交通信号灯的路口,恰好遇到红灯,是随机事件,故D选项不符合题意.故选A.【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.如图,已知矩形ABCD,AB=6,BC=10,E,F分别是AB,BC的中点,AF与DE相交于I,与BD相交于H,则四边形BEIH的面积为()A.6 B.7 C.8 D.9【答案】B【分析】延长AF交DC于Q点,由矩形的性质得出CD=AB=6,AB∥CD,AD∥BC,得出CQAB=1,△AEI∽△QDE,因此CQ=AB=CD=6,△AEI的面积:△QDI的面积=1:16,根据三角形的面积公式即可得出结果.【详解】延长AF交DC于Q点,如图所示:∵E,F分别是AB,BC的中点,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

虹口区2017-2018学年第一学期期终教学质量监控测试
初三数学 试卷
(考试时间:100分钟 总分:150分) 2018.1
一、选择题:(本大题共6题,每题4分,满分24分)
【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位
置上】
1.如果两个相似三角形对应边之比是1:3,那么它们的对应中线之比是( )
A.1:3; B.1:4; C.1:6; D.1:9.

2.抛物线224yx的顶点在( )
A.x轴上; B.y轴上; C.第三象限; D.第四象限.
3.如果将抛物线22yx向右平移3个单位,那么所得到的新抛物线的表达式是( )

A.25yx; B.21yx;
C.2(3)2yx; D.2(3)2yx.
4.已知a=3,b=5,且b与a的方向相反,用a表示向量b为( )
A.35ba; B.53ba; C.35ba; D.53ba.
5.如图,传送带和地面成一斜坡,它把物体从地面送到离地面5米高的地方,物体所经过路程是
13米,那么斜坡的坡度为( )

A.1:2.6; B.51:13; C.1:2.4; D.51:12.
6.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC

面积为10,且5sin5A,那么点C的位置可以在( )

A.点1C处; B.点2C处; C.点3C处; D.点4C处.
二、填空题(本大题共12题,每题4分,满分48分)
【请将结果直接填入答题纸的相应位置】

7.如果23xy,那么4yxxy .
8.如果点P把线段AB分割成AP和PB两段(AP>PB),其中AP是AB与PB的比例中项,那么
AP:AB的值为 .

9.如果2()axbx,那么x (用向量、ab表示向量x).

10.如果抛物线2(1)3yxmx经过点(2,1),那么m的值为 .
11.抛物线221yxx在对称轴 (填“左侧”或“右侧”)的部分是下降的.
12.如果将抛物线22yx平移,顶点移到点P(3,-2
)的位置,那么所得新抛物线的表达式

为 .
13.如果点A(2,-4)与点B(6,-4
)在抛物线2(0)yaxbxca上,那么该抛物线的对称轴

为直线 .
14.如图,已知AD∥EF∥BC,如果AE=2EB,DF=6,那么CD的长为 .

15.在Rt△ABC中,∠C=90°,如果AB=6,1cos3A,那么AC= .
16.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线分别交边BC、AB于点D、E如果BC=8

4
tan3A
,那么BD= .

17.如图,点P为∠MON平分线OC上一点,以点P为顶点的∠APB两边分别与射线OM、ON

交于点A、B,如果∠APB在绕点P旋转时始终满足2OAOBOP,我们就把∠APB叫做∠
MON
的关联角.如果∠MON=50°,∠APB是∠MON的关联角,那么∠APB的度数为 .

18.在Rt△ABC中,∠C=90°,AC=6,BC=8(如图),点D是边AB上一点,把△ABC绕着点D
旋转90°得到△ABC,边BC与边AB相交于点E,如果AD=BE,那么AD长为 .

三、解答题(本大题共7题,满分78分)
19.(本题满分10分)
计算:22sin60sin30cot30cos30°°°°.
20.(本题满分10分)
小明按照列表、描点、连线的过程画二次函数的图像,下表与下图是他所完成的部分表格与图像,
求该二次函数的解析式,并补全表格与图像.
x … -1 0 2 4

y … 0 5 9 0

21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)
如图,在△ABC中,点E在边AB上,点G是△ABC的重心,联结AG并延长交BC于点D.

(1)若ABa,ACb,用向量、ab表示向量AG;

(2)若∠B=∠ACE,AB=6,26AC,BC=9,求EG的长.

22.(本题满分10分)
如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线
上,A、B之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地
面的距离CD为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留
一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)
23.(本题满分12分,第(1)题满分6分,第(2)题满分6分)
如图,在△ABC中,点D、E分别在边AB、AC上,DE、BC的延长线相交于点F,且EFDFBFCF.
(1)求证ADABAEAC;

(2)当AB=12,AC=9,AE=8时,求BD的长与△△ADEECFSS的值.

24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)
如图,在平面直角坐标系xOy中,抛物线与x轴相交于点A(-2,0)、B(4,0),与y轴交于点C(0,
-4),BC与抛物线的对称轴相交于点D.
(1)求该抛物线的表达式,并直接写出点D的坐标;
(2)过点A作AE⊥AC交抛物线于点E,求点E的坐标;
(3)在(2)的条件下,点F在射线AE上,若△ADF∽△ABC,求点F 的坐标.
25.(本题满分14分,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分4分)
已知AB=5,AD=4,AD∥BM,3cos5B(如图),点C、E分别为射线BM上的动点(点C、E都

不与点B重合),联结AC、AE,使得∠DAE=∠BAC,射线EA交射线CD于点F.设BC=x,AFyAC.
(1)如图1,当x=4时,求AF的长;
(2)当点E在点C的右侧时,求y关于x的函数关系式,并写出函数的定义域;
(3)联结BD交AE于点P,若△ADP是等腰三角形,直接写出x的值.

相关文档
最新文档