2017年秋沪科版八年级数学上册课件:14.2 59-60
数学沪科版八年级(上册)14.1全等三角形(共32张PPT)

(全等三角形对应边相等).
5.如图,△ABC≌△AED,AB是△ABC的最大边,AE是 △AED的最大边, ∠BAC 与∠ EAD是对应角,且 ∠BAC=25°,∠B= 35°,AB=3cm,BC=1cm,求出∠E, ∠ ADE的度数和线段DE,AE 的长度.
解:∵ △ABC≌△AED,(已知)
A
∠A=∠F,∠B=∠D,∠C=∠E(全等三角形对应角相等)
例2 如图,已知△ABC≌△DCB,AB=3,DB=4, ∠A=60°. (1)写出△ABC和△DCB的对应边和对应角; (2)求AC,DC的长及∠D的度数. 解:(1)AB与DC,AC与DB,
BC与CB是对应边; ∠A与∠D,∠ABC与∠DCB, ∠ACB与∠DBC是对应角;
A
B
3.如图,已知△ABC≌△BAD 边 请指出图中的对应边和对应角. 边
AB= BA AC= BD
D
A
边 BC= AD
角 ∠BAC= ∠ABD
B
C
角 ∠ABC= ∠BAD
角 ∠C= ∠D
归纳 有公共边的,公共边一定是对应边.
变式:
D E
B
如图:平移后△ABC≌△ EFD, 若AB=6,AE=2.你能说出AF的 F 长吗?说说你的理由.
∴ ∠E=∠N. ∴ EF∥NM.
当堂练习
1.如图,△ABC≌△BAD,如果AB=5cm, BD=
4cm,AD=6cm,那么BC的长是 ( A )
A.6cm B.5cm C.4cm D.无法确定
2.在上题中,∠CAB的对应角是 ( B )
A.∠DAB B.∠DBA C.∠DBC D.∠CAD
C
D
O
∠A= ∠A ∠B= ∠E ∠ACB= ∠ADE
八年级数学上册 第14章 全等三角形 14.1 全等三角形教学课件 (新版)沪科版

D
⑵.找出对应边,它们有什么关系?(口答)
对应边:_O__A_=__O_B_ _O__D__=__O_C_ _A__D__=_B_C_
⑶.找出对应角,它们有什么关系? (口答)
A
对应角:∠__A__=_∠__B_ _∠__D__=_∠__C_
∠__D__O_A__=_∠__C_O__B_
A
⑷.如果∠A=35°,∠D=75°,那么
∠COB=__7_0_° 2、如图2,如果△ADE ≌ △CBF,那
DB
么AE∥CF吗? _是__ (口答“是”或“不是”) 精选ppt
C
O
B
图1
C
EF
图2 12
五、布置作业
习题14.1
精选ppt
13
本课结束
精选ppt
14
对应角:∠A和∠A1,∠B精和选pp∠t B1,∠C和∠C1
10
三、归纳小结
这节课我们学到了什么?
1、全等形定义及全等三角形; 2、全等三角形的性质.
精选ppt
11
四、强化训练
1、⑴. 已知:如图1,△OAD与△OBC全等, 请用式子表示出这种关系:_△__O__A_D__≌___△__O_B_C_
精选ppt
8
二、新课讲解
A1
A1
B1
C1
B1
C1
能够完全重合的两个三角形称为全等三角形. 记作:△ABC≌△A1B1C1
精选ppt
9
二、新课讲解
全等三角形的对应边相等,对应角相等.
A
A1
B
C
B1
C1
对应顶点:点A和点A1,点B和点B1,点C和点C1
对应边:AB和A1B1,AC和A1C1 ,BC和B1C1
沪科版八年级数学上册14.1全等三角形课件(共18张PPT)

⑴ AC的对应边是 BD AB的对应边是 BA ⑵∠ABC的对应角是 ∠BAD
探究规律 请按要求找出对应边或对应角。
A
B
E
D
A
D
B
CA
2
A
B
C
D
1
E
图1
D
CB
图2
寻找对应元素的规律
图3
C
F
图4
E
两1、个如全图等1三,角已形知的△公A共BC边≌一△定DB为C对,应边。
两个则全B等C三的角对形应的边公是共B角C或对。顶角一定为对应角。
对顶角是对应角 C、对应边所对的角是对应角
对应角所对的边是对应边
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月2日星期三2022/3/22022/3/22022/3/2 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/22022/3/22022/3/23/2/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/22022/3/2March 2, 2022 4、享受阅读快乐,提高生活质量。2022/3/22022/3/22022/3/22022/3/2
3)面积相等的三角形是全等三角形。 ( X ) 4)周长相等的三角形是全等三角形。 ( )
X
随堂练习2:
填一填:如图,已知
A
△ABC≌△ADE, ∠C=∠E,BC=DE,其它的对应边 B D 有 :____A_B_与__A_D__,A_C__与_A__E___ 对应角有: ∠B与 ∠ ADE, ∠ BAC与∠ DAE
【沪科版】八年级数学上册(全书)课件省优PPT(共291张)

3 2
角坐标系中找出点的位置:
D1
A(-2,-1 ) B( 2,1) C( 1,-2 ) D(-1,2)
-4-32
-
o -1
1-2
-3
1 2 B3 4
x
C
-4
方法:根据点在x轴、y轴上的对应值的
位置,分别作x轴、y轴的垂线,
交点就是已知点的位置。
想一想:(2,1)与(1,2)表示同一点吗?
平面内的点与有序实数对一一对应
公共原点O称为坐标原点。
纵轴 y
5
平面直角坐标系
4
3
第二象限 2
平面直角坐标系具有以下特征: ①两条数轴互相垂直 ②原点重合 ③通常取向右、向上为正方向 ④单位长度一般取相同的
第一象限
1
o
-4 -3 -2 -1 -1
原点
-2
第三象限 -3
-4
12345
第四象限
x 横轴
坐标轴不属任何象限
如果A是平面直角坐标系中一点,你能找出相应的
-3
-4 D(0,-4)
-5
坐标平面内的点P(a,b)的 坐标特征:
一、判断:
1、对于坐标平面内的任一点,都有唯 一的一对有
序实数与它对应.(√ )
2、在直角坐标系内,原点的坐标是0.( × )
3、若点A(a ,-b )在第二象限,则点B(-a,b)
在第四象限. (√ )
4、若点P的坐标为(a,b),且a·b=0,则点P一定
【沪科版】八年级数学上册(全书)课 件省优PPT(共291张)
精选各省级优秀课原创获奖课件
如果您现在暂时不需要,记得收藏此网页! 因为再搜索到我的机会为零!
错过我,就意味着永远失去~ 一次下载,终生使用
【沪科版】八年级数学上册全册课件

【沪科版】八年级数学上册全册课件一、教学内容1. 实数与二次根式2. 一元二次方程3. 几何图形的密接与位似4. 数据的收集、整理与表示5. 概率初步6. 综合应用二、教学目标1. 理解实数的概念,掌握二次根式的性质与运算。
2. 学会解一元二次方程,了解其应用。
3. 理解几何图形的密接与位似,掌握其性质与判定。
4. 学会数据的收集、整理与表示,培养数据分析能力。
5. 理解概率的概念,掌握简单事件的概率计算。
6. 提高综合应用能力,培养解决问题的策略。
三、教学难点与重点1. 教学难点:实数的理解与二次根式的运算;一元二次方程的解法;概率的计算。
2. 教学重点:几何图形的密接与位似;数据的收集、整理与表示;综合应用能力的培养。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、模型等。
2. 学具:练习本、铅笔、直尺、圆规等。
五、教学过程1. 导入:通过实际情景引入,激发学生学习兴趣。
2. 新课导入:讲解新课内容,结合例题进行讲解。
3. 随堂练习:设计针对性练习,巩固所学知识。
5. 课后作业:布置适量作业,巩固所学知识。
具体教学过程如下:(1)导入:以生活中常见的实际问题为例,引入新课。
(2)新课导入:1) 实数与二次根式:讲解实数的概念,通过例题讲解二次根式的性质与运算。
2) 一元二次方程:介绍一元二次方程的定义,讲解求解方法,如公式法、配方法等。
3) 几何图形的密接与位似:讲解密接与位似的定义,通过模型演示,让学生直观感受其性质。
4) 数据的收集、整理与表示:介绍数据的收集、整理与表示方法,如表格、图表等。
5) 概率初步:讲解概率的定义,通过实例计算简单事件的概率。
6) 综合应用:讲解如何运用所学知识解决实际问题。
(3)随堂练习:设计具有代表性的练习题,让学生在课堂上及时巩固所学知识。
(5)课后作业:布置适量作业,包括书面作业和思考题。
六、板书设计1. 章节2. 新课内容3. 例题及解答4. 课堂小结七、作业设计1. 书面作业:(1)实数与二次根式:计算题、应用题。
2017年秋沪科版八年级上册数学课件第十四章 14.2 三角形全等的判定

• (2)至少有一条边相等.
• 全等的有: • SSS,SAS,ASA,AAS. • 不全等的有: • AAA,SSA.
三角形全等的条件
例3变式:
已知,如图,D在AB上,E在AC上,AB=AC, ∠B=∠C, A 求证:BD=CE 证明:在△ACD和△ABE中, ∠A=∠A E AC=AB D ∠C= ∠B ∴ △ACD≌ △ABE(ASA) ∴ AE=AD C B ∴AB-AD=AC-AE 即BD=CE
三角形全等的条件
证明:∵ △ABC≌△A1B1C1 ∴AB=A1B1,∠B=∠B1, ∠BAC=∠B1A1C1 (全等三角形的性质) 又∵ AD、A1D1分别是∠BAC和∠B1 A1 C1的角平分线 ∴∠BAD=∠B1A1C1 在在⊿BAD和⊿B1A1D1中 B ∠B=∠B1 AB=A1B1 ∠BAD=∠B1A1C1 ∴ ⊿BAD≌⊿B1A1D1(ASA) ∴ AD= A1D1 B1
A
D A1
C
D1
C1
三角形全等的条件
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. • (1)必须有三个元素对应相等;
第14章 全等三角形
14.2 三角形全等的判定
温故知新
A D
B
C
E
上海科学技术出版社(初中二年级)八年级数学上册全套PPT课件
解析法:用数学式子表示函数关系的方法是 解析法。(其中的等式叫函数关系式或函数解析 式) 优点:能准确地表示出自变量与其函数之间 的数量关系,能很准确的得到所有自变量与其对 应的函数值。 缺点:比较抽象,利用解析式表示的函数关 系求函数值时,有时计算比较复杂,而且有时候 有些关系式不一定能用解析式表示出来。
2.写出点P(4,5)在作出如下的平移后得到的 点P1的坐标,并说出由点P到点P1是怎样平移的:
(1)P(x,y) (2)P(x,y)
(3)P(x,y)
P1 (x+1,y+2) P1 (x-3,y-1)
P1 (x,y+1)
(4)P(x,y)
P1 (x-1,y)
回顾所学
A(-2,4)
Y 4
3
2
1 -4 -3 -2 -1 0 -1 -2 -3 1 2 3 4
由函数表达式画图象,一般按下列步骤进行: 1.列表:列表给出自变量与函数的一些对应值。 2.描点:以表中各组对应值为坐标,在平面内描出相 应的点。 3.连线:按照自变量由小到大的顺序,把所描各点用 平滑曲线依次连接起来。 描出的点越多,描绘的图象误差越小。有时不能 把所有点都描出,就用平滑的曲线连接划出的点,从 而得到表示这个函数关系的近似图象。
,-1) A′,则A′的坐标为(3 ______ 。
3.将点A(3,2)向左平移4个单位长度,得到
,2) A′,则A′的坐标为(-1 ______ 。
4.点A′(6,3)是由点A(-2,3)经过 向右平移 8个单位长度 得到的。
达标测试
1.如果A,B的坐标分别为A(-4,5),B(-4,2),
下 平移___ 3 个单位长度得到点B;将点B向___ 上平 将点A向___ 3 个单位长度得到点A。 移___
【沪科版】八年级数学上册全册课件
【沪科版】八年级数学上册全册课件一、教学内容1. 函数及其性质函数的定义与表示方法函数的性质:单调性、奇偶性、周期性反函数的概念及求法2. 一次函数与二次函数一次函数的图像、性质与应用二次函数的图像、性质、顶点坐标与对称轴二次函数的解析式及其图像变换3. 三角形及其性质三角形的分类与性质三角形的重心、外心、内心、垂心全等三角形的判定与性质4. 四边形及其性质四边形的分类与性质矩形、菱形、正方形的性质与判定平行四边形的性质与判定二、教学目标1. 理解函数的概念,掌握函数的表示方法,了解函数的性质及其应用。
2. 掌握一次函数与二次函数的图像、性质、解析式及其应用。
3. 掌握三角形的分类、性质、重心、外心、内心、垂心等概念,以及全等三角形的判定与性质。
4. 掌握四边形的分类、性质、矩形、菱形、正方形的性质与判定,以及平行四边形的性质与判定。
三、教学难点与重点1. 教学难点:函数的性质及其应用二次函数的图像变换全等三角形的判定与性质矩形、菱形、正方形的性质与判定2. 教学重点:函数的定义与表示方法一次函数与二次函数的图像、性质与应用三角形的分类、性质与全等三角形的判定四边形的分类、性质与判定四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、直尺、圆规、量角器等。
2. 学具:练习本、草稿纸、直尺、圆规、量角器等。
五、教学过程1. 实践情景引入:通过现实生活中的实例,引出函数、一次函数、二次函数、三角形、四边形等概念。
2. 例题讲解:讲解函数的定义、表示方法及其性质分析一次函数与二次函数的图像、性质与应用介绍三角形的分类、性质、全等三角形的判定讲解四边形的分类、性质、矩形、菱形、正方形的性质与判定3. 随堂练习:解答函数性质的应用题画一次函数与二次函数的图像,分析性质判断三角形的全等关系识别四边形类型,判定矩形、菱形、正方形4. 课堂小结:六、板书设计1. 左侧板书:函数及其性质一次函数与二次函数三角形及其性质四边形及其性质2. 右侧板书:实例、定义、性质、图像、判定等关键内容例题解析、解题步骤、注意事项七、作业设计1. 作业题目:函数性质的应用题一次函数与二次函数图像的绘制与分析判断全等三角形的题目四边形类型判定及性质应用题2. 答案:(1)函数性质的应用题答案:根据函数性质,解答应用题(2)一次函数与二次函数图像的绘制与分析答案:根据函数解析式,绘制图像,分析性质(3)判断全等三角形的题目答案:根据全等三角形的判定定理,判断三角形全等关系(4)四边形类型判定及性质应用题答案:根据四边形的性质与判定定理,解答应用题八、课后反思及拓展延伸1. 反思:分析学生掌握的知识点,为下一节课做好准备2. 拓展延伸:引导学生探讨函数在实际生活中的应用研究三角形、四边形在建筑、艺术等领域的应用引导学生自主学习相关数学竞赛题目,提高解题能力重点和难点解析一、教学难点与重点1. 教学难点:(1)函数的性质及其应用补充说明:函数的性质包括单调性、奇偶性、周期性等,这些性质对于解决实际问题具有重要意义。
【沪科版】八年级数学上册(全书)课件省优PPT(共402张)
y
A4
3
B
2 B1
C
1
-5 -4 -3 -2 A-21
0 -1
1
-2
B2
-3
C2
A1
C1 2 34
3、如果△ ABC向下平移4个单位,得到△ A2B2C2,
写出各点的坐标,看它们有怎样的变化。
3.总结规律1:图形平移与点的坐标变化间的关系
(1)左、右平移:(a>0)
• 2、坐标平面内点的坐标 坐标平面上的点可以用一对实数来表示.
在平面内一点P,过P向x轴、y轴分别作垂线,垂足 在x轴、y轴上对应的数a,b分别叫P点的横坐标和纵 坐标,则有序实数对(a,b)叫做P点的坐标.
如上图中的平面直角坐标系中,点P可以这样来表 示:自点P分别向x轴和y轴作垂线,垂足M在x轴上对 应的坐标为-3,称为点P的横坐标;在y轴上垂足对 应的坐标为2,称为点P的纵坐标.有序实数(-3,2), 称为点P在平面直角坐标系中的坐标,简称点P的坐 标.即P(-3,2).注意点(-3,2)与(2,-3) 表示不同的两点.
P1(x,y+b)
原图形上的点(x,y) , 向下平移b个单位 (x,y-b)
记作:P (x,y)
P1(x,y-b)
二. 探索图形上点的坐标变化与图形平移间的关系
1.例题探索
y 4
如图, △ ABC先向右平移6 个单位,在向下平移4个单 C
A
3
2
位得到△ A1B1C1,写出各 顶点变化前后的坐标。
• 3、平面直角坐标系的结构
x轴和y轴把坐标平面分成四个部分,称之为四 个象限,按逆时针顺序依次叫第一象限,第二象 限,第三象限,第四象限.如图,各象限内的点的 坐标符号分别为(+,+)、(-,+)、(-, -)、(+,-).
最新沪科版八年级数学上册第14章全等三角形PPT
思考:1、全等三角形的周长、面积相等吗? 2、两个三角形三边对应相等,三对角也对应相等, 这两个三角形全等吗?
当堂训练
有什么办法判断两个三角形全等?用数学式子表示两个 三角形全等 , 并指出对应角、对应边 . A B C E D F
平 移
两个三角形全等是通过什么方法验证的?
解:对应边是: AC与DF,AB与DE,BC与EF. ∠A与∠D,∠B与∠E,∠C与∠F. 对应角是:
第14章 14.1
全等三角形 全等三角形
合作探究
例 : 如图,△ OCA ≌△ OBD , C 和 B , A 和 D 是对应顶点, 说出这两个三角形中相等的边和角.
C O A
B
D
请观察,并说出你看到的现象.
(1)
(2)
(3)
(4) (5) 思考:它们能完全重合吗?
•形状、大小完全一样的两个图形能够完全重合.
小结:最大边(角)是对应边(角). 最小边(角)是对应边(角).
D
B
如图,△AOC≌△BOD.
1.对应边: OA与OB OC与OD,AC与BD
旋 转
O
2.∠AOC的对应角 是 ∠BOD ∠A的对应角 是 ∠B
A
C
小结:有对顶角的,对顶角也是对应角.
C
翻 折
A
C
B B
A
B
A
D 如图,△ABD≌△ABC. ⑴AD的对应边是 AC ;AB的对应边是 AB ⑵∠DAB的对应角是 ∠CAB 小结:有公共边的,公共边也是对应边.
BC= B’C’.
猜想结论:
有两边和它们的夹角对应相等的两个三角
形全等.
全等三角形的判定
边角边定理:有两边和它们的夹角对应相等 的两个三角形全等.