第3章(向量 线性方程组)线性代数及其应用
线性代数的应用

线性代数的应用药学院 77-1K 药学五班 陈凯 10101502摘要 线性代数(Linear Algebra )是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。
线性代数课程是高等学校理工科各专业学生的一门必修的重要基础理论课,它广泛应用于科学技术的各个领域。
尤其是计算机日益发展和普及的今天,使线性代数成为工科学生所必备的基础理论知识和重要的数学工具。
我们在生活中会遇到很多问题都可以用线性代数的知识来解决。
关键字 线性代数、数学、应用、解决问题。
在线性代数课上,听到最多的一个词莫过于矩阵了。
何为矩阵?矩阵实质上就是一张长方形数表。
无论是在日常生活中还是在科学研究领域中,矩阵都是一种十分常见的数学现象,诸如学校里的课程表、成绩优异表;工厂里的生产进度表、销售统计表;车站里的时刻表、价目表;股市中的证劵价目表;科学研究领域的数据分析表等,它是表达或处理大量的生活、生产与科研问题的有力工具。
矩阵的重要作用首先在于它能把头绪纷繁的事物按一定的规则清晰的展现出来,使我们不至于被一些表面看起来杂乱无章的关系弄得晕头转向;其次在于它能恰当的刻画事物之间的内在联系;最后在于它还是我们求解数学问题的一种特殊的“数形结合”的途径。
矩阵概念的应用十分广泛,某些逻辑判断问题的条件往往给的很多,看上去错综复杂,但如果我们能恰当的设计一些矩阵,这有助于我们把所给条件的头绪理清,在此基础上再进行推理,能达到化简问题的目的。
如以下问题:甲、乙、丙、丁、戊五人各从图书馆借来一本小说,他们约定读完后互相交换,这五本书的厚度以及他们五人的阅读速度差不多,因此,五人总是同时交换书,经四次交换后,他们五人读完了这五本书,现已知:⑴甲最后读的书是乙读的第二本书;⑵丙最后读的书是乙读的第四本书;⑶丙读的第二本书甲在一开始就读了;⑷丁最后读的书是丙读的第三本书;⑸乙读的第四本书是戊读的第三本书;⑹丁第三次读的书是丙一开始读的那本书。
线性代数课件PPT

目录 CONTENT
• 线性代数简介 • 线性方程组 • 向量与矩阵 • 特征值与特征向量 • 行列式与矩阵的逆 • 线性变换与空间几何
01
线性代数简介
线性代数的定义和重要性
1
线性代数是数学的一个重要分支,主要研究线性 方程组、向量空间、矩阵等对象和性质。
2
线性代数在科学、工程、技术等领域有着广泛的 应用,如物理、计算机科学、经济学等。
逆矩阵来求解特征多项式和特征向量等。
06
线性变换与空间几何
线性变换的定义和性质
线性变换的定义
线性变换是向量空间中的一种变换, 它将向量空间中的每一个向量映射到 另一个向量空间中,保持向量的加法 和标量乘法的性质。
线性变换的性质
线性变换具有一些重要的性质,如线 性变换是连续的、可逆的、有逆变换 等。这些性质在解决实际问题中具有 广泛的应用。
特征值与特征向量的应用
总结词
特征值和特征向量的应用非常广泛,包括物理、工程、经济等领域。
详细描述
在物理领域,特征值和特征向量可以描述振动、波动等现象,如振动模态分析、波动分析等。在工程 领域,特征值和特征向量可以用于结构分析、控制系统设计等。在经济领域,特征值和特征向量可以 用于主成分分析、风险评估等。此外,在机器学习、图像处理等领域也有广泛的应用。
经济应用
线性方程组可用于解决经济问题,如投入产出分析、 经济预测等。
03
向量与矩阵
向量的基本概念
向量的模
表示向量的长度或大小,记作|向量|。
ቤተ መጻሕፍቲ ባይዱ
向量的方向
由起点指向终点的方向,可以通过箭头表示。
向量的分量
表示向量在各个坐标轴上的投影,记作x、y、 z等。
线性代数第三章线性方程组第4节线性方程组解的结构

c1
1 0
c2
0 1
k1
1 1
k2
2 2
1
0
0
1
得 c1 k2
cc12
k1 k1
2k2 2k2
c1 k2
即 c1 k2 0
cc12
k1 k1
2k2 2k2
0 0
c1 k2 0
解得 c1 k2,c2 k2,k1 k2.
取
k2 k 0,
则方程组(Ⅰ)、(Ⅱ)的公共解为
(kk21
(k1 k2 )
k2 k2
)0 0
解之得到
k1 k2.
当k1 k2 0时,向量
k1(0,1,1, 0)T k2 (1, 2, 2,1)T k2[(0,1,1, 0)T (1, 2, 2,1)T
满足方程组(Ⅰ).
k2 (1,1,1,1)T
并且它也是方程组(Ⅱ)的解,故它是方程组(Ⅰ)与(Ⅱ)的 公共解.
定理3.17 若0是非齐次线性方程组AX=b的一个解,则方程组 AX=b的任意一个解 都可以表示为 0 其中 是其导出组AX=0的某个解,0称为方程组
AX=b的一个特解.
例7 求线性方程组
x1 2x2 3x3 x4 3x5 5
3x1
2x1 4x2
x2 2x4 6x5 1 5x3 6x4 3x5
0 0
x1 5x2 6x3 8x4 6x5 0
的一个基础解系.并求方程组的通解.
解 方程组中方程个数小于未知量的个数,所以方程组有 无穷多解.
对方程组的系数矩阵施以初等行变换,化为简化的阶 梯形矩阵:
3 1 6 4 2
A 2
2
3 5
3
1 5 6 8 6
线性方程组的解法及其应用

线性方程组的解法及其应用摘要:线性方程组是线性代数的核心内容之一,其解法研究是代数学中经典且重要的研究课题.本文综述了几种不同类型的线性方程组的解法,如消元法、克拉默法则、广义逆矩阵法、直接三角形法、平方根法、追赶法,并以具体例子介绍不同解法的应用技巧. 在这些解法中,广义逆矩阵方法,具有表达式清晰,使用范围广的特点.另外,这些方法利于快速有效地解决线性方程组的求解问题,为解线性方程组提供一个简易平台,促进了理论与实际的结合.关键词:线性方程组解法广义逆矩阵应用实例1. 引言线性方程组理论是高等数学中十分重要的内容,而线性方程组的解法是利用线性方程组理论解决问题的关键.本文主要介绍线性方程组的广义逆矩阵法、追赶法、平方根法等求解方法,为求解线性方程组提供一个平台.文章也给出线性方程组在其他领域中的应用实例,揭示了各学科之间的内通性.首先,我们讨论一般线性方程组.这里所指的一般线性方程组形式为11112211211222221122,,.n n n n s s sn n s a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ ()i()i 式中(1,2,,)i x i n =代表未知量,(1,2,,;1,2,,)ij a i s j n ==称为方程组的系数,(1,2,,)j b j n =称为常数项.线性方程组)(i 称为齐次线性方程组,如果常数项全为零,即120s b b b ====.令111212122212n n s s sn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,12n x x X x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 12s b b B b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,则()i 可用矩阵乘法表示为AX B =,,,.m n n m A C X C B C ⨯∈∈∈2. 线性方程组的解法2.1 消元法在初等代数里,我们已经学过用代入消元法和加减消元法解简单的二元、三元线性方程组.实际上,这个方法比用行列式解方程组更具有普遍性.但对于那些高元的线性方程组来说,消元法是比较繁琐的,不易使用.例 1 解线性方程组123123123123324,32511,23,237.x x x x x x x x x x x x +-=⎧⎪+-=⎪⎨++=⎪⎪-++=-⎩ 解 分别将第一个方程的(-3)倍,(-2)倍和2倍加到第二、三、四个方程上,整理得123232323324,71,555,7 1.x x x x x x x x x +-=⎧⎪-+=-⎪⎨-+=-⎪⎪-=⎩将此方程组第二个方程加到第四个方程上,使该方程两边全为零,并将第三个方程的两边乘以15-,得1232323324,71,1.x x x x x x x +-=⎧⎪-+=-⎨⎪-=⎩再将第三个方程的7倍加到第二个方程上,消去第二个方程中的未知量2x ,整理得123233324,1,6 6.x x x x x x +-=⎧⎪-=⎨⎪-=⎩最后解得123(,,)(2,0,1)T T x x x =--.正如消元法是我们接触比较早的,被我们所熟悉的一种方法,在此只给出三元线性方程组的解法,三元以上的方程组的具体理论、性质和解题过程详见参考文献[1]. 2.2 应用克莱姆法则对于未知个数与方程个数相等的情形,我们有定理1[1] 如果含有n 个方程的n 元线性方程组11112211211222221122,,.n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ ()ii的系数矩阵111212122212n n n n nn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦的行列式111212122212det 0n n n n nna a a a a a A a a a =≠,那么线性方程组()ii 有唯一解:det (1,2,,),det j j B x j n A==其中det j B 是把矩阵中第j 列换成线性方程组的常数项12,,,n b b b 所成的矩阵的行列式,即111,111,11222,122,121,1,1det,1,2,,.j j n j j n j n n j n n j nna ab a a a a b a a B j n a a b a a -+-+-+==此外,还可以叙述为,如果含有n 个未知数、n 个方程的线性方程组Ax b =的系数矩阵的行列式det 0A ≠,则线性方程组Ax b =一定有解,且解是唯一的. 例2 解线性方程组12342341242342344,3,31,73 3.x x x x x x x x x x x x x -+-=⎧⎪-+=-⎪⎨++=⎪⎪-++=-⎩ 解 由已知可得系数行列式12341234123401110111111det 16013015352073173148A ---------====≠----,因此线性方程组有唯一解.又因124234143431110311det 128,det 48,1301110137310331B B -------==-==-341244123401310113det 96,det 0.1311130107310733B B ------====--故线性方程组的解为1234(,,,)(8,3,6,0)T T x x x x =-.克莱姆法则主要给出了解与系数的明显关系,但只能应用于系数矩阵的行列式不为零的线性方程组,并且它进行计算是不方便的. 2.5 直接三角分解法[5]设有线性方程组11112211211222221122,,,n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩或写成矩阵形式Ax b =,其中111212122212n n n n nn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,12n x x x x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,12n b b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦.若A 为非奇异矩阵,且有分解式A LU =,其中U 为上三角矩阵,L 为单位下三角矩阵,即11121212221,1111n n n n n nn u u u l u u A LU l l u -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 则线性方程组Ax b =的求解等价于 解以下两个三角方程组:(1)Ly b =,求y ; (2)Ux y =,求x .直接三角形分解法求解线性方程组,基本步骤如下: 第一步: 11,(1,2,,),i i u a i n == 1111,(2,3,,)i i l a u i n ==,计算U 的第r 行,L 的第r 列元素,2,3,,r n =.第二步: 11,(,1,,)r ri ri rk ki k u a l u i r r n -==-=+∑.第三步: 11,(1,,;)r ir ir ik kr rr k l a l u u i r n r n -==(-)=+≠∑.求解Ly b =,Ux y =的计算公式如下:第四步: ()1111,,2,3,.i i i ik k k y b y b l y i n -==⎧⎪⎨=-=⎪⎩∑第五步: 1,(),(1,2,,1).n n nn n i i ik k ii k i x y u x y u x u i n n =+=⎧⎪⎨=-=--⎪⎩∑例5 求解线性方程组1231212321,42,227.x x x x x x x x ++=⎧⎪+=-⎨⎪-++=⎩解 由直接三角分解法第二、三步可得211100211410210012221131004A LU ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦. 于是线性方程组变为LUx b =,求解线性方程组(1,2,7)T Ly =-,得(1,4,4)T y =--;求解线性方程组(1,4,4)T Ux =--,得(1,2,1)T x =-.2.6 平方根法[7]在许多应用中,欲求解的线性方程组的系数矩阵是对称正定的.所谓平方根法,就是利用对称正定矩阵的三角分解而得到的求解具有对称正定矩阵的线性方程组的一中有效方法,目前在计算机上广泛应用平方根法解此类方程组.定理6[12] 若A 的各阶顺序主子式非零,则A 可以分解为A LDU =,其中L 是单位下三角矩阵,U 是单位上三角矩阵,D 是对角矩阵,且这种分解是唯一的.定理7[12] 设A 为对称正定矩阵,则存在三角分解T A LL =,其中L 是非奇异下三角形矩阵,且当限定L 的对角线元素为正时,这种分解是唯一的.应用对称正定矩阵的平方根法,可以解具有对称正定系数矩阵的线性方程组Ax b =,具体算法如下:1) 对j =1,2,,n ,计算11221()j jj jj jkk l a l -==-∑,11j ij ij ik jk k l a l l -==-∑(1,,)i j n =+.2) 求解线性方程组Ax b =等价于解两个三角方程组,.TLy b L x y =⎧⎨=⎩ 计算11()i i i ik k ii k y b l y l -==-∑,(i =1,2,,n ), 1()ni i ki kii k i x b lx l =+=-∑,(i n =,1n -,,2,1),即可.例6 求解线性方程组12341161 4.25 2.750.5.1 2.75 3.5 1.25x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 解 设1111213121222232313233334111 4.25 2.751 2.75 3.5l l l l l l l l l l l l -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 由矩阵乘法得1121223132332,0.5,2,0.5, 1.5, 1.l l l l l l ==-====解下三角方程组123260.520.50.5 1.51 1.25y y y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 得1233,0.5,1,y y y ===-再由123230.520.50.5 1.511Tx x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦, 得线性方程组的解为123(,,)(2,1,1)T T x x x =-.可以用消元法解此方程组,但发现此方程组的系数矩阵为正定矩阵,运用平方根法解这个方程组比较容易,而且理论分析指出,解对称正定方程组的平方根法是一个稳定的算法,其在工程计算中使用比较广泛. 2.7 追赶法[5]在许多实际问题中,都会要求解系数矩阵为对角占优的三对角方程组11112222211111iiii i n n n n n nn n n x k b c x k a b c a b c x k a b c x k a b x k -----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 简记作 Ax k =, 其中A 满足下列对角占优条件:(1) 110b c >>;(2) i i i b a c ≥+, i a ,i c 0≠(i =2,3, ,1n -);(3) 0n n b c >>.由系数矩阵A 的特点,可以将A 分解为两个三角矩阵的乘积,即A LU =,其中L 为下三角矩阵,U 为单位上三角矩阵.求解线性方程组Ax k =等价于解两个三角方程组Ly k =与Ux y =,先后求y 与x ,从而得到以下解三角方程组的追赶法公式:第一步:计算的递推公式111c b β=,1()i i i i i c b a ββ-=-,(2i =,3,,1)n -;第二步:解Ly k =:111y k b =,11()()i i i i i i i y k a y b a β--=--,(2,3,,)i n =;第三步:解Ux y =:n n x y =,1i i i i x y x β+=-,(1,2,,2,1)i n n =--.例7 求解三对角线性方程组123421001131020111200210x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.解 设有三角分解111122222233333344441111b c p q a b c a p q a b c a p q a b a p ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 由矩阵乘法易得111,,1,2,3.,2,3,4.i i i ii i i p b q c p i p b a q i -=⎧⎪==⎨⎪=-=⎩ 将已知系数矩阵的元素代人上式有11223342,12,52,25,35,53,73.p q p q p q p ==⎧⎪==⎪⎨==⎪⎪=⎩ 解线性方程组112233441121220p y p y p y p y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 得123412,35,73, 2.y y y y ====再解线性方程组111222333441111x y q x y q x y q x y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得原线性方程组的为1234(,,,)(0,1,1,2)T T x x x x =-.追赶法是以LU 分解为基础的求解方法,因此它的不足之处是当某个0=k u 时,就不能进行.但是当方程组的系数矩阵A 中有很多零元素时,利用三对角方程组系数矩阵的稀疏性,使零元素不参加运算,可以类似于追赶法来简化计算过程,从而极大地节省了计算量和存储量.这也是追赶法的最大特点.3. 应用举例3.1 线性方程组在解析几何中的应用例8 已知平面上三条不同直线的方程分别为1L :230ax by c ++=,2L :230bx cy a ++=,3L :230cx ay b ++=,试证:这三条直线交于一点的充分必要条件为0a b c ++=.证 必要性 设三直线1L ,2L ,3L 交于一点,则线性方程组232323ax by cbx cy a cx ay b +=-⎧⎪+=-⎨⎪+=-⎩ ()iii有惟一解,故系数矩阵222a b A b c c a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与增广矩阵232323a b c A b c a c a b --⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦的秩均为2,于是0A -=,即22223236()()23a bcA bc a a b c a b c ab ac bc ca b--=-=++++----=0,所以0a b c ++=.充分性 由0a b c ++=,则从必要性的证明可知,0A -=,故()3r A -<.由于22222132()2[()]2[()]0224a b ac b a a b b a b b b c =-=-++=-++≠, 故()()2r A r A -==.因此线性方程组()iii 有惟一解,即三直线1L ,2L ,3L 交于一点. 3.2 线性方程组在产品生产量中的应用例9 设有一个经济系统包括3个部门,在某一个生产周期内各部门间的消耗及最终产品如表所示:求各部门的总产品.解 设i x 表示第i 部门的总产品.由已知可以得到线性方程组()I A x y -=,其中0.250.10.1()0.20.20.10.10.10.2ij A a ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦,0.750.10.10.20.80.10.10.10.8I A --⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦,(245,90,175)T y =. 利用矩阵的初等变换可以求得1126181810()34118198912017116I A -⎡⎤⎢⎥-=⎢⎥⎢⎥⎣⎦, 所以线性方程组()I A x y -=的解为消耗系数 消耗部门 生产部门123最终产品1 0.25 0.1 0.1 2452 0.2 0.2 0.1 90 30.10.10.21751126181824540010()3411819902508912017116175300x I A y -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 4. 结束语本文针对不同的线性方程组给出了一些计算方法,及线性方程组的应用实例.根据线性方程组自身所具有的特点,可以选择相应合适的方法,而对于那些特殊类型的线性方程组的解法,有待进一步的讨论与研究.参考文献:[1] 北京大学数学系几何与代数教研室前代数小组编. 高等代数[M].3版.北京:高等教育出版社,2003.105-112.[2] 白梅花. 线性方程组若干应用实例举例[J].科技资讯,2011,(27):200-201.[3] 康道坤,陈劲. 广义逆下线性方程组的解结构及其推广[J].大理学院学报,2011,10(4):7-9. [4] 卢刚.线性代数[M]. 北京:高等教育出版社,2002.64-72.[5] 李庆扬,王能超,易大义. 数值分析[M].4版.武汉:华中科技大学出版社,2006.177-185. [6] 苏育才,姜翠波,张跃辉. 矩阵理论[M].北京:科学出版社,2006.200-206. [7] 首都师范大学数学系组编. 数值分析[M].北京:科学出版社,2000.28-32.[8] 徐仲,张凯院,陆全,等. 矩阵论简明教程[M].2版.北京:科学出版社,2005.141-147. [9] 谢寿才,陈渊. 大学数学[M].北京:科学出版社,2010.37-40.[10] 徐仲,张凯院,陆全. 矩阵论[M].西安:西北工业大学出版社,2002.228-245.[11] 尹钊,钟卫民,赵丽君. 线性方程组的广义逆矩阵解法[J].哈尔滨师范大学自然科学学 报,1999,15(5):21-22. [12] 张明淳. 工程矩阵理论[M].1版.南京:东南大学出版社,1995.172-173.[13] 赵树嫄. 线性代数(经济应用数学基础)[M].4版.北京:中国人民大学出版社,2008.150-157.。
线性方程组的应用

于是求各个支路的电流就归结为下面齐次线性方 程组的求解
+ i4 − i6 = 0, i1 i2 + i4 − i5 = 0, i3 − i5 + i6 = 0, i1 − i2 + i3 = 0.
相应MATLAB代码为:dianliu.m 代码为: 相应 代码为 clear A=[1,0,0,1,0,-1;0,1,0,1,-1,0;0,0,1,0,-1,1;1,-1,1,0,0,0]; b=[0;0;0;0]; [R,s]=rref([A,b]); r=length(s); disp('对应齐次线性方程组的基础解系为:') 对应齐次线性方程组的基础解系为: 对应齐次线性方程组的基础解系为 x=null(A,'r')
电路问题 在工程技术中所遇到的电路, 在工程技术中所遇到的电路,大多数是很 复杂的, 复杂的,这些电路是由电器元件按照一定方式 互相连接而构成的网络。在电路中, 互相连接而构成的网络。在电路中,含有元件 的导线称为支路, 的导线称为支路,而三条或三条以上的支路的 会合点称为节点。电路网络分析,粗略地说, 会合点称为节点。电路网络分析,粗略地说, 就是求出电路网络种各条支路上的电流和电压。 就是求出电路网络种各条支路上的电流和电压。 对于这类问题的计算, 对于这类问题的计算,通常采用基尔霍夫 (Kirchhoff)定律来解决。以图 所示的电 )定律来解决。以图3-2所示的电 路网络部分为例来加以说明。 路网络部分为例来加以说明。
0.60 口,像 x0 = 0.40
这样的向量可以显示60%的人口 的人口 这样的向量可以显示
住在这个城市中, 的人口住在郊区。 住在这个城市中,40%的人口住在郊区。 0 中的 的人口住在郊区 x 分量加起来等于1,是说明这个地区的总人口。 分量加起来等于 ,是说明这个地区的总人口。
线性代数 3-1 第3章1讲-n维向量及其线性表示

7
二、n维向量的线性运算
定理3.1 向量的线性运算满足如下运算规律。
(1) (2)( ) ( ) (3) O (4) ( ) O
(5)1 (6)k(l ) (kl) (7)k( ) k k (8)(k l) k l
称 为向量与的和
(5)向量的减法 ( )
(a1 b1 ,a2 b2 , ,an bn ),
即:两个向量相加减就是将它们的对应分量相加减
6
二、n维向量的线性运算
(6)数乘
设 (a1 ,a2 , ,an ), 是n维向量 , λ是实数 , 规定
(a1 ,a2 , ,an )
二、 n维向量的线性运算
2. n 维向量的运算
定义3.2
(1)零向量 分量都为零的向量称为零向量, 记作O。 即 O = (0, 0, , 0).
(2)负向量 设 (a1 , a2 , , an ), 记 (a1 , a2 , , an ) 称 为的负向量.
(3)向量的相等 设 (a1 , a2 , , an ), (b1 , b2 , , bn )都是n维向量,则规定 :
线性代数(慕课版)
第三章 向量与向量空间
第一讲 n 维向量及其线性运算
主讲教师 |
本讲内容
01 n维向量的定义 02 n维向量的线性运算
一、n维向量的定义
1. n 维向量的定义
定义3.1 n个有序数a1, a2 ,, an 所组成的数组 (a1, a2,, an ) ,称为n 维向量.
a1, a2 ,, an 称为分量或坐标. 行向量 (a1, a2 ,, an )称为n 维行向量;
向量的线性相关性及其应用
向量的线性相关性及其应用一、引言向量(linear vector)是线性代数中一个重要的概念。
在物理、数学以及经济等领域都有广泛的应用。
本文将深入探讨向量的线性相关性及其应用,为读者展开一个全新的世界。
二、向量的定义与线性相关性向量通常由对应的有序数列表示,例如:$\vec{v}=(v_1,v_2,v_3,...,v_n)$,其中$n$为该向量的维度。
在这里我们着重介绍三维向量的线性相关性。
定义:给定向量空间$V$中的$n$个向量$\vec{v_1},\vec{v_2},...,\vec{v_n}$,如果存在一组不全为0的系数$c_1,c_2,...,c_n$使$$c_1\vec{v_1}+c_2\vec{v_2}+...+c_n\vec{v_n}=\vec{0}$$则称$\vec{v_1},\vec{v_2},...,\vec{v_n}$是线性相关的,否则称它们是线性无关的。
三、线性相关性的判断接下来我们将介绍两种判断线性相关性的方法1.行列式判断法判断向量$\vec{v_1}=(a_1,b_1,c_1),\vec{v_2}=(a_2,b_2,c_2),\vec{v_3}=(a_3,b _3,c_3)$是否线性相关,先将三个向量组成一个矩阵:$$ A =\begin{bmatrix}a_1 & b_1 & c_1\\a_2 & b_2 & c_2\\a_3 & b_3 & c_3\end{bmatrix}$$计算矩阵$A$的行列式$\mid A\mid$,如果$\mid A\mid=0$,则三个向量线性相关,否则线性无关。
2.列向量线性组合法该方法适用于任意维度的向量$V$中,以三维向量为例,判断向量$\vec{v_1}=(a_1,b_1,c_1),\vec{v_2}=(a_2,b_2,c_2),\vec{v_3}=(a_3,b _3,c_3)$是否线性相关,可以先将它们写成列向量的形式:$$\vec{v_1}=\begin{bmatrix}a_1\\b_1\\c_1\end{bmatrix},\vec{v_2}=\begin{bmatrix}a_2\\b_2\\c_2\end{bmatrix},\vec{v_3}=\begin{bmatrix}a_3\\b_3\\c_3\end{bmatrix}$$然后设有一组不全为0的系数$d_1,d_2,d_3$,满足$$d_1\vec{v_1}+d_2\vec{v_2}+d_3\vec{v_3}=\vec{0}$$则可以写出下列线性方程组:$$\left\{\begin{aligned}a_1d_1+a_2d_2+a_3d_3&=0\\b_1d_1+b_2d_2+b_3d_3&=0\\c_1d_1+c_2d_2+c_3d_3&=0\end{aligned}\right.$$如果方程组有一组不全为0的解,则三维向量$\vec{v_1},\vec{v_2},\vec{v_3}$线性相关,否则线性无关。
线性代数总结知识点
线性代数总结知识点线性代数是数学的一个分支,主要研究向量、向量空间(也称为线性空间)、线性变换以及线性方程组的理论。
它是现代数学的基础工具之一,广泛应用于物理学、工程学、计算机科学、经济学和社会科学等领域。
以下是线性代数的一些核心知识点总结:1. 向量与向量运算- 向量的定义:向量可以是有序的数字列表,用于表示空间中的点或方向。
- 向量加法:两个向量对应分量相加得到新的向量。
- 标量乘法:一个向量与一个标量相乘,每个分量都乘以该标量。
- 向量的数量积(点积):两个向量的对应分量乘积之和,用于计算向量的长度或投影。
- 向量的向量积(叉积):仅适用于三维空间,结果是一个向量,表示两个向量平面的法向。
2. 矩阵- 矩阵的定义:一个由数字排列成的矩形阵列。
- 矩阵加法和减法:对应元素相加或相减。
- 矩阵乘法:第一个矩阵的列数必须等于第二个矩阵的行数,结果矩阵的每个元素是两个矩阵对应行列的乘积之和。
- 矩阵的转置:将矩阵的行变成列,列变成行。
- 单位矩阵:对角线上全是1,其余位置全是0的方阵。
- 零矩阵:所有元素都是0的矩阵。
3. 线性相关与线性无关- 线性相关:如果一组向量中的任何一个可以通过其他向量的线性组合来表示,则这组向量是线性相关的。
- 线性无关:如果只有所有向量的零组合才能表示为零向量,则这组向量是线性无关的。
4. 向量空间(线性空间)- 定义:一组向量,它们在向量加法和标量乘法下是封闭的。
- 子空间:向量空间的子集,它自身也是一个向量空间。
- 维数:向量空间的基(一组线性无关向量)的大小。
- 基和坐标:向量空间的一组基可以用来表示空间中任何向量的坐标。
5. 线性变换- 定义:保持向量加法和标量乘法的函数。
- 线性变换可以用矩阵表示,矩阵的乘法对应线性变换的复合。
6. 特征值和特征向量- 特征值:对应于线性变换的标量,使得变换后的向量与原向量成比例。
- 特征向量:与特征值对应的非零向量,变换后的向量与原向量方向相同。
线性代数及其应用(天津大学)智慧树知到课后章节答案2023年下天津大学
线性代数及其应用(天津大学)智慧树知到课后章节答案2023年下天津大学天津大学第一章测试1.答案:;;2.答案:对3.答案:4.答案:5.答案: 第二章测试1.答案:2m 2.答案:3.答案:4.答案:对5.答案:2;0第三章测试1.答案:(4);(1)2.答案:(1) 3.答案:(2);(4);(1)4.答案:(2)5.答案:(4);(2)6.答案:(3)7.答案:(4)8.答案:(2);(1)9.答案:(2)10.答案:(1);(2)第四章测试1.答案:(3);(2)2.答案:(2);(1)3.答案:(4);(2)4.答案:错5.答案:(3);(2);(4)6.答案:(3)7.答案:对8.答案:(1);(4)9.答案:(4);(1)10.答案:(3)第五章测试1.答案:;2.答案:3.答案:34.答案:5.答案:;第六章测试1.方程组(A−k E n)X=O有非零解,则k是A的特征值 .答案:对2.主对角元都为 k(不等于零)的n阶上三角矩阵可对角化,当且仅当该上三角矩阵维数量矩阵.答案:对3.与对称矩阵正交相似的矩阵不一定是对称矩阵.答案:错4.A, B是同阶实对称矩阵, 则A与B相似, 当且仅当A与B的特征值相同 .答案:对5.设X是可逆矩阵A对应于特征值λ 的特征向量, f(A) 是A的矩阵多项式,则X不一定是( )的特征向量答案:AT6.设向量[1, a, −2]T 与 [0, 1, 3]T 是对称矩阵A的属于不同特征值的特征向量,则参数 a 的值为( ).答案:67.若矩阵A与B相似,且A可逆,则下列错误的是( ).答案:AT 与 BT 不相似.8.下列矩阵只能与自己相似的是( ).答案:数量矩阵9.相似的方阵具有相同的( ).答案:行列式;迹;特征值;秩10.下列哪些条件能保证 n 阶方阵A在数域 P 上可对角化答案:A 在数域 P 内有 n 个互不相同的特征值.;A 的每个特征值都在 P 内, 且每个特征值的几何重数等于代数重数.;A 在数域 P 上有 n 个线性无关的特征向量.;A 是迹非零且秩为 1 的方阵.第七章测试1.答案:2.答案:;3.答案:54.答案:全大于15.答案:;。
线性代数
九章算术线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。“鸡兔同笼”问题实际 上就是一个简单的线性方程组求解的问题。最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九 章算术·方程》章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施 行初等变换,消去未知量的方法。
凯莱矩阵论始于凯莱,在十九世纪下半叶,因若当的工作而达到了它的顶点。1888年,皮亚诺以公理的方式 定义了有限维或无限维线性空间。托普利茨将线性代数的主要定理推广到任意体(domain)上的最一般的向量空 间中。线性映射的概念在大多数情况下能够摆脱矩阵计算而不依赖于基的选择。
学术地位
线性代数在数学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位。在计算机 广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基 础的一部分。线性代数所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的 逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的。随着科学的发展,我们 不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性 化,而由于计算机的发展,线性化了的问题又可以被计算出来,线性代数正是解决这些问题的有力工具。线性代 数的计算方法也是计算数学里一个很重要的内容。
所谓“线性”,指的就是如下的数学关系:。其中,f叫线性算子或线性映射。所谓“代数”,指的就是用符 号代替元素和运算,也就是说:我们不关心上面的x,y是实数还是函数,也不关心f是多项式还是微分,我们统 一把他们都抽象成一个记号,或是一类矩阵。合在一起,线性代数研究的就是:满足线性关系的线性算子f都有哪 几类,以及他们分别都有什么性质。