提高PMT光子计数系统探测灵敏度的方法
光电倍增管的使用方法与信号放大技巧

光电倍增管的使用方法与信号放大技巧光电倍增管(Photomultiplier Tube,简称PMT)是一种用于检测、放大光信号的高灵敏度、高增益的光电转换器件。
它广泛应用于光学成像、粒子探测、生物医学检测等领域。
本文将介绍光电倍增管的使用方法以及信号放大技巧。
一、光电倍增管的使用方法光电倍增管的使用方法主要包括选择适当的高压、照明方式、阴极材料以及注意事项。
1. 选择适当的高压在使用光电倍增管时,需根据实际情况选择适当的高压。
过高的高压会导致光电倍增管工作不稳定,甚至损坏;而过低的高压则会降低增益,影响信号检测灵敏度。
因此,选择合适的高压能提高光电倍增管的工作效果。
2. 选择合适的照明方式光电倍增管可以采用不同的照明方式,如透射式和侧射式。
透射式适用于光透射性较好的材料,能提高信号接收效果;而侧射式适用于光透射性较差的材料,能获取更好的信号放大效果。
因此,在选择照明方式时需要结合实际情况进行判断。
3. 选择适当的阴极材料光电倍增管的阴极材料种类较多,常见的有碱金属阴极、堆垛阴极等。
不同的阴极材料有不同的特性和性能,所以在使用时需要根据需求选择适合的阴极材料,以提高光电倍增管的放大效果。
4. 注意事项在使用光电倍增管时,需要注意避免静电干扰和光源的选取。
静电干扰会干扰信号的放大,因此需要注意绝缘和屏蔽措施。
光源的选取也很重要,需根据信号的特性选择适当的光源,以提高信号的强度和准确性。
二、信号放大技巧1. 噪声抑制由于光电倍增管的放大过程中会引入一定的噪声,因此需要采取一些措施进行噪声抑制。
常见的方法有增加滤波器、提高信噪比等。
2. 信号放大在信号放大时,可以采用电子学放大器等设备进行辅助放大。
通过合理选择放大倍数和增益系数,可以将微弱的光信号放大到可以被检测和分析的范围。
3. 电子学调节在信号放大过程中,可能会遇到信号过大或过小无法处理的情况。
这时可以采取电子学调节的方式,如调整增益、偏置电压等,以使信号适应测量和分析的要求。
单光子计数

鲁东大学物理与光电工程学院——近代物理实验(Ⅱ)学号 姓名 班级 日期单光子计数实验系统1.实验目的(1)了解单光子计数器的结构和工作原理;(2)学习用单光子计数系统检验微弱光信号的方法;(3)研究鉴别电压对系统性能的影响,确定最佳鉴别电压(阈值);(4)了解光子计数器的信噪比,测试光子计数器的最低暗计数率和最小可检测光计数率;2.实验原理2.1光子流量和光流强度光具有波粒二像性,其粒子性特征物理量(能量E 和动量p )与波动性特征物理量(频率ν和波长λ)的关系是/;//E hv hc p h E c λλ==== (1)式中h 是普朗克常量,c 是光速。
在弱光情况下,光的量子性特征明显,即光子。
一束单色光可以看成是光子流,光子流量R (CPS )定义为单位时间内通过某一截面的光子数(单位:秒-1,或Hz),光流强度是单位时间内通过某一截面的光能量E ,用光功率P 表示。
单色光的光功率P 等于光子流量R 乘以单光子能量(本实验所用单色光500nm ,光子能量E=4×10-19J),即P RE = (2)测得入射光子流量R ,即可计算出相应的入射光功率P 。
表1光子流量R(CPS)和光功率P(W)之间的对应数值关系及检测方法2.2单光子计数在量子通讯、量子光学、生物化学发光分析等领域中,辐射光强度极其微弱,光子流量为1~103,光电管的阴极受光照射产生光电子,经过多级倍增在阳极产生一系列分立的尖脉冲(光电子脉冲),再对脉冲进行放大、甄别后进行脉冲计数。
脉冲的平均数量与光子流量成正比,在一定的时间内对光脉冲计数,便可检测到光子流量,这种测量光强的方法称为光子计数。
实际的光电管中,入射光子是以一定概率(量子效率η)产生光电子,考虑到光电倍增管的量子效率η,可由脉冲计数率R p (CPS)换算出光子流量R/p R R η= (CPS) (3)光子计数器主要由光源、光阑筒、光电倍增管、放大器、甄别器、计数器等组成,图1.图1单光子计数器原理2.3光电倍增管PMT(Photo Multiplier Tub)2.3.1光电倍增管的结构和工作原理光电倍增管(PMT)是一种高灵敏度电真空探测器件,利用外光电效应把微弱的光输入转化为光电子, 并经过多级二次电子发射,使光电子获得倍增,实现微弱光的探测。
物理实验报告_单光子计数实验研究

单光子计数实验研究摘 要:本实验利用GSZF-2A 型单光子计数器实验系统,在波长为500nm 的近单色弱光情况下确定了功率为10-13W 量级时系统的最佳甄别电平,并研究了实验中信噪比与接受光功率P 0以及测量时间t 的关系,同时也研究了工作温度T 对暗计数率R d 的影响。
并通过实验了解光子计数方法和弱光检测中的一些特殊问题。
关键词:光子流量和光流强度 PMT甄别电平信噪比一、 引言现代科学技术的许多领域,如天文光度测量、大气污染检测等,都会涉及极微弱的光信号的检测问题。
微弱光信号是时间上比较分散的光子流,因而由检测器(通常是光电倍增管,以下简称PMT )输出的信号将是自然离散化的电信号。
针对这一特点发展起来的单光子检测计数,采用脉冲放大、脉冲甄别和数字计数技术,大大地提高了弱光探测的灵敏度,这是其他弱信号探测方法所不能比拟的。
光子计数技术有如下优点:第一,有很高的信噪比,基本消除了PMT 的高压直流漏电流和各倍增级的热电子发射形成的暗电流所造成的影响,可以区分强度有微小差别的信号,测量精度很高;第二,抗漂移性很好,在光子计数测量系统中,PMT 增益的变化、零点漂移和其他不稳定因影响不大,所以时间稳定性好;第三,有比较宽的线性动态范围,最大计数率可达107二、 实验原理2.1 光子流量和光流强度光是由光子组成的光子流,单个光子的能量Ep 与光波频率ν的关系是νh Ep = (1) 光子流量R 可用单位时间内通过的光子数表示;光流强度是单位时间内通过的光能量,用光功率P 表示,单位为W 。
单色光的光功率P 与光子流量R 的关系是PRE P = (2)当光流强度小于10-16W 时通常称为弱光,此时可见光的光子流量可降到1ms 内不到一个光子,因此实验中要完成的将是对单个光子进行检测,进而得出弱光的光流强度,这就是单光子计数。
2.2 PMT 输出的信号波形PMT 是一种从紫外到近红外都有很高灵敏度和超快时间响应的真空电子管类光探测器件,用于各种微弱光的测量。
PMT基础知识之二-a(性-能-特-性)

PMT基础知识之二(参数与特性)__________________________ __________(1)灵敏度A阴极灵敏度(S K)S K=I k/F kB阴极蓝光灵敏度(S Kb)C阴极红光灵敏度(S KR)D红白比(S KR)/(S K)(2)量子效率在给定辐射波长下,量子效率定义为:阳极发射的光电子数与入射光子数的比值,这个值通常以百分数表示,可由下式进行计算:QE=Sх1240/λх100%这里S是给定波长下的辐射灵敏度,单位以A/W,λ为波长单位为nm.(3) 光谱响应光电阴极的光电发射是选择性的光电效应,长波响应截止波长由光电阴极材料的性决定,而短波阀主要决定于窗材料,不同的窗材料和光电发射层有不同的光谱响应曲线。
(4) 阳极灵敏度S P=I A/F A(5) 电流放大倍数(增益)光电倍增管的电流增益是光电倍增管的阳极输出电流与光阴极的光电流的比值,在理想情况下,假定每个倍增极的平均二次发射倍数分到δ1δnδn-1具有几个倍增极光电倍增管的电流增益为由下式给出:δ=δ1δ2…δn-1δn或者简单地测量阳极光照灵敏度SP与阴极光照灵敏度SK计算出来,即:G=Sp/S K(6) 暗电流当光电倍增管无光照射时(严格说来完全隔离辐射时)所产生的电流称为暗电流。
一般说来,引起暗电流有如下几个原因:A欧姆漏电B热电子发射C残余气体电离(离子反馈)D场致发射。
E玻璃发光F契伦柯夫光子(7) 线性电流所谓线性就是指阳极输出电流与入射光通量之间的正比关系。
一般说来,线性电流的大小与(1)管子结构类型,(2)工作电压(3)分压器设计等有关。
光电倍增管的线性范围很宽。
破坏这种线性关系来自两个方面:(A) 线性特性的低端,即输入信号很弱时受到光电倍增管噪声(或暗电流)的干扰。
它决定了光电倍增管所能探测的最弱信号。
(B) 线性特性高端,即输入信号很强时受到多种因素的作用而影响线性。
一般说来造成非线性的可能原因有:(1) 空间电荷的限制(-递增型分压器克服)(2) 阴极电阻率的限制(在平板上蒸锰提高导电率)(3) 分压器电流的限制(稳压器分压器克服、或要求I1.>I A 20-100倍)(4) 负载电阻效应限制(8) 稳定性在闪烁计数和度学测量中,光电倍增管的稳定性是非常重要的。
单光子计数实验-绝对零度教材

实验07 单光子计数实验光子计数技术,是检测极微弱光的有力手段,是通过分辨单个光子在检测器(光电倍增管)中激发出来的光电子脉冲,把光信号从热噪声中以数字化的方式提取出来。
这种系统具有良好的长时间稳定性和很高的探测灵敏度。
目前,光子技术系统广泛应用于科技领域中的极微弱光学现象的研究和某些工业部分中的分析测量工作,如在天文测光、大气测污、分子生物学、超高分辨率光谱学、非线性光学等现代科学技术领域中,都涉及极微弱光信息的检测问题。
【实验目的】1. 学习光子计数技术的原理,掌握光子计数系统中主要仪器的基本操作。
2. 掌握用光子计数系统检测微弱光信号的方法,了解弱光检测中的一些特殊问题。
【仪器用具】SGD-2型单光子计数系统、示波器、计算机。
【实验原理】(一)光子流量和光流强度光是由光子组成的光子流,光子是一种没有静止质量,但有能量(动量)的粒子。
一个频率为v (波长为λ)的光子,其能量为λ/hc hv E p == (1)式中普朗克常量s J h ⋅⨯=-341063.6,光速s m c /100.38⨯=。
以波长为m 7103.6-⨯=λ的氦-氖激光为例,单个光子能量为J E p 19101.3-⨯=。
将单位时间内通过某一截面的光子数R 称为光子流量。
并进一步将单位时间内通过该截面的光能量定义为光流强度,用光功率P 表示。
一束单色光的光功率功率等于光子流量乘以光子能量,即p E R P •= (2)如果设法测出入射光子流量R ,就可以计算出相应的入射光功率P 。
有了单光子能量的概念,就对微弱光的量级有了明显的认识,例如对于氦-氖激光器而言,1mW 的光功率并不是弱光范畴,因为光功率P =1mW ,其光子流量为115102.3-⨯=s R ;所以,1mW 的氦-氖激光,每秒有1015量级的光子,从光子计数的角度看,如此大量的光子数属于强光。
对于光子流量值为1s -1的氦-氖激光,其功率是W 19101.3-⨯;当R=10000s -1时,则光功率为W 15101.3-⨯;当光功率为10-16W 时,其光子流量为12102.3-⨯s 。
实验十九 单光子计数实验

图19-1 光电倍增管的工作原理图 实验十九 单光子计数实验现代光测量技术已步入极微弱发光分析时代。
在诸如生物微弱发光分析、化学发光分析、发光免疫分析等领域中,辐射光强度极其微弱,要求对所辐射的光子数进行计数检测。
对于一个具有一定光强的光源,若用光电倍增管接收它的光强,如果光源的输出功率及其微弱,相当于每秒钟光源在光电倍增管接收方向发射数百个光子的程度,那么,光电倍增管输出就呈现一系列分立的尖脉冲,脉冲的平均速率与光强成正比,在一定的时间内对光脉冲计数,便可检测到光子流的强度,这种测量光强的方法称为光子计数。
【实验原理】1.光子的量子特性光是由一束光子组成的光子流,光子是静止质量为零,有一定能量的粒子。
一个光子的能量可用下式确定λν/hc h E == (19—1)式中8100.3⨯=c m/s 是真空中的光速,34106.6-⨯=h J.S 是普朗克常数。
光流强度常用光功率p 表示,单位为W 。
单色光的光功率可用下式表示E R p ⋅= (19—2)式中R 为光子流量,即单位时间通过某一截面的光子数。
只要测得R ,就可得到p 。
如果光源发出的是波长为500nm 的近单色光,可以计算出这种光子的能量E P 为 E=J m s m s J hc1019978.31070.51080.3103463.61-⨯=-⨯⋅⨯⨯⋅-⨯=-λ (19—3) 当光功率为10−14W 时,这种近单色光的光子流量为 121916103.2103.161010---⨯=⨯⨯=s J W R (19—4)当光流强度小于10−16W 时通常称为弱光,此时可见光的光子流量可降到一毫秒内不到一个光子,因此实验中要完成的将是对单个光子进行检测,进而得出弱光的光流强度,这就是单光子计数。
2.电倍增管的工作原理。
光电倍增管是一个由光阴极、阳极和多个倍增极(亦称打拿极)构成的特殊电子管。
它的前窗对工作在可见光区及近紫外区的用紫外玻璃:而在远紫外区则必须使用石英。
第三章光电技术PMT
K
二、 光电倍增管的基本特性
1.
灵敏度
(1)阴极灵敏度 定义光电倍增管阴极电流Ik与入射光谱辐射通量 之比为阴极的光谱灵敏度,并记为
S k ,λ
Ik Φe, λ
若入射辐射为白光,则以阴极积分灵敏度,IK与 光谱辐射通量的积分之比,记为Sk
Sk Ik
0 e, λ d
(2)阳极灵敏度 定义光电倍增管阳极输出电流Ia与入射光谱辐射 通量之比为阳极的光谱灵敏度,并记为
影响暗电流的主要因素:
1. 欧姆漏电 2. 热发射 3. 残余气体放电
4. 场致发射
5. 玻璃壳放电和玻璃荧光
8.
疲劳与衰老
光电阴极材料和倍增极材料中一般都含有铯金 属。当电子束较强时,电子束的碰撞会使倍增极和 阴极板温度升高,铯金属蒸发,影响阴极和倍增极
的电子发射能力,使灵敏度下降。甚至使光电倍增
2.
为什么纯金属不适合用作光电阴极材料? 金属材料是否满足上述4点?
——其反射率为90%,吸收光能少; ——体内自由电子多,由于碰撞引起的能量散射损 失大,逸出深度小; ——逸出功大(>3eV),难逸出金属表面,量子 效率低; —— 光 谱 响 应 在 紫 外 或 远 紫 外 区 ( 红 限 不 长 于 600nm),适于紫外灵敏的光电器件。
EcN
Ec
EA
Eg
E
本征半导体
Eg
E
(a ) (b)
N型半导体
ED
Eg
E
(c )
P型半导体
P
EA
电子亲和势(EA)—— 指导带底上的电子向真空逸出所需要 的能量。 光电逸出功 —— 指材料在绝对零度时光电子逸出表面所需的 最低能量。描述材料表面对电子束缚的强弱。
光电倍增管PMT
光电倍增管—PMT简介光电倍增管:PhotoMultiplier Tube,简称PMT,是灵敏度极高,响应速度极快的光探测器。
可广泛应用于光子计数、极微弱光探测、化学发光、生物发光研究、极低能量射线探测、分光光度计、旋光仪、色度计、照度计、尘埃计、浊度计、光密度计、热释光量仪、辐射量热计、扫描电镜、生化分析仪等仪器设备中。
光电倍增管的一般结构光电倍增管由光电发射阴极(光阴极)和聚焦电极、电子倍增极及电子收集极(阳极)等组成。
典型的光电倍增管按入射光接收方式可分为端窗式和侧窗式两种类型。
其主要工作过程如下:当光照射到光阴极时,光阴极向真空中激发出光电子。
这些光电子按聚焦极电场进入倍增系统,并通过进一步的二次发射得到的倍增放大。
然后把放大后的电子用阳极收集作为信号输出。
因为采用了二次发射倍增系统,所以光电倍增管在探测紫外、可见和近红外区的辐射能量的光电探测器中,具有极高的灵敏度和极低的噪声。
另外,光电倍增管还具有响应快速、成本低、阴极面积大等优点。
光电倍增管的类型1 按接收入射光方式分类光电倍增管按其接收入射光的方式一般可分成端窗型(Head-on)和侧窗型(side-on)两大类。
侧窗型光电倍增管(R系列)是从玻璃壳的侧面接收入射光,两端窗型光电倍增管(CR系列)则从玻璃壳的顶部接收射光。
图2和图3分别是侧窗式光电倍增管和端窗式光电倍过管的外形图。
在通常情况下,侧窗型光电倍增管(R系列)的单价比较便宜(一般数百元/只),在分光光度计、旋光仪和常规光度测定方面具有广泛的应用。
大部分的侧窗型光电倍增管使用不透明光阴极(反射式光阴极)和环形聚焦型电子倍增极结构,这种结构能够使其在较低的工作电压下具有较高的灵敏度。
端窗型光电倍增管(CR系列)也称顶窗型光电倍增管。
其价格一般在千元以上,它是在其入射窗的内表面上沉积了半透明的光阴极(透过式光阴极),这使其具有优于侧窗型的均匀性。
端窗型光电倍增管的特点是拥有从几十平方毫米到几百平方厘米的光阴极,另外,现在还出现了针对高能物理实验用的可以广角度捕获入射光的大尺寸半球形光窗的光电倍增管。
提高荧光检测的灵敏度和选择性
可以通过哪些手段提高荧光检测的灵敏度和选择性?
荧光测量值不仅和被测溶液中荧光物质的本性及其浓度有关,而且与激发光的波长和强度以及荧光检测器的灵敏度有关。
加大激发光的强度,可以增大荧光强度,从而提高分析的灵敏度。
提高荧光检测灵敏度的方法:选用长波长的探针分子,减少背景荧光的干扰,提高荧光放大倍数等。
提高荧光检测强度:选用荧光量子产率高的荧光物质作为标记物,对于提高荧光检测敏感度和强度,有着显著的意义。
选择荧光寿命短的荧光,也能提高检测灵敏度。
荧光强度:随着溶剂粘度的升高而增加,
周围的环境也可以影响荧光检测的灵敏度。
1:溶剂,在应用的波段安慰内应对光没有吸收,因此需要溶剂的纯度很高,比如使用高纯水,超纯水。
2:环境温度,溶液中的荧光物质的荧光量子产率和强度随着温度的降低而增强,随温度的升高而减弱。
因此应该使用恒温装置。
3:环境PH,如果荧光物质为弱酸弱碱性,周围环境PH的改变会对其荧光性质产生显著影响。
因此,提高荧光检测的敏感性,需要稳定的检测环境,通过控制以上几个因素,能够使外周环境达到相对稳定的状态,从而提高荧光检测的灵敏度。
PMT基础知识之一(A)光电倍增管的工作原理、特点及应用)
光电倍增管基础知识之一(光电倍增管的工作原理、特点及应用)一光电倍增管的工作原理光电倍增管是一种真空光电器件(真空管)。
它的工作原理是建立在光电效应(光电发射)、二次电子发射、电子光学理论基础上的。
它昀工作过程是:光子通过光窗入射到光电阴极L产生光电子,光电子通过电子光学输入系统进入倍增系统,电子得到倍增,最后阳极把电子收集起来,形成阳极电流或电压。
因此一个光电倍增管可以分为几个部分:(1)入射光窗、(2)光电阴极、(3)电子光学输入系统、(4)二次倍增系统、(5)阳极。
光电倍增管结构如图(1)所示。
图(1)光电倍增管结构示意图1入射光窗:让光通过的光窗一般有(1) 硼硅玻璃(300nm)、(2) 透紫玻璃(185nm)、(3) 合成(熔融)石英(160nm)、(4) 蓝宝石(Al2O3)150nm、(5) MgF2(115nm)。
光电倍增管光谱短波阈由入射光窗决定。
2光电阴极光电阴极是接收光子而放出光电子的电极。
一般分为半透明(入射光和光电子同一方问)的端面或四面窗阴极和不透明(入射光的方向与光电子方向相反)。
见图(2)电子轨迹图。
图(2)电子轨迹图光电阴极的材料多用低逸出功的碱金属为主的半导体化合物,到目前为止,实用的先电阴极材料达十种之多:(1) Sb-Cs特点是:阴极电阻低,允许强光下有大电流流过阴极的场合下工作)(2) 双碱(Sb-RbCs、Sb-K-Cs)特点是:灵敏度较高暗电流小-热电子发射小)(3) 高温双碱(Sb-K-Na)特点是:耐高温-200℃(4) 多碱(Sb-K-Na-Cs).特点是:宽光谱灵敏度高(5) Ag-O-Cs多碱特点是:光谱可到近红外灵敏度低)(6) GaAs(Cs)特点是:高灵敏光谱平坦强光下容易引起灵敏度变坏)。
(7) Cs-I特点是日盲,在115nm的短波也有高(8) Cs-Te特点是:日盲、阴极面透过型和反射型)我公司生产的PMT的阴极材料主要是(1) Sb-Cs(2)双碱(Sb-RbCs、Sb-K-Cs)(3)高温双碱(Sb-K-Na)(4)多碱(Sb-K-Na-Cs)表(1)各种阴极材料的特性(硼硅玻璃窗材料)3 电子光学输输入系统电子光学输入系统由光电阴极和第一倍增极之间的电极结构以及所加的电位构成,它使光电子尽可能多地聚焦在第一倍增极上。