2017年《勤学早》八年级数学下册期末考试模拟试题(一)(word版)
数学八下专题(勤学早)

重点强化专题 二次根式的非负性(Qp 13)[方法技巧] a 表示非负数a 的算术平方根,它具有双重非负性:(1)二次根式的结果是非负数,即a ≥0;(2)二次根式的被开方数是非负数,即a ≥0. 一、利用二次根式的非负性求范围1、二次根式4_x 有意义,则实数x 的取值范围是2、若1_m =1-m.则m 的取值范围为 二、利用二次根式的非负性化简 3. 若a>2,则、)2_(2a _12_2+a a=4. .化简:-y y1_= 5. 当x<0时,化简:xx x x 2_44_22+=6. 实数a,b在数轴上的位置如图所示,化简:)2(2+a -)2_(2b +)(2b a +三、利用二次根式的非负性求值7. 若|x+y-1|+10_2+y x =0,则4y- 3x 的平方根是_ 8. 若1_a +|1-a|=a+3,求a 的值.9. 已知y=3_x -x _3+4,求y xxy 222_++y x xy 224_4+的值.10.已知实数x,y 满足x 2-10x+6+y +25=0,求(x+y)2019的值.方法专题一二次根式的运算(KP14)(k p15)重点强化专题矩形(一) 折叠问题(QP55)[方法技巧]抓住折叠的本质是轴对称(全等性、对称性),寻找等线段、等角,结合勾股定理构建万程解题重点强化一将矩形顶点折叠到对边上1.如图,折叠矩形的一-边AD,使点D落在BC边的点F处,AB=6,BC= 10,求EC的长.重点强化二将矩形顶点折叠到对角线上2.如图,矩形ABCD中,AB=6,BC=8,点E在BC上,将矩形沿AE折叠,使点B落在AC上的点F处,求AE的长.重点强化三将矩形沿对角线折叠3.如图,将矩形ABCD沿BD折叠,使点C落在点E处,BE交AD于点F,连接AE.(1)求证:BF= DF;(2)求证:AE// BD(3)若AB=4,BC=8,求S△BFD.重点强化四折叠后矩形对角顶点重合4如图,在矩形纸片ABCD中.AB=4 .BC=8将纸片沿 EF折叠,使点C与点A重合(1)求证:AE=AF;(2)求S△AEF;(3)求EF的长.重点强化五折叠矩形一边构造等腰三角形5.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM ,MN,AB的延长线交于点Q,DM=1.求NQ的长.图形构造专题 矩形(二)构造斜边上的中线(P56)难点突破一→遇斜边中点→连斜边上的中线1.如图,在△A BC 中,BD ⊥AC 于点D.CE ⊥AB 于点E.点M.N 分别是BC .DE 的中点, (1)求证:MN⊥DE:(2)连接ME.MD.若∠BAC = 60°,试判断△MED 的形状难点突破二 取斜边中点→构造斜边上的中线2. (2019改编题)如图,在四边形ACBD 中,∠ACB=∠ADB=90°,∠DBC= 60°,求ABCD的值.难点突破三 延长补形一构造斜边上的中线3.如图,在四边形ABCD 中,A D//BC.∠ABC= 90°,E 是CD 的中点,求证:AE=BE.4. (2019原创题)如图,在四边形ABED 中,AD//BE ,∠B=90°,M 是BE 上一点,且AD=2BM,F 为DE 的中点,连接AE.MF.求证:MF=21AE正方形中ɑ=2b 型问题(QP 68)1.如图,在正方形ABCD 中,AC ,BD 交于点O ,E 为OD 上一点,且BE=BA,DE=2OE2.如图,在正方形ABCD 中,E 为AC 上一点,F 为CD 上一点,且ED=EF.求证:BF=2DE3.如图,在正方形ABCD 中,E 为BD 上一点,F 为AD 上一点,且EC=EF, (1)求证:EF⊥EC (2)求证:CD=2EG4.如图,在正方形ABCD 中,E 为CD 上一点,F 在CB 的延长线上,且ED=BF. (1)求证:EM=FM (2)求证:AE=2EM5.如图,在正方形ABCD 中,E 在BC 的延长线上,且AE=CF,点P 是EF 的中点,求证:BE=2PC6,我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图 1,在四边形 ABCD 中,点 E,F,G,H 分别为边 AB,BC,CD,DA 的中点.求证:中点四边形 EFGH 是平行四边形.平行四边形.(2)如图 2, 点 P 是四边形 ABCD 内一点, 且满足PA=PB,PC=PD,∠APB=∠CPD, 点 E,F,G,H 分别为边AB,BC,CD,DA 的中点,猜想中点四边形 EFGH 的形状,并证明你的猜想.(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形 EFGH 的形状.7.如图所示,正方形ABCD 的边长为6,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P,使PD+PE 的和最小,则这个最小值为5.如图所示,E,F 分别是正方形ABCD 的边CD,AD 上的点, 且CE=DF,AE,BF 相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S□DEOF 中,错误的有( )专题勾股定理与图形的折叠1.如图,把长方形纸条ABCD沿EF,GH同时折叠,B,C两点恰好落在AD边的P点处,若∠FPH=90°,PF=8,PH=6,则长方形ABCD的边BC的长为()A.20 B.22 C.24 D.302.如图,长方形ABCD的边AD沿折痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积是24,则FC的长等于()A.1 B.2 C.3 D.43.如图,长方形纸片ABCD的长AD=9 cm,宽AB=3 cm,将其折叠,使点D与点B重合,那么折叠后DE的长是多少?4.如图,将长方形ABCD沿BD对折,使点C落在C′处,BC′交AD于点E,AD=8,AB =4,求△BED的面积如图17-14,有一长、宽、高分别为5 cm 、4 cm 、3 cm 的木箱,在箱底边EF 的中点O 处有一只小虫,若它要爬到C 点寻找食物,问怎样爬路线最短?图17-14已知直角三角形的两边长x ,y 满足⎪⎪⎪⎪⎪⎪x -3+(y -4)2=0,则这个直角三角形的斜边长为________.如图17-7,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10 cm ,正方形A 的边长为6 cm ,正方形B 的边长为5 cm ,正方形C 的边长为5 cm ,则正方形D 的边长为( )图17-7A.14 cm B .4 cm C.15 cm D .3 cm例2阅读下面材料,并解决问题:(1)如图17-3①,等边三角形ABC 内有一点P ,若点P 到顶点A ,B ,C 的距离分别为3,4,5,则∠APB =________,由于PA ,PB 不在一个三角形中,为了解决本题我们可以将△ABP 绕顶点A 旋转到△ACP ′处,此时△ACP ′≌________,这样就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中,从而求出∠APB 的度数.(2)请你利用第(1)题的解答思想方法,解答下面问题:已知:如图17-3②,△ABC 中,∠CAB =90°,AB =AC ,E ,F 为BC 上的点且∠EAF =45°,求证:EF 2=BE 2+FC 2.如图17-8所示,在△ABC 中,∠B =90°,将△ABC 沿AD 折叠,使点B 落在AC 上的点E 处,若AB =3,BC =4,求DC =________.图17-8我国古代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图17-9①).图17-9②是由弦图变化得到的,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3,若S 1+S 2+S 3=10,则S 2的值是________.图17-9[2013·东营] 如图17-10,圆柱形容器中,高为1.2 m ,底面周长为1 m ,在容器内壁离容器底部0.3 m 的点B 处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3 m 与蚊子相对的点A 处,则壁虎捕捉蚊子的最短距离为________m(容器厚度忽略不计).图17-10方法专题3 与勾股定理有关的分类讨论问题(kp24)类型一针对直角边与斜边进行分类1.若直角三角形的两边分别是3和4,则第三边上的高是2.若直角三角形的两边长分别是6和8,则这个三角形的面积是类型二针对等腰三角形腰长和底边长进行分类3.在Rt△ABC中,∠ABC=90°.AB=3,BC=4.过点B的直线把△ABC分割成两个三角形,且其中只有一个是等腰三角形,求这个等腰三角形的面积类型三针对锐角三角形和钝角三角形进行分类4.在△ABC中,AB=15,AC=13,BC边上的高AD= 12,求△ABC的周长.5.已知CD是△ABC的边AB上的高,若CD=3,AD=1,AB=2AC,求BC的长。
勤学早·2017年武汉市四月调考数学模拟试卷(1)-(1)

勤学早·2017年武汉市四月调考数学模拟试卷(1)一、选择题(共10小题,每小题3分,共30分) 1.9的值是( ) A .3B .-3C .±3D .32.若代数式21x 在实数范围内有意义,则x 的取值范围是( ) A .x <2B .x ≠2C .x >2D .x =23.下列计算结果是a 6的是( )A .a 2·a 3B .a 2+a 4C .a 9-a 3D .(a 3)24.不透明的袋子中装有形状、大小、质地完全相同的5个球,其中3个黑球、2个白球.从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 5.运用乘法公式计算(x -2)2的结果是( )A .x 2-4x +4B .x 2-4C .x 2+4x +4D .x 2-2x +4 6.已知点A (2,a )与点B (b ,3)关于坐标原点对称,则实数a 、b 的值是( ) A .a =-3,b =2B .a =3,b =2C .a =-3,b =-2D .a =3,b =-27.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中数字表示该位置小正方体的个数,则该几何体的左视图是( )8.九年级某班40位同学的年龄如下表所示:年龄(岁)13 14 15 16 人数316192 则该班40名同学年龄的众数和中位数分别是( )A .19、15B .15、14.5C .19、14.5D .15、159.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若第n 个图案中有2017个白色纸片,则n 的值为( )A .671B .672C .673D .67410.已知二次函数y =ax 2+bx +c ,函数y 与自变量x 的部分对应值如下表:x …… -1 0 2 3 4 …… y……105225……若A (m ,y 1)、B (m -1,y 2)两点都在函数的图象上,则当m 满足( )时,y 1<y 2 A .m ≤2B .m ≥3C .m <25 D .m >25二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算8+(-5)的结果为____________ 12.化简:xx x 11-+=___________ 13.甲盒子中有编号为1、2的2个白色兵乓球,乙盒子中有编号为4、5的2个黄色兵乓球.现分别从每个盒子中随机地取出1个兵乓球,则取出兵乓球的标号之和大于6个概率为___________ 14.如图,E 、F 分别是□ABCD 的边BC 、AD 上的点,把四边形ABCD 沿EF 翻折,得到四边形GFEH ,A 的对应点为G ,B 的对应点为H .若∠B =50°,EH ∥CD ,则∠AFE 的度数是_________15.如图,△ABC 中,∠ABC =45°,∠C =30°,AD ⊥AC 交BC 于D ,以AD 为边作正方形ADEF ,F 在AC 边上,则CFBD的值为___________ 16.如图,AB 为⊙O 的直径,C 为半圆的中点,D 为弧AC 上一动点,延长DC 至E ,使CE =CD .若AB =24,当点D 从点A 运动到点C 时,线段BE 扫过的面积为___________ 三、解答题(共8题,共72分)17.(本题8分)解方程:3x +2=5(x -2)18.(本题8分)如图,点B 、E 、C 、F 在同一条直线上,AB ∥DE ,AB =DE ,BE =CF ,求证:AC =DF19.(本题8分)学习完统计知识后,某学生就本班同学的上学方式进行调查统计,他通过收集数据后绘制的两幅不完整的统计图如下图所示,请你根据图中提供的信息解答下列问题: (1) 该班有___________名学生,其中步行的有___________人;在扇形统计图中“骑自行车”所对应扇形的圆心角大小是___________(2) 根据以上统计分析,估计该校2000名学生中骑车的人数大约是多少?20.(本题8分)某商店购买60件A 商品和30件B 商品共用了1080元,购买50件A 商品和20件B 商品共用了880元(1) A 、B 两种商品的单价分别是多少元?(2) 已知该商品购买B 商品的件数比购买A 商品的件数的2倍少4件,设购买A 商品的件数为x 件,该商品购买A 、B 两种商品的总费用为y 元 ① 求y 关于x 的函数关系式② 若该商品购买的A 、B 两种商品的总费用不超过296元,那么购买A 商品的件数最多只能买多少件?21.(本题8分)在△P AE 中,∠P AE =90°,点O 在边AE 上,以OA 为半径的⊙O 交AE 于B ,OP 平分∠APE(1) 求证:PE 是⊙O 的切线 (2) 设⊙O 与PE 相切于点C ,若43EC EB ,连接PB ,求tan ∠APB 的值22.(本题10分)已知反比例函数xy 6=(1) 若该反比例函数的图象与直线y =-x +b 相交于A 、B 两点,若A (3,2),求点B 的坐标 (2) 如图,反比例函数xy 6=(1≤x ≤6)的图象记为曲线C 1,将C 1沿y 轴翻折,得到曲线C 2 ① 请在图中画出曲线C 1、C 2② 若直线y =-x +b 与C 1、C 2一共只有两个公共点,直接写出b 的取值范围23.(本题10分)在等边△ABC 中,D 为AB 上一点,连接CD ,E 为CD 上一点,∠BED =60° (1) 延长BE 交AC 于F ,求证:AD =CF (2) 若32=BD AD ,连接AE 、BE ,求BE AE 的值 (3) 若E 为CD 的中点,直接写出BDAD的值24.(本题12分)抛物线y=mx2-4mx+3与x轴的交点为A(1,0)、B,与y轴交于点C(1) 求抛物线的解析式(2)P为抛物线第一象限上的一点,若∠P AB=2∠ACO,求点P的坐标(3)M为抛物线在点B右侧上的一点,M与N两点关于抛物线的对称轴对称,AN、AM交y轴于E、D,求OE-OD的值。
___版2017-2018学年八年级数学下学期期末测试题及答案

___版2017-2018学年八年级数学下学期期末测试题及答案2017-2018学年八年级数学下册期末测试题第Ⅰ卷选择题一、选择题(本题有12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上。
)1.不等式2x+1>x+2的解集是A.x>1B.x<1C.x≥1D.x≤12.多项式2x2-2y2分解因式的结果是A.2(x+y)2B.2(x-y)2C.2(x+y)(x-y)D.2(y+x)(y-x)3.下列图案中,不是中心对称图形的是A。
B。
C。
D。
4.如图,△ABC中,AB的垂直平分线DE交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是A.6 cmB.7 cmC.8 cmD.9 cm5.要使分式(x-3)/(2x+6)有意义,那么x的取值范围是A.x≠3B.x≠3且x≠-3C.x≠-3D.x≠06.如果关于x的不等式(a+1)x>a+1的解集为x<1,则a的取值范围是A.a1 D.a>-17.如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD,交AD边于点E,且AE=3,则AB的长为A.4B.3C.5D.28.将一个有45°角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上。
另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为A.3cmB.6cm C。
9.如图,在□PQRS中,若PQ=RS=6,PR=8,PS=10,且□PQRS的周长为40,则□PQRS的面积为A.24B.36C.48D.6010.已知函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x3.11.已知a2+b2=6ab,则a-b的值为±2.12.△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,P为线段AB上一动点,D为BC上中点,则PC+PD的最小值为3.13.分解因式:2x2-4x+2=2(x-1)2.14.一个多边形的内角和与外角和的比是4:1,则它的边数是5.15.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为4-2√3.16.如图,在Rt△ABC中,∠ABC=90º,AB=BC=22,将△ABC绕点A逆时针旋转60º,得到△ADE,连接BE,则BE的长是11.17.解分式方程:x=4.18.解不等式组:x≤-1或x≥3/2.19.先化简,再求值:a=1/2.20.(1)如图所示;(2)扫过区域的面积为8.21.如图所示,DE∥BC,则AD/DB=AE/EC=3/2.22.解方程:x=1或x=3/2.23.解不等式:x≤-1/2或x≥2.AC的中点是M,连接BF,设BM=x,则MF=DE-EF=DE-DE/2=DE/2=x所以,△BMF和△DEC全等,因此,BF=DC=2AC又因为ABCF是平行四边形,所以BC=AF=2AC所以四边形BCFD的面积为BC*BF=2AC*2AC=4AC^2=4/3*3=>4.22.(9分)1)今年5月份A款汽车每辆售价9万元。
八年级数学下册期末考试卷(附带有答案)

八年级数学下册期末考试卷(附带有答案)(满分: 120 分 考试时间: 120 分钟)一、选择题1、 以下问题,不适合用普查的是( )A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘教师,对应聘人员面试D. 了解全市中小学生每天的零花钱 2、 下列图案中,不是中心对称图形的是( )3A. 全体实数B.x≠1C.x=1D. x >14、 把 118化为最简二次根式得( )1 1 1 1A. 18 18B. 18C. 2D.18 6 3 25、 若反比例函数y = (2m 1)x m 2-2 的图象在第二,四象限,则 m 的值是( )A. −1 或 1B. 小于 12 的任意实数C. −1D. 不能确定k6、 如图,在同一直角坐标系中,正比例函数 y=kx+3 与反比例函数 y = 的图象位置可能是( )x第 1 页 共 12 页3、 如果分式 有意义,则 x 的取值范围是( ) x 1第 2 页 共 12 页A. 1B. 2C. 一、填空题9、 当 x 时,分式 3 D. 4x 1的值为 0. x10、 若 x = 5 3 ,则 x 2 + 6x + 5 的值为 .12、 袋子里有 5 只红球,3 只白球,每只球除颜色以外都相同,从中任意摸出 1 只球,是红球的可能性 (选 填“大于”“小于”或“等于”)是白球的可能性。
13、 矩形 ABCD 的对角线 AC 、BD 交于点 O , ∠AOD =120 ,AC =4,则△ABO 的周长为 .14、 若关于 x 的分式方程 有增根,则.15、 某校高一年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分 100 分,学生成绩取整数),则成绩在 90.5 95.5 这一分数段的频率是a + 3b c11、 若 a:b:c=1:2:3,则 =a 3b + c第 3 页 共 12 页2 和 y =x△PAB 的面积是 3,则 k = .17、 图 1 所示矩形 ABCD 中, BC =x ,CD =y ,y 与 x 满足的反比例函数关系如图 2 所示,等腰直角三角形 AEF 的斜边 EF 过 C 点, M 为 EF 的中点,则下列结论正确的序号是 . ①当 x =3 时, EC <EM③当 x 增大时, EC ⋅CF 的值增大18、 如图 1,边长为 a 的正方形发生形变后成为边长为 a 的菱形,如果这个菱形的一组对边之间的距离为h , a我们把 的值叫做这个菱形的“形变度”。
2016-2017《勤学早》八年级上册期末考试模拟试题(一)(word版)

《勤学早》八年级上册期末考试模拟试题(一)(解答参考时间:120分钟 满分:120分)一、选择题(共10小题,每小题3分,共30分) 1.下列计算中,结果正确的是( ) A .b 3·b 3=2b 3B .(a 5)2=a 7C .a 6÷a 2=a 4D .(ab 2)3=ab 62.计算(x -2)2的结果为x 2+□x +4,则“□”中的数为( ) A .-2B .2C .-4D .43.下列多项式中,不能进行因式分解的是( ) A .-a 2+b 2B .-a 2-b 2C .-a 2-b 2+2abD .a 2-3a +24.若分式112++x x 的值为负数,则x 应满足( )A .x <-1B .x <1C .x <0D .x ≤05.点P (-2,1)关于y 轴对称的点的坐标为( ) A .(-2,1)B .(-1,-2)C .(2,-1)D .(-2,-1)6.已知等腰三角形的两条边分别是3、7,则这个等腰三角形的周长为( ) A .11B .13C .17D .13或177.如图所示,DE 是△ABC 中AC 边的垂直平分线,若BC =8,AB =10,则△EBC 的周长是( ) A .13B .16C .18D .20CBDE AN MCBADCBA第7题图 第9题图 第10题图8.在△ABC 和△DEF 中,已知AB =DE ,∠B =∠E ,下列补充的条件中,无法判定△ABC ≌△DEF 的是( ) A .AC =DFB .∠C =∠FC .∠A =∠DD .BC =EF9.如图所示,在△ABC 中,AB =AC ,∠ABM =∠CBN ,MN =BN ,则∠MBC 的度数为( ) A .45°B .50°C .55°D .6010.如图,△ABC 中,∠BAC =120°,AD ⊥BC 于D ,且AB +BD =DC ,则∠C 的度数是( )A .20°B .30°C .45°D .60°二、填空题(每小题3分,共18分) 11.计算:(7+π)0+2-1=_______.12.分解因式:a (m -n )-b (n -m )=__________.13.如图是某中学某班的班徽设计图案,其形状可以近似看做为正五边形,则每一个内角为_______度.BCDAFM EDCBA第13题图 第15题图第16题图14.已知一个多边形的内角和是外角和的4倍,则这个多边形是________边形.15.如图,在Rt △ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,若CD =n ,AB =m ,则△ABD 的面积是________.16.如图,等腰△ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点,若点D 为边BC 的中点,点M 为线段EF 上一动点,则△CDM 周长的最小值为_________. 三、解答题(共8题,共72分)17.(8分)(1)因式分解:ax 2-4ax +4a .(2)先化简,再求值:(2a +b )(2a -b )+b (2a +b )-4a 2b ÷b ,其中a =-21,b =2.18.(8分)请你先将分式1122-+-a a a +12++a a a 化简,再选取一个你喜欢且使原式有意义的值代入并求值.19.(8分)如图,已知CE ⊥AB ,DF ⊥AB ,AF =BE ,CE =DF ,求证:AC ∥BD .DBFEAC20.(8分)如图,方格纸中每个小正方形的边长都是1,△ABC 在平面直角坐标系中的位置如图所示. (1)将△ABC 向右平移4个单位后,得到△A 1B 1C 1,请画出△A 1B 1C 1,并直接写出点C 1的坐标_____; (2)作出△A 1B 1C 1关于x 轴的对称图形△A 2B 2C 2,并直接写出点A 2的坐标_________; (3)请直接写出以点C 1、C 2、B 2、B 1为顶点的四边形的面积__________.B A COxy21.(8分)如图,四边形ABCD 中,AD =2,∠A =∠D =90°,∠B =60°,BC =2CD . (1)在AD 上找到点P ,使PB +PC 的值最小,保留作图痕迹,不写证明; (2)求出PB +PC 的最小值.BA CD22.(10分)甲、乙两车间生产同一种零件,乙车间比甲车间每小时多生产30个,甲车间生产600个零件与乙车间生产900个零件所用时间相等.设甲车间平均每小时生产x 个零件,请按要求解决下列问题: (1)根据题意,填写下表:车间 零件总个数平均每小时生产零件个数所用时间甲车间 600 x x 600乙车间900(2)甲车间平均每小时生产多少个零件?(3)若甲车间生产零件的总个数是a (0<a <900)个,题目中的其它条件不变,则甲车间每小时生产的零件是________个(结果用a 表示).23.(10分)已知四边形ABCD 中,AB =BC ,∠ABC =90°,AD ∥BC ,E 为CD 上一点,且AE =AB ,∠BAE =60°.(1)如图1,①求∠AED 的度数;②求证:DE =CE ; (2)如图2,过E 作EF ⊥CD 交AB 于点F ,若AB BF =21,求BCAD的值. E DCBAFAB CDE图1图224.(12分)已知,在平面直角坐标系中,点D 的坐标为(a ,b ),且a ,b 满足a 2-12a +36+b a =0,E ,F 分别为x 轴,y 轴的正半轴上一点,∠EDF =45°. (1)求a ,b 的值;(2)如图1,过E 作EG ⊥DF 于点G ,若点E 的坐标为(0,2),求点G 的坐标;(3)如图2,过E 作EP ∥x 轴交DF 于点P ,当E ,F 运动时,求证:PE +OE +OF =定值.xOFDGEyPyEDFOx图1图2。
2016-2017学年度下学期期末考试八年级数学试卷(含答案)

2016-2017学年度下学期期末考试八年级数学试卷一、选择题(3分×10)1.下列二次根式中,是最简二次根式的是()A.2.0B.12C.3D.18 2.下列各式中,正确的是()A.2<15<3B.3<15<4C.4<15<5D.14<15<16 3.以下列长度(单位:cm )为边长的三角形是直角三角形的是() A.5,6,7 B.7,8,9 C.6,8,10 D.5,7,9 4.一次函数y=-2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限 5.能判定四边形ABCD 为平行四边形的条件是() A.AB ∥CD,AD=BC; B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC; D.AB=AD,CB=CD6.8名学生的平均成绩是x ,如果另外2名学生每人得84分,那么整个组的平均成绩是() A.284x + B.101688+ C.1084x 8+ D.10168x 8+ 7.已知一个直角三角形的两边长分别为3和4,则第三边长为() A.5 B.7 C.7 D.7或5 8.如图,菱形ABCD 的对角线AC 、BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF.若EF=3,BD=4,则菱形ABCD 的周长为() A.4 B.64 C.47 D.289.A 、B 两地相距20千米,甲、乙两人都从A 地去B 地,图中21l l 和分别表示甲、乙两人所走路程s (千米)与时间t (小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地,其中正确的个数是() A.4 B.3 C.2 D.110.如图,点A 、B 、C 在一次函数y=-2x+m 的图像上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m —1)D.23(m —1)二、填空题(3分×6)11.函数y=1-x 中,自变量x 的取值范围是 。
人教版八年级下册数学期末测试卷(模拟题)
人教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG= ,则△CEF的周长为()A.8B.9.5C.10D.11.52、下列说法中正确的个数为()①如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形;②对角线相等的平行四边形是菱形;③如果一个一元二次方程有实数根,那么;④三个角相等的四边形是矩形.A.1个B.2个C.3个D.4个3、一次函数y1=kx+b与y2=x+a的图象如图,则kx+b≥x+a的解集是()A.x>﹣2B.x≥﹣2C.x≤﹣2D.无法确定4、如图,长宽高分别为3,2,1的长方体木块上有一只小虫从顶点A出发沿着长方体的外表面亮到现点B,则它爬行的最短路程是( )A. B.2 C.3 D.55、如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A. B.1 C. D.26、使二次根式有意义的x的取值范围是()A.x≠1B.x>1C.x≤1D.x≥17、在直角坐标系中,点M,N在同一个正比例函数图象上的是()A.M(2,﹣3),N(﹣4,6)B.M(﹣2,3),N(4,6)C.M(﹣2,﹣3),N(4,﹣6)D.M(2,3),N(﹣4,6)8、某小区打算在一块长80m,宽7.5m的矩形空地的一侧,设置一排如图所示的平行四边形倾斜式停车位若干个(按此方案规划车位,相邻车位间隔线的宽度忽略不计).已知规划的倾斜式停车位每个车位长6 m,宽2.5m,如果这块矩形空地用于行走的道路宽度不小于4.5m,那么最多可以设置停车位()A.16个B.15个C.14个D.13个9、下列结论错误的是()A.对角线相等的菱形是正方形B.对角线互相垂直的矩形是正方形C.对角线互相垂直且相等的四边形是正方形D.对角线互相垂直且相等的平行四边形是正方形10、如图,在矩形ABCD中,DE平分∠ADC交BC于点E,EF⊥AD交AD于点F,若EF=3,AE=5,则AD等于()A.5B.6C.7D.811、如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG,DF.若CF=6,AC=AF+2,则四边形BDFG的周长为( )A.9.5B.10C.12.5D.2012、如图,,,则图中一共有平行四边形()A.7个B.8个C.9个D.10个13、如图,在边长为4的正方形ABCD中,点E、F分别是BC、CD的中点,DE、AF交于点G,AF的中点为H,连接BG、DH,给出下列结论:①AF⊥DE;②DG= ;③HD∥BG;④△ABG∽△DHF,其中正确的结论有()个A.1B.2C.3D.414、函数中自变量的取值范围是()A. B. C. D.15、如图,在正方形ABCD中,点E,F分别在边BC,CD上,且BE=CF.连接AE,BF,AE与BF交于点G.下列结论不正确的是()A.AE=BFB.∠DAE=∠BFCC.∠AEB+∠BFC=90°D.AE⊥BF二、填空题(共10题,共计30分)16、在中,,底边上的高为6,则底边为________.17、如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=________ .18、如图所示,在□ABCD中,E,F分别为AB,DC的中点,连接DE,EF,FB,则图中共有________个平行四边形.19、在四边形ABCD中,有以下四个条件:①AB∥CD;②AD=BC;③AC=BD;④∠ADC=∠ABC.从中选取三个条件,可以判定四边形ABCD为矩形.则可以选择的条件序号是________.20、如图,在矩形ABCD中,AB=8,BC=6,E为AD上一点,将△BAE绕点B顺时针旋转得到△BA′E′,当点A′,E′分别落在BD,CD上时,则DE的长为________.21、已知|x﹣12|+(y﹣13)2与z2﹣10z+25互为相反数,则以x,y,z为边的三角形是________ 三角形.22、数据6,5,x,4,7的平均数是5,那么这组数据的方差为________;23、如图,菱形ABCD中,∠B=60°,AB=5,则以AC为边长的正方形ACEF的周长为________。
2017年八年级下册数学期末试卷及答案(新人教版)
八年级下数学期末调研测试一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30 、x+2 、240x 、22y x +中,最简二次根式有( )个。
A 、1 个B 、2 个C 、3 个D 、4个 2.若式子23x x --有意义,则x 的取值范围为( ).A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222 C .3,4, 5 D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如下左图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE交AE 于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >28、 在方差公式()()()[]2222121xx x x x x nS n -++-+-= 中,下列说法不正确的是(-1,1)1y (2,2)2yxyO(第7题)ADO( )A. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如上右图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54 B .52C .53D .65二、填空题(本题共10小题,满分共30分)11.48-133-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30-23-= 12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。
初二数学勤学试题及答案
初二数学勤学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.5B. √2C. 0.33333…D. 1/3答案:B2. 哪个选项中的两个角是互补的?A. 30°和60°B. 45°和45°C. 90°和90°D. 120°和60°答案:D3. 一个等腰三角形的底角是40°,那么顶角是多少度?A. 100°B. 80°C. 60°D. 40°答案:B4. 如果一个数的平方等于9,那么这个数是:A. 3B. -3C. 3或-3D. 以上都不是答案:C5. 一个正数的立方根是它本身,这个数是:A. 0B. 1C. -1D. 以上都是答案:D6. 以下哪个表达式等于0?A. 3x - 3xB. 5y + 5yC. 7z - 7zD. 2a + 2a答案:A7. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 以上都不是答案:A8. 以下哪个分数是最简分数?A. 4/8B. 6/9C. 5/10D. 3/6答案:A9. 下列哪个方程的解是x=2?A. x + 2 = 4B. 2x - 4 = 0C. 3x = 6D. x - 3 = 1答案:C10. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题4分,共40分)11. 一个数的平方根是4,那么这个数是______。
答案:1612. 如果一个角是30°,那么它的余角是______。
答案:60°13. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是______。
答案:22cm14. 一个数的立方是-8,那么这个数是______。
答案:-215. 如果一个数的绝对值是3,那么这个数可能是______或______。
2017年人教版八年级下册期末数学试卷附答案解析【两套汇编二】
人教版2017年八年级下册期末数学试卷附答案解析【2套汇编二】2017年八年级(下)期末数学试卷一一、选择题(共10小题,每小题3分,满分30分)1.化简的结果是()A.B.±C.2 D.±22.有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为()A.5 B.C.5或D.不确定3.下列命题中,是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形4.有10个数,它们的平均数是45,将其中最小的4和最大的70这两个数去掉,则余下数的平均数为()A.45 B.46 C.47 D.485.已知一次函数y=kx+b的图象如图,则k、b的符号是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<06.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:则关于这些同学的每天锻炼时间,下列说法错误的是()A.众数是60 B.平均数是21C.抽查了10个同学D.中位数是507.如图,在▱ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B恰好与点C 重合,则折痕AE的长为()A.3 B. C. D.48.如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD 上一动点,连结PA和PM,则PA+PM的值最小是()A.3 B.2 C.3 D.69.小明从A地前往B地,到达后立刻返回,他与A地的距离y(千米)和所用时间x(小时)之间的函数关系如图所示,则小明出发4小时后距A地()A.100千米B.120千米C.180千米D.200千米10.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(共6小题,每小题3分,满分18分)11.计算:(﹣)(+)=.12.如图,正比例函数y=kx(k≠0)和一次函数y=ax+4(a≠0)的图象相交于点A(1,1),则不等式kx≥ax+4的解集为.13.一个三角形的三边的比是3:4:5,它的周长是36,则它的面积是.14.已知x+=,那么x﹣=.15.已知一组数据x,y,8,9,10的平均数为9,方差为2,则xy的值为.16.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC 的长为.三、解答题(共8小题,满分72分)17.(6分)计算:(1)(+)﹣(﹣)(2)(+)÷.18.(6分)如图,在边长为a的正方形ABCD中,M是CD的中点,N是BC上一点,且BN=BC.求△AMN的面积.19.(8分)如图,D是△ABC的边AB上一点,CE∥AB,DE交AC于点F,若FA=FC.(1)求证:四边形ADCE是平行四边形;(2)若AE⊥EC,EF=EC=1,求四边形ADCE的面积.20.(8分)已知关于x的一次函数y=(2a﹣5)x+a﹣2的图象与y轴的交点在x轴的下方,且y随x的增大而减小,求a的值.21.(8分)如图,在Rt△ABC中,∠B=90°,点D为AC的中点,以AB为一边向外作等边三角形ABE,连结DE.(1)证明:DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.22.(11分)已知A、B两地相距80km,甲、乙两人沿同一公路从A地出发到B地,甲骑摩托车,乙骑电动车,图中直线DE,OC分别表示甲、乙离开A地的路程s(km)与时间t(h)的函数关系的图象.根据图象解答下列问题.(1)甲比乙晚出发几个小时?乙的速度是多少?(2)乙到达终点B地用了多长时间?(3)在乙出发后几小时,两人相遇?23.(12分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.24.(13分)已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,问:①若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.化简的结果是()A.B.±C.2 D.±2【考点】二次根式的性质与化简.【分析】根据二次根式的性质化简,即可解答.【解答】解:=2,故选:C.【点评】本题考查了二次根式的性质,解决本题的关键是熟记二次根式的性质.2.有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为()A.5 B.C.5或D.不确定【考点】勾股定理的逆定理.【分析】此题要分两种情况进行讨论:;①当3和4为直角边时;②当4为斜边时,再分别利用勾股定理进行计算即可.【解答】解;①当3和4为直角边时,第三边长为=5,②当4为斜边时,第三边长为:=,故选:C.【点评】此题主要考查了勾股定理的应用,关键是掌握勾股定理:直角三角形中,两直角边的平方和等于斜边的平方.3.下列命题中,是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形【考点】命题与定理.【分析】根据特殊四边形的判定定理进行判断即可.【解答】解:A、对角线互相平分的四边形是平行四边形,正确;B、对角线相等的四边形是矩形,还可能是等腰梯形,错误;C、对角线互相垂直的四边形是菱形,还可能是梯形,错误;D、对角线互相垂直平分的四边形是菱形,错误;故选A.【点评】本题主要考查了命题与定理的知识,解题的关键是掌握特殊四边形的判定定理,此题难度不大.4.有10个数,它们的平均数是45,将其中最小的4和最大的70这两个数去掉,则余下数的平均数为()A.45 B.46 C.47 D.48【考点】算术平均数.【分析】根据已知条件列出算式,求出即可.【解答】解:余下数的平均数为(45×10﹣4﹣70)÷8=47,故选C.【点评】本题考查了算术平均数,能根据题意列出算式是解此题的关键.5.已知一次函数y=kx+b的图象如图,则k、b的符号是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【考点】一次函数图象与系数的关系.【分析】由图可知,一次函数y=kx+b的图象经过二、三、四象限,根据一次函数图象在坐标平面内的位置与k、b的关系作答.【解答】解:由一次函数y=kx+b的图象经过二、三、四象限,又有k<0时,直线必经过二、四象限,故知k<0,再由图象过三、四象限,即直线与y轴负半轴相交,所以b<0.故选D.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y 轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.6.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:则关于这些同学的每天锻炼时间,下列说法错误的是()A.众数是60 B.平均数是21C.抽查了10个同学D.中位数是50【考点】众数;加权平均数;中位数.【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可.【解答】解:A、60出现了4次,出现的次数最多,则众数是60,故A选项说法正确;B、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B选项说法错误;C、调查的户数是2+3+4+1=10,故C选项说法正确;D、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D选项说法正确;故选:B.【点评】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.7.如图,在▱ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B恰好与点C 重合,则折痕AE的长为()A.3 B. C. D.4【考点】翻折变换(折叠问题);平行四边形的性质.【分析】由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE 的长即可.【解答】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=6,∴BE=3,∴AE==4,故选:D.【点评】本题考查了翻折变换,平行四边形的性质,勾股定理,根据翻折特点发现AE垂直平分BC是解决问题的关键.8.如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD 上一动点,连结PA和PM,则PA+PM的值最小是()A.3 B.2 C.3 D.6【考点】轴对称-最短路线问题;菱形的性质.【分析】首先连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,由在菱形ABCD中,AB=6,∠ABC=60°,易得△ACD是等边三角形,BD垂直平分AC,继而可得CM⊥AD,则可求得CM的值,继而求得PA+PM 的最小值.【解答】解:连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,∵在菱形ABCD中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD垂直平分AC,∴△ACD是等边三角形,PA=PC,∵M为AD中点,∴DM=AD=3,CM⊥AD,∴CM==3,∴PA+PM=PC+PM=CM=3.故选C.【点评】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P的位置是解此题的关键.9.小明从A地前往B地,到达后立刻返回,他与A地的距离y(千米)和所用时间x(小时)之间的函数关系如图所示,则小明出发4小时后距A地()A.100千米B.120千米C.180千米D.200千米【考点】函数的图象.【分析】4小时后已经在返回的路上,故求出返回时的速度,并求出1小时的行程即可.【解答】解:∵4小时后已经在返回的路上,而小明返回时240km的路程用时4小时,∴返回时的速度为:240÷4=60(km/h)∴1小时行程:1×60=60(km)∴240﹣60=180(km).答:小明出发4小时后距A地180千米.【点评】本题考查了函数图象及其应用,解题的关键是认真审题,获得必要的数据信息,难点就是能把函数图象与实际运动情况互相吻合.10.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100【考点】一次函数图象与几何变换.【分析】根据题意结合勾股定理得出CA的长,进而得出平移后C点的横坐标,求出BC平移的距离,进而得出线段BC扫过的面积.【解答】解:∵点A、B的坐标分别为(2,0)、(8,0),∴AB=6,∵∠CAB=90°,BC=10,∴CA==8,∴C点纵坐标为:8,∵将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,∴y=8时,8=x﹣5,解得:x=13,即A点向右平移13﹣2=11个单位,∴线段BC扫过的面积为:11×8=88.故选:B.【点评】此题主要考查了一次函数的图象与几何变换,根据题意得出C点平移后横坐标是解题关键.二、填空题(共6小题,每小题3分,满分18分)11.计算:(﹣)(+)=2.【考点】二次根式的混合运算.【分析】利用平方差公式计算.【解答】解:原式=()2﹣()2=7﹣5=2.故答案为2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12.如图,正比例函数y=kx(k≠0)和一次函数y=ax+4(a≠0)的图象相交于点A(1,1),则不等式kx≥ax+4的解集为x≥1.【考点】一次函数与一元一次不等式.【分析】观察函数图象得到当x≥1时,直线y=ax+4不在直线y=kx的上方,于是可得到不等式kx≥ax+4的解集.【解答】解:当x≥1时,kx≥ax+4,所以不等式kx≥ax+4的解集为x≥1.故答案为x≥1.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.13.一个三角形的三边的比是3:4:5,它的周长是36,则它的面积是54.【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理得到三角形是直角三角形,然后根据三角形的面积公式即可得到结论.【解答】解:设三角形的三边是3x:4x:5x,∵(3x)2+(4x)2=(5x)2,∴此三角形是直角三角形,∵它的周长是36,∴3x+4x+5x=36,∴3x=9,4x=12,∴三角形的面积=×9×12=54,故答案为:54.【点评】本题考查了勾股定理的逆定理,三角形的面积的计算,熟练掌握勾股定理的逆定理是解题的关键.14.已知x+=,那么x﹣=±3.【考点】二次根式的化简求值.【分析】直接利用完全平方公式得出x2+=11,进而得出x﹣的值.【解答】解:∵x+=,∴(x+)2=13,∴x2++2=13,∴x2+=11,∴x2+﹣2=(x﹣)2=9,∴x﹣=±3.故答案为:±3.【点评】此题主要考查了二次根式的化简求值以及完全平方公式的应用,正确应用完全平方公式是解题关键.15.已知一组数据x,y,8,9,10的平均数为9,方差为2,则xy的值为77.【考点】方差;算术平均数.【分析】根据方差公式、算术平均数公式、完全平方公式计算即可.【解答】解:由题意得:x+y+8+9+10=45,(x﹣9)2+(y﹣9)2+(8﹣9)2+(9﹣9)2+(10﹣9)2=10,∴x+y=18,x2+y2﹣18x﹣18y=﹣154,∴(x+y)2﹣2xy﹣18(x+y)=﹣154,解得,xy=77,故答案为:77.【点评】本题考查的是方差的计算和算术平均数的计算,掌握方差的计算公式是:s2= [(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2]是解题的关键.16.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC 的长为2.【考点】翻折变换(折叠问题).【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求解.【解答】解:∵菱形AECF,AB=6,设BE=x,则AE=CE=6﹣x,∵菱形AECF,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=FCO=30°,∴2BE=CE,即CE=2x,∴2x=6﹣x,解得:x=2,∴CE=4,又EB=2,则利用勾股定理得:BC=2.故答案为:.【点评】此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.三、解答题(共8小题,满分72分)17.计算:(1)(+)﹣(﹣)(2)(+)÷.【考点】二次根式的混合运算.【分析】(1)先把各二次根式化为最简二次根式,然后去括号后合并即可;(2)先把各二次根式化为最简二次根式,然后进行二次根式的除法运算.【解答】解:(1)原式=5+3﹣3+2=2+5;(2)原式=(4+)÷2=2+.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.如图,在边长为a的正方形ABCD中,M是CD的中点,N是BC上一点,且BN=BC.求△AMN的面积.【考点】正方形的性质;三角形的面积.【分析】首先用a表示出AN、AM和MN的长,再利用勾股定理的逆定理证明△AMN是直角三角形,最后利用三角形面积公式计算即可.【解答】解:在Rt△ABN中,AN2=AB2+BN2,∴AN2=a2+(a)2=a2,在Rt△ADM中,AM2=AD2+DM2,∴AM2=a2+()2=a2,在Rt△CMN中,MN2=CM2+CN2,∴MN2=(a)2+(a)2=a2,∵a2=a2+a2,∴AN2=AM2+MN2,∴△AMN是直角三角形,∴S=AM•AN=×a×a=a2.△AMN【点评】本题主要考查了正方形的性质以及勾股定理的知识,解题的关键是证明△AMN是直角三角形,此题难度不大.19.如图,D是△ABC的边AB上一点,CE∥AB,DE交AC于点F,若FA=FC.(1)求证:四边形ADCE是平行四边形;(2)若AE⊥EC,EF=EC=1,求四边形ADCE的面积.【考点】平行四边形的判定与性质.【分析】(1)首先利用ASA得出△DAF≌△ECF,进而利用全等三角形的性质得出CE=AD,即可得出四边形ACDE是平行四边形;(2)由AE⊥EC,四边形ADCE是平行四边形,可推出四边形ADCE是矩形,由F 为AC的中点,求出AC,根据勾股定理即可求得AE,由矩形面积公式即可求得结论.【解答】解:(1)证明:∵CE∥AB,∴∠BAC=∠ECA,在△DAF和△ECF中,,∴△DAF≌△ECF (ASA),∴CE=AD,∴四边形ADCE是平行四边形;(2)∵AE⊥EC,四边形ADCE是平行四边形,∴四边形ADCE是矩形,在Rt△AEC中,F为AC的中点,∴AC=2EF=2,∴AE2=AC2﹣EC2=22﹣12=3,∴AE=,∴四边形ADCE的面积=AE•EC=.【点评】此题主要考查了平行四边形的判定,全等三角形的判定与性质,矩形的判定,勾股定理,得出∴△DAF≌△ECF 是解题关键.20.已知关于x的一次函数y=(2a﹣5)x+a﹣2的图象与y轴的交点在x轴的下方,且y随x的增大而减小,求a的值.【考点】一次函数图象上点的坐标特征;一次函数的性质.【分析】由“一次函数图象与y轴的交点在x轴的下方,且y随x的增大而减小.”即可得出关于a的一元一次不等式组,解不等式组即可得出a的取值范围.【解答】解:由题意,得:,解得:a<2.【点评】本题考查了一次函数图象上点的坐标特征、一次函数的性质以及解一元一次不等式组,解题的关键是根据一次函数图象上点的坐标特征结合一次函数的性质得出关于a的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的性质结合一次函数的单调性找出不等式是关键.21.如图,在Rt△ABC中,∠B=90°,点D为AC的中点,以AB为一边向外作等边三角形ABE,连结DE.(1)证明:DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.【考点】平行四边形的判定;等边三角形的性质;直角三角形斜边上的中线.【分析】(1)连结BD,根据直角三角形的性质可得BD=AC=AD,利用等边三角形的性质可得AE=BE,然后证明△ADE≌△BDE,进而可求出∠AED=∠BED=30°,然后再证明∠BED+∠EBC=180°,从而可得结论;(2)当AB=AC或AC=2AB时,四边形DCBE是平行四边形,首先利用三角函数求出∠C=30°,然后证明DC∥BE,再有DE∥BC,可得四边形DCBE是平行四边形.【解答】(1)证明:连结BD.∵点D为Rt△ABC的斜边AC的中点,∴BD=AC=AD,∵△ABE是等边三角形,∴AE=BE,在△ADE与△BDE中,,∴△ADE≌△BDE(SSS),∴∠AED=∠BED=30°,∵∠CBE=150°,∴∠BED+∠EBC=180°,∴DE∥CB;(2)解:当AB=AC或AC=2AB时,四边形DCBE是平行四边形.理由:∵AB=AC,∠ABC=90°,∴∠C=30°,∵∠EBC=150°,∴∠EBC+∠C=180°,∴DC∥BE,又∵DE∥BC,∴四边形DCBE是平行四边形.【点评】此题主要考查了平行四边形的判定,以及直角三角形的性质,等边三角形的性质,关键是掌握两组对边分别平行的四边形是平行四边形.22.(11分)(2016春•云梦县期末)已知A、B两地相距80km,甲、乙两人沿同一公路从A地出发到B地,甲骑摩托车,乙骑电动车,图中直线DE,OC分别表示甲、乙离开A地的路程s(km)与时间t(h)的函数关系的图象.根据图象解答下列问题.(1)甲比乙晚出发几个小时?乙的速度是多少?(2)乙到达终点B地用了多长时间?(3)在乙出发后几小时,两人相遇?【考点】一次函数的应用.【分析】(1)观察函数图象即可得出甲比乙晚出发1个小时,再根据“速度=路程÷时间”即可算出乙的速度;(2)由乙的速度即可得出直线OC的解析式,令y=80,求出x值即可得出结论;(3)根据点D、E的坐标利用待定系数法即可求出直线DE的解析式,联立直线OC、DE的解析式成方程组,解方程组即可求出交点坐标,由此即可得出结论.【解答】解:(1)由图可知:甲比乙晚出发1个小时,乙的速度为:60÷3=20(km/h).故:甲比乙晚出发1个小时,乙的速度是20km/h.(2)由(1)知,直线OC的解析式为y=20x,∴当y=80时,x=4,∴乙到达终点B地用了4个小时.(3)设直线DE的解析式为y=kx+b,将D(1,0)、E(3,80)代入y=kx+b,得:,解得:,∴直线DE的解析式为y=40x﹣40.联立直线OC、DE的解析式得:,解得:.∴直线OC与直线DE的交点坐标是(2,40),∴在乙出发后2小时,两人相遇.【点评】本题考查了一次函数的应用、待定系数法求函数解析式以及解二元一次方程组,解题的关键是:(1)根据“速度=路程÷时间”求出乙的速度;(2)找出直线OC的解析式;(3)联立两直线解析式成方程组.本题属于中档题,难度不大,解决该题型题目时,观察函数图象,根据函数图象给定数据解决问题是关键.23.(12分)(2013•遂宁)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.【考点】条形统计图;算术平均数;中位数;众数.【分析】(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答;(2)根据平均数和中位数的统计意义分析得出即可;(3)分别求出初中、高中部的方差即可.【解答】解:(1)填表:初中平均数为:(75+80+85+85+100)=85(分),众数85(分);高中部中位数80(分).(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.(3)∵= [(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,= [(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160.∴<,因此,初中代表队选手成绩较为稳定.【点评】此题主要考查了平均数、众数、中位数、方差的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.24.(13分)(2016春•云梦县期末)已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,问:①若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)根据坐标轴上点的特点直接求值,(2)①由点在直线AB上,找出m与n的关系,再用三角形的面积公式求解即可;②判断出EF最小时,点P的位置,根据三角形的面积公式直接求解即可.【解答】解:(1)令x=0,则y=8,∴B(0,8),令y=0,则﹣2x+8=0,∴x=4,∴A(4,0),(2)∵点P(m,n)为线段AB上的一个动点,∴﹣2m+8=n,∵A(4,0),∴OA=4,∴0<m<4∴S=OA×PE=×4×n=2(﹣2m+8)=﹣4m+16,(0<m<4);△PAO(3)存在,理由:∵PE⊥x轴于点E,PF⊥y轴于点F,OA⊥OB,∴四边形OEPF是矩形,∴EF=OP,当OP⊥AB时,此时EF最小,∵A(4,0),B(0,8),∴AB=4∵S△AOB=OA×OB=AB×OP,∴OP==,∴EF最小=OP=.【点评】此题是一次函数综合题,主要考查了坐标轴上点的特点,三角形的面积公式,极值的确定,解本题的关键是求出三角形PAO的面积.2017八年级(下)期末数学试卷二一、选择题1.化简﹣x的结果为()A.x﹣x B.x﹣C.2x D.02.已知甲乙两组各10个数据的平均数都是8,甲组数据的方差S甲2=0.12,乙组2=0.5,则()数据的方差S乙A.甲组数据的波动大B.乙组数据的波动大C.甲乙两组数据的波动一样大D.甲乙两组数据的波动大小不能比较3.a、b、c为某一三角形的三边,且满足a2+b2+c2=6a+8b+10c﹣50,则三角形是()A.直角三角形B.等边三角形C.等腰三角形D.锐角三角形4.若最简二次根式与可合并,则ab的值为()A.2 B.﹣2 C.﹣1 D.15.矩形边长为10cm和15cm,其中一内角平分线把长边分为两部分,这两部分是()A.6cm和9cm B.7cm和8 cm C.5cm和10cm D.4cm和11cm6.若一次函数+5,y随x的增大而减小,则m的值为()A.2或﹣2 B.3或﹣3 C.﹣3 D.37.某地区某月前两周从周一至周五每天的最低气温是(单位:℃)x1,x2,x3,x4,x5,和x1+1,x2+2,x3+3,x4+4,x5+5,若第一周这五天的平均气温为7℃,则第二周这五天的平均气温为()A.7℃B.8℃C.9℃D.10℃8.已知正方形ABCD中,E是BC上一点,如果DE=2,CE=1,那么正方形ABCD 的面积为()A.B.3 C.4 D.5二、填空题9.当x=时,二次根式取最小值,其最小值为.10.如下图,在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为.11.如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE=.12.如图,平行四边形ABCD的对角线相交于点O,且DC≠AD,过点O作OE⊥BD交BC于点E.若△CDE的周长为6cm,则平行四边形ABCD的周长为.13.直线y=3x+2沿y轴向下平移5个单位,则平移后与y轴的交点坐标为.14.小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行米.15.甲、乙两人5次射击命中的环数如下:甲:7、9、8、6、10.乙:7、8、9、8、8.则这两人5次射击命中的环数的平均数甲=乙=8,方差S甲2S乙2.(填:“>”“<”或“=”)三、解答题(本大题共8个小题满分75分)16.(7分)先化简,再求值:已知m=2+,求的值.17.(8分)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)18.(8分)在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F;求证:DF=DC.19.(10分)如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF=BD ,连接BF . (1)线段BD 与CD 有什么数量关系,并说明理由;(2)当△ABC 满足什么条件时,四边形AFBD 是矩形?并说明理由.20.(10分)某校八年级(1)班20名学生某次数学测验的成绩统计如表:(1)若这20名学生成绩的平均数为82分,求x 和y 的值.(2)在(1)的条件下,求这20名学生本次测验成绩的众数和中位数. 21.(10分)已知直线与x 轴交于点A ,与y 轴交于点B ,直线y=2x +b经过点B 且与x 轴交于点C ,求△ABC 的面积.22.(10分)某校校长暑假将带领该校三好学生去北京旅游,甲旅行社说:“若校长买全票,则其余学生可享受半价优惠”;乙旅行社说:“包括校长在内全部按票价的六折优惠”.已知全程票价为240元.(1)设学生数为x ,甲旅行社的收费为y 甲(元),乙旅行社的收费为y 乙(元),分别求出y 甲,y 乙关于x 的函数关系式;(2)当学生数是多少时,两家旅行社的收费一样; (3)根据学生人数讨论哪家旅行社更优惠.23.(12分)如图,直线y=kx ﹣1与x 轴、y 轴分别交于B 、C 两点,且OB=OC . (1)求B 点的坐标和k 的值.(2)若点A (x ,y )是第一象限内直线y=kx ﹣1的一个动点,试写出△AOB 的面积与x 的函数关系式.(3)当点A 运动到什么位置时,△AOB 的面积是.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年《勤学早》八年级数学下册期末考试模拟试题(一)
一、选择题(每小题3分,共30分)
1.直线y=x+3与y轴的交点坐标是( )
A.(0,3) B.(0,1) C.(3,0) D.(1,0)
2.若二次根式1x有意义,则x的取值范围为( )
A.x≠1 B.x≥1 C.x<1 D.全体实数
3.正比铡函数y=kx(k≠0)的图象经过点(1,-2),则正比例函数的解析式为( )
A.y=2x B.y=-2x C.
xy
21 D.xy2
1
4.若a<1,化简
1)1(
2
a
=( )
A.a-2 B.2-a C.a D.-a
5.下列计算正确的是( )
A.a2+a2=4a4 B.(2a)
2
=4a C.333 D.2312
6.计算
52
2
1
32
的结果估计在( )
A.6至7之间 B.7至8之间 C.8至9之间 D.9至10之间
7.两直线l1:y=2x-1与l2:y=x+1的交点坐标为( )
A.(-2,3) B.(2,-3) C.(-2,-3) D.(2,3)
8.下列命题中正确的是( )
A.矩形的对角线相互垂直 B.菱形的对角线相等
C.平行四边形是轴对称图形 D.正方形的对角线相等
9.如图所示的是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一
条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
A.12≤a≤13 B.12≤a≤15 C.5≤a≤12 D.5≤a≤13
10.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1、A2、…、An分别是正方形的
中心,则n个这样的正方形重叠部分(阴影部分)的面积和为( )
A.41cm2 B.4ncm2 C.41ncm2 D.
2
)41(
cm2
二、填空题(每小题3分,共18分)
11.化简:12=__________
12.如图,BD是□ABCD的对角线,点E、F在BD上,四边形AECF是平行四边形,还需要增
加的一个条件是_____________
13.随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:
13
甲
x
,
13乙x
,2甲s=7.5,2乙s=21.6,则小麦长势比较整齐的试验田是________(填“甲”或“乙”)
14.如图所示,在菱形ABCD中,AC=2,BD=5,点P是对角线AC上任意一点,过点P作
PE∥AD,PF∥AB,交AB、AD分别为E、F,则图中阴影部分的面积之和为_________
15.如图,点Q在直线y=-x上运动,点A的坐标为(1,0).当线段AQ最短时,点Q的坐标
为_________
16.如图,在△ABC中,∠ACB=90°,斜边AB在x轴上,点C在y轴的正半轴上,直线AC的
解析式是y=-2x+4,则直线BC的解析式为__________________
三、解答题(共8题,共72分)
17.(本题8分)已知一次函数y=kx-4,当x=2时.y=-3
(1) 求一次函数的解析式
(2) 将该函数的图象向上平移6个单位,求平移后的图象与x轴交点的坐标
18.(本题8分)如图,在□ABCD中,点P是对角线AC上的一点,PE⊥AB,PF⊥AD,垂足
分别为E、F,且PE=PF,求证:平行四边形ABCD是菱形
19.(本题8分)在学校组织的某次竞赛中,每班参加比赛的人数相向,成绩分为A、B、C、D
四个等级,其中相应等级的得分依次记为100分、90
分、80分、70分,学校将八年级的一班和二班的成
绩整理并绘制成如下的统计图:
请你根据以上提供的信息解答下列问题:
(1) 此次竞赛中二班成绩在C级以上(包括C级)的
人数为___________
(2) 请你将表格补充完整:
、
平均数(分) 中位数(分) 众数(分)
一班 90
二班 87.6 100
20.(本题8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度.
(1) 请在所给的网格内画出以线段AB、BC为边的菱形ABCD并写出点D的坐标___________
(2) 线段BC的长为___________ .
(3) 菱形ABCD的面积为___________
21.(本题8分)如图,在等腰Rt△ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥
DF,交AB于E,交BC于F.若AE=4,FC=3,求EF的长
22.(本题10分)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价
如表所示:
类型 价格 进价(元/盏) 售价(元/盏)
A型 30 45
B型 50 70
(1) 若商场预计进货款为3500元,则这两种台灯各购进多少盏?
(2) 若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售
完这批台灯时获利最多?此时利润为多少元?
23.(本题10分)四边形ABCD是正方形,对角线AC、BD相交于点O
(1) 如图1,点P是正方形ABCD外一点,连接OP,以OP为一边,作正方形OPMN,且边ON
与边BC相交,连接AP、BN
① 依题意补全图1
② 判断AP与BN的数量关系及位置关系,写出结论并加以证明
(2) 点P在AB延长线上,且∠APO=30°,连接OP,以OP为边作正方形OPMN,且边ON与
BC的延长线恰交于点N,连接CM.若AB=2,求CM
2
的值
24.(本题12分)如图,直线242xy与坐标轴分别交于A、B两点,点C在x轴上,且OA
=OC,点P从A出发沿射线AC方向运动,速度为每秒1个单位长度,设运动时间为t (s)
(1) 求点B、C的坐标
(2) 若△OCP的面积为4.求运动时间t的值
(3) 如图2,在OP的上方作OQ⊥OP,且OP=OQ,连接BQ,求运动过程中BQ的最小值