第4章振动

合集下载

汽车振动基础第4章-多自由度(定稿)

汽车振动基础第4章-多自由度(定稿)
j 1
k11 k1 x1 k2 x1 k1 k2
k21 k12 k2 x1 k2
k22 k2 x2 k3 x2 k2 k3
j2
k31 k13 0
k32 k23 k3 x2 k3
0 k1 k 2 k 2 K k 2 k 2 k3 k3 0 k3 k3
– 拉格朗日法
• 方程的形式
广义坐标
qi (i 1, 2,3,, n)
T:系统的总动能
d T T ( ) Qi 0 dt qi qi
i 1, 2,3, , n
对应于第i个广义 坐标的广义力
– 保守系统
» 系统作用的主动力仅为势力 Qi
d T T U ( ) 0 dt qi qi qi
m2 m22 m3 4
④柔度矩阵的影响系数法
F ij
柔度影响系数 ij 的意义是在第j个坐标上施加单位力作用时,在第i个坐 标上引起的位移。 例题4-8 用影响系数法求图示系统的柔度矩阵
11 F 21 31
12 22 32
13 23 33
也可写成 其中


MX KX 0
力方程 位移方程
K 1MX X 0
m x 0 或 x
称为柔度,而
FMX X 0
1 称为柔度矩阵
1 k
FK
②刚度矩阵的影响系数法
K kij
刚度影响系数 k 的意义是使系统的第j个坐标产生单位位移,而其它的 ij 坐标位移为零时,在第i个坐标上所施加的作用力的大小。
仅代表外部激励 广义力

大学物理教案-第4章 机械振动 机械波

大学物理教案-第4章 机械振动  机械波

动的时刻)。
反映 t=0 时刻的振动状态(x0、v0)。
x0 Acos0
v0 Asin0 x
m
A
0=0
o
A
X0 = A
o x
-A x
t T
0 = /2
m
A
o X0 = 0
m
-A
o
X0 = -A
o x
-A x
A
o x
-A
t T
0 = Tt
4、振幅和初位相由初始条件决定

x0 Acos0
v0 Asin 0
A A12 A22 2 A1A2 cos2 1 ,
tan A1 sin 1 A2 sin 2 。 A1 cos1 A2 cos2
3. 两种特殊情况
(1)若两分振动同相 2 1 2k ,则 A A1 A2 , 两分振动相互加强, 如 A1=
A2 ,则 A = 2A1
(2)若两分振动反相,2 1 2k 1 , 则 A | A1 A2 | ,两分振动相互减弱,
波动是振动的传播过程。 机械波----机械振动的传播 波动 电磁波----电磁场的传播 粒子波----与微观粒子对应的波动 虽然各种波的本质不同,但都具有一些相似的规律。
一、 弹簧振子的振动 m
o X0 = 0
§4.1
m
简谐振动的动力学特征
二、谐振动方程 f=-kx
a f k x
x
mm
令 k 2 则有 m
教学内容
备注
1
大学物理学
大学物理简明教程教案
第 4 章 机械振动 机械波
前言 1. 振动是一种重要的运动形式 2. 振动有各种不同的形式 机械振动:位移 x 随 t 变化;电磁振动;微观振动 广义振动:任一物理量(如位移、电流等)在某一数值附近反复变化。 3. 振动分类

第27讲_波的动力学

第27讲_波的动力学

ym
O
y

(a )
(b)
x
dx
dx
ym
O
y

(a )
(b)
x
dx
dx
取长度为dx 的体积元

体积元在平衡位置(a)时,动能、势能和总 机械能均最大. 体积元在位移最大处(b)时,三者均为零. 波动是能量传递的一种方式 .
波场中单位体积的能量
w A sin t kx
y l y 2 2 x F t
2 2
波速
u
F
l
波速
柔软细绳和弦中横波
u F
l
Y
固体内纵波
u

G
固体内横波
u

密度 Y固体杨氏模量,G剪切模量,
二、 波动能量的传播 当机械波在媒质中传播时,媒质中各质点 均在其平衡位置附近振动,因而具有振动动能. 同时,介质发生弹性形变,因而具有弹性势能. 以一列绳线上的横波为例分析波动能量的传播.
I LI lg I0
贝尔(B)
I LI 10 lg I0
分贝( dB )
几种声音近似的声强、声强级和响度
声源
引起痛觉的声音 摇滚音乐会
声强W/m2
1 10-1
声强级dB
120 110
响度
震耳
交通繁忙的街道
通常的谈话 耳语
10-5
10-6 10-10
70
60 20

正常 轻
树叶的沙沙声
引起听觉的最弱声音
2 2 2
T 0
1 1 在一个周期内波场中单位体积 2 2 w wdt A 的平均能量 T 2

振动理论讲义第4章 单自由度系统受迫振动

振动理论讲义第4章 单自由度系统受迫振动
用电磁式振动台为例说明。图 4.1 是一种电磁式振动台的结构示意图。
图 4.1 电磁式振动台
当励磁线圈通以直流电流时,导磁体就形成恒定磁场。当在这种磁场中的振动线圈
有交流电通过时,便受到交变电磁力的作用,使支承在平板弹簧上的导杆以及与导杆联
在一起的台面等在磁场中振动。
由于振荡器供给的交流电是正弦波,产生的电磁力也是简谐力,可用
表示。其频率 和幅值 都可以调节,从而使台面能以不同的频率和振幅作上下振动。
将振动线圈、导杆、台面等简化为集中质量 ,平板弹簧为具有刚度 的弹性元件,
并考虑各部分的阻尼作用,用 表示相应的阻尼系数,振动台可以简化成图 4.1b 所示的
单自由度有阻尼的质量弹簧体系,受
的简谐激励。
4.2 无阻尼受迫振动
进一步分析(4.5)式表示的含义。显然, 是一个具有振幅为
的正弦
波,该振幅取决于频率比 。
图 4.2 常幅 变 频力作用于质量 上的系统绝对运动 共振图

时,纵坐标(即振幅)是负值,如何理解负振幅的意义?考虑到
上式表明,“负振幅”相当于与原波相位差为 180 度。在物理上,它表示,当

力和运动同相,质量在平衡位置下面而力又向下推质量;而当
以表示为

假定 和 比较接近,例如
/
,则

/

/
在 很小的情况下,括号中的第二项可以忽略,因此

/
/
这是拍的方程。当激振频率和固有频率相等,即
/
,有
即为振幅随时间发散的振动方程。当然,在共振情况下的振幅发展到无穷大是需要一定 时间的。
4-4
4.3 外力的振幅取决于频率的情况
前面讨论的问题中,外力的振幅 是独立于其频率 的。工程中常见的还有振幅 取

机械振动基础

机械振动基础

第4章 机械振动基础4-1 图示两个弹簧的刚性系数分别为k 1 = 5 kN/m ,k 2 = 3 kN/m 。

物块重量m = 4 kg 。

求物体自由振动的周期。

解:根据单自由度系统自由振动的固有频率公式 mk =n ω 解出周期 nπ2ω=T图(a )为两弹簧串联,其等效刚度 2121eq k k k k k +=所以 )(2121n k k m k k +=ω2121n)(π2π2k k k k m T +==ω代入数据得s 290.0300050003000)4(5000π2=⨯+=T图(b )为两弹簧串联(情况同a ) 所以 T = 0.290 s图(c )为两弹簧并联。

等效刚度 k eq = k 1 + k 2 所以 mk k 21n +=ω21nπ2π2k k mT +==ω代入数据得 T = 0.140 s图(d )为两弹簧并联(情况实质上同(c ))。

所以 T = 0.140 s4-3 如图所示,质量m = 200 kg 的重物在吊索上以等速度v = 5 m/s 下降。

当下降时,由于吊索嵌入滑轮的夹子内,吊索的上端突然被夹住,吊索的刚度系数k = 400 kN/m 。

如不计吊索的重量,求此后重物振动时吊索中的最大张力。

解:依题意,吊索夹住后,重物作单自由度自由振动,设振幅为A ,刚夹住时,吊索处于平衡位置,以平衡位置为零势能点,当重物达到最低点时其速度v = 0。

根据机械能守恒,系统在平衡位置的动能与最低点的势能相等。

即 T max = V max 其中 2max 2v m T = , 2max 21kA V =v km A =吊索中的最大张力 mk v mg kA mg F +=+=max 代入数据得 kN 7.461040020058.92003max =⋅⋅+⋅=F4-5 质量为m 的小车在斜面上自高度h 处滑下,而与缓冲器相碰,如图所示。

缓冲弹簧的刚性系数为k ,斜面倾角为θ。

随机振动

随机振动
如果振动波形是任何形式的周期函数,根据周期函数可 用傅立叶级数表示,可将其分解为一系列简谐振动,这些 简谐振动成整数倍关系。
4-1 傅立叶分析
设周期性振动的时间函数为xT(t) ,其周期为T,则它
的傅立叶展开式为
∞n
xT (t) a0 2 an cos nt bn sin nt
n1
式中
2
4-2 自谱密度
2.自谱密度的性质 (1)当 时0,上式变为
RX (0) SX ( )d
数学意义:自功率密度函数 SX (曲) 线下的面积等于振动量
在 时的0 自相关函数值。

RX ( 0) E[ X (t) X (t )] 0 E[ X 2 (t)]
此式表示自相关函数在 时0 又等于振动量的均方值,所
Cn
n
2
2
从上图中可以看出这是一组离散的垂直线。只是
在 、2……、 n处, 和Cn才有确n 定的数值。这样的图
形叫做波形频谱图。它是在频率域上描述振动的规律,
即不同的频率有它对应的幅值和相位角。
4-1 傅立叶分析
2.傅立叶积分
对于一个非周期振动的时间函数x(t),傅立叶级数展开 方法已不适用,可采用傅立叶积分方法。在上面的频谱图 中,水平轴表示频率,所以第n个系数的位置为
x(t) 20 A() costd 20 B() sintd
这就是x(t)的傅立叶积分表达式,或称为傅立叶逆变换。
4-1 傅立叶分析
傅立叶积分是傅立叶级数在周期趋于无穷大时形式上的 极限,傅立叶级数给出了一个周期振动的频率成分(一系 列的谐波分量),而傅立叶积分给出了一个非周期振动的 频率成分。 和an 的量bn 纲为x的量纲,而 与A(的) 量B纲(为)

《振动与声基础》第四章第三节

振动与声基础
第三节 球形声源的声辐射
第三节
球形声源的声辐射
第三节 球形声源的声辐射 1、均匀脉动球面的声辐射
Z
a
0 Y
X
第四章 声波的辐射
第三节
球形声源的声辐射
(一)方程和边条件及其解:
2 p(r ) k 2 p(r ) 0; 其中, k / c; un (r ) r a v0 p(r ) r 满足无穷远辐射条件 e jt 略
(2)
c(ka)2
1 (ka) 2
ka 1
4 a 2 c; 0
ka 1
2
c(ka)
1 (ka)
2
a ,小球辐射时(ka 1)低频) (
2
辐射阻 : Rs 4 a
c(ka) 2
1 (ka)
2 ka 1
cS 2

2

4 3 辐射抗 : X s 4 a 3( a ) 3M 0 2 1 (ka) ka 1 3
2
c( ka )
1 ( ka )2
第四章
声波的辐射
第三节
球形声源的声辐射
均匀脉动球面声源的辐射阻和辐射抗随 ka 的变化曲线
第四章 声波的辐射
第三节
球形声源的声辐射
(1)
a ,大球辐射时(ka 1 (高频) )
辐射阻 : Rs 4 a 2 辐射抗 : X s 4 a
(二)声源强度和点声源的概念 定义:谐合律振动声源,排开介质的体积速度的幅值为 声源强度,记Q。 均匀脉动球源 : 球面振速, v0e jt ; Q 4 a 2v0 均匀脉动球源的辐射声压场可表示为 : ckQ j ( ka 0 ) 1 j ( t kr ) p(r , t ) e e ; r 4 1 ( ka ) 2 振动面面积,4 a 2 ;

第4章 多自由度系统的振动题解

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载第4章多自由度系统的振动题解地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容习题4-1 在题3-10中,设m1=m2=m,l1=l2=l,k1=k2=0,求系统的固有频率和主振型。

题4-1图解:由题3-10的结果,,,代入,,可求出刚度矩阵K和质量矩阵M;由频率方程,得,为求系统主振型,先求出adjB的第一列分别将频率值代入,得系统的主振型矩阵为题4-2图4-2 题4-2图所示的均匀刚性杆质量为m1,求系统的频率方程。

解:设杆的转角和物块位移x为广义坐标。

利用刚度影响系数法求刚度矩阵。

设,画出受力图,并施加物体力偶与力,由平衡条件得到,,设,画出受力图,并施加物体力偶与力,由平衡条件得到,,得作用力方程为由频率方程,得题4-3图4-3 题4-3图所示的系统中,两根长度为l的均匀刚性杆的质量为m1及m2,求系统的刚度矩阵和柔度矩阵,并求出当m1=m2=m和k1=k2=k时系统的固有频率。

解:如图取为广义坐标,分别画受力图。

由动量矩定理得到,整理得到,则刚度矩阵和柔度矩阵分别得,,系统的质量矩阵为由频率方程,并代入已知条件得,整理得到 ,求得,。

用刚度影响系数法求解刚度矩阵。

令,分别由两杆的受力图,列平衡方程为;同理,令得到题4-4图4-4 题4-4图所示,滑轮半径为R,绕中心的转动惯量为2mR2,不计轴承处摩擦,并忽略绕滑轮的绳子的弹性及质量,求系统的固有频率及相应的主振型。

解:如图选x1,x2,x3为广义坐标。

利用刚度影响系数法求刚度矩阵。

设,画出受力图,并施加物体,由平衡条件得到,,,设,画出受力图,并施加物体,由平衡条件得到,= 0,,设,画出受力图,并施加物体,由平衡条件得到,,,则刚度矩阵和质量矩阵分别得,,由频率方程,得展开为,解出频率为,,由特征矩阵的伴随矩阵的第一列,并分别代入频率值,得系统的主振型矩阵为题4-5图4-5 三个单摆用两个弹簧联结,如题4-5图所示。

大学物理课后习题答案第四章

第四章机械振动4.1一物体沿x 轴做简谐振动,振幅A = 0.12m ,周期T = 2s .当t = 0时,物体的位移x = 0.06m ,且向x 轴正向运动.求:(1)此简谐振动的表达式;(2)t = T /4时物体的位置、速度和加速度;(3)物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间. [解答](1)设物体的简谐振动方程为x = A cos(ωt + φ),其中A = 0.12m ,角频率ω = 2π/T = π.当t = 0时,x = 0.06m ,所以cos φ = 0.5,因此φ = ±π/3. 物体的速度为v = d x /d t = -ωA sin(ωt + φ).当t = 0时,v = -ωA sin φ,由于v > 0,所以sin φ< 0,因此:φ = -π/3.简谐振动的表达式为:x = 0.12cos(πt – π/3).(2)当t = T /4时物体的位置为;x = 0.12cos(π/2 – π/3) = 0.12cosπ/6 = 0.104(m). 速度为;v = -πA sin(π/2 – π/3) = -0.12πsinπ/6 = -0.188(m·s -1).加速度为:a = d v /d t = -ω2A cos(ωt + φ)= -π2A cos(πt - π/3)= -0.12π2cosπ/6 = -1.03(m·s -2). (3)方法一:求时间差.当x = -0.06m 时,可得cos(πt 1 - π/3) = -0.5, 因此πt 1 - π/3 = ±2π/3.由于物体向x 轴负方向运动,即v < 0,所以sin(πt 1 - π/3) > 0,因此πt 1 - π/3 = 2π/3,得t 1 = 1s .当物体从x = -0.06m 处第一次回到平衡位置时,x = 0,v > 0,因此cos(πt 2 - π/3) = 0, 可得 πt 2 - π/3 = -π/2或3π/2等.由于t 2> 0,所以πt 2 - π/3 = 3π/2, 可得t 2 = 11/6 = 1.83(s).所需要的时间为:Δt = t 2 - t 1 = 0.83(s).方法二:反向运动.物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间就是它从x = 0.06m ,即从起点向x 轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此cos(πt - π/3) = 0,可得 πt - π/3 = π/2,解得t = 5/6 = 0.83(s).[注意]根据振动方程x = A cos(ωt + φ),当t = 0时,可得φ = ±arccos(x 0/A ),(-π<φ<= π), 初位相的取值由速度决定.由于v = d x /d t = -ωA sin(ωt + φ),当t = 0时,v = -ωA sin φ,当v > 0时,sin φ< 0,因此 φ = -arccos(x 0/A );当v < 0时,sin φ> 0,因此φ = arccos(x 0/A )π/3.可见:当速度大于零时,初位相取负值;当速度小于零时,初位相取正值.如果速度等于零,当初位置x 0 = A 时,φ = 0;当初位置x 0 = -A 时,φ = π.4.2已知一简谐振子的振动曲线如图所示,试由图求:(1)a ,b ,c ,d ,e 各点的位相,及到达这些状态的时刻t 各是多少?已知周期为T ; (2)振动表达式; (3)画出旋转矢量图. [解答]方法一:由位相求时间.(1)设曲线方程为x = A cos Φ,其中A 表示振幅,Φ = ωt + φ表示相位. 由于x a = A ,所以cos Φa = 1,因此Φa = 0.由于x b = A /2,所以cos Φb = 0.5,因此Φb = ±π/3;由于位相Φ随时间t 增加,b 点位相就应该大于a 点的位相,因此Φb = π/3.由于x c = 0,所以cos Φc = 0,又由于c 点位相大于b 位相,因此Φc = π/2.同理可得其他两点位相为:Φd = 2π/3,Φe = π.c 点和a 点的相位之差为π/2,时间之差为T /4,而b 点和a 点的相位之差为π/3,时间之差应该为T /6.因为b 点的位移值与O 时刻的位移值相同,所以到达a 点的时刻为t a = T /6. 到达b 点的时刻为t b = 2t a = T /3.图4.2到达c 点的时刻为t c = t a + T /4 = 5T /12. 到达d 点的时刻为t d = t c + T /12 = T /2. 到达e 点的时刻为t e = t a + T /2 = 2T /3.(2)设振动表达式为:x = A cos(ωt + φ),当t = 0时,x = A /2时,所以cos φ = 0.5,因此φ =±π/3; 由于零时刻的位相小于a 点的位相,所以φ = -π/3, 因此振动表达式为. 另外,在O 时刻的曲线上作一切线,由于速度是位置对时间的变化率,所以切线代表速度的方向;由于其斜率大于零,所以速度大于零,因此初位相取负值,从而可得运动方程.(3)如图旋转矢量图所示.方法二:由时间求位相.将曲线反方向延长与t 轴 相交于f 点,由于x f = 0,根据运动方程,可得所以:.显然f 点的速度大于零,所以取负值,解得t f = -T /12.从f 点到达a 点经过的时间为T /4,所以到达a 点的时刻为:t a = T /4 + t f = T /6, 其位相为:. 由图可以确定其他点的时刻,同理可得各点的位相.4.3 有一弹簧,当其下端挂一质量为M 的物体时,伸长量为9.8×10-2m .若使物体上下振动,且规定向下为正方向.(1)t = 0时,物体在平衡位置上方8.0×10-2m 处,由静止开始向下运动,求运动方程;(2)t = 0时,物体在平衡位置并以0.60m·s -1速度向上运动,求运动方程. [解答]当物体平衡时,有:Mg – kx 0 = 0, 所以弹簧的倔强系数为:k = Mg/x 0, 物体振动的圆频率为:s -1). 设物体的运动方程为:x = A cos(ωt + φ).(1)当t = 0时,x 0 = -8.0×10-2m ,v 0 = 0,因此振幅为:=8.0×10-2(m);由于初位移为x 0 = -A ,所以cos φ = -1,初位相为:φ = π. 运动方程为:x = 8.0×10-2cos(10t + π).(2)当t = 0时,x 0 = 0,v 0 = -0.60(m·s -1),因此振幅为:v 0/ω|=6.0×10-2(m);由于cos φ = 0,所以φ = π/2;运动方程为:x = 6.0×10-2cos(10t +π/2).4.4 质量为10×10-3kg 的小球与轻弹簧组成的系统,按的规律作振动,式中t 以秒(s)计,x 以米(m)计.求: (1)振动的圆频率、周期、振幅、初位相; (2)振动的速度、加速度的最大值;(3)最大回复力、振动能量、平均动能和平均势能;cos(2)3t x A T ππ=-cos(2)03t T ππ-=232f t Tπππ-=±203a a t T πΦπ=-=ω==0||A x ==A =20.1cos(8)3x t ππ=+(4)画出这振动的旋转矢量图,并在图上指明t 为1,2,10s 等各时刻的矢量位置. [解答](1)比较简谐振动的标准方程:x = A cos(ωt + φ),可知圆频率为:ω =8π,周期T = 2π/ω = 1/4 = 0.25(s),振幅A = 0.1(m),初位相φ = 2π/3.(2)速度的最大值为:v m = ωA = 0.8π = 2.51(m·s -1); 加速度的最大值为:a m = ω2A = 6.4π2 = 63.2(m·s -2). (3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A = 0.632(N); 振动能量为:E = kA 2/2 = mω2A 2/2 = 3.16×10-2(J), 平均动能和平均势能为:= kA 2/4 = mω2A 2/4 = 1.58×10-2(J). (4)如图所示,当t 为1,2,10s 等时刻时,旋转矢量的位置是相同的.4.5 两个质点平行于同一直线并排作同频率、同振幅的简谐振动.在振动过程中,每当它们经过振幅一半的地方时相遇,而运动方向相反.求它们的位相差,并作旋转矢量图表示.[解答]设它们的振动方程为:x = A cos(ωt + φ), 当x = A /2时,可得位相为:ωt + φ = ±π/3.由于它们在相遇时反相,可取Φ1 = (ωt + φ)1 = -π/3,Φ2 = (ωt + φ)2 = π/3,它们的相差为:ΔΦ = Φ2 – Φ1 = 2π/3,或者:ΔΦ` = 2π –ΔΦ = 4π/3.矢量图如图所示.4.6一氢原子在分子中的振动可视为简谐振动.已知氢原子质量m = 1.68×10-27kg ,振动频率v = 1.0×1014Hz ,振幅A = 1.0×10-11m .试计算:(1)此氢原子的最大速度; (2)与此振动相联系的能量.[解答](1)氢原子的圆频率为:ω = 2πv = 6.28×1014(rad·s -1), 最大速度为:v m = ωA = 6.28×103(m·s -1).(2)氢原子的能量为:= 3.32×10-20(J).4.7 如图所示,在一平板下装有弹簧,平板上放一质量为1.0kg 的重物,若使平板在竖直方向上作上下简谐振动,周期为0.50s ,振幅为2.0×10-2m ,求:(1)平板到最低点时,重物对平板的作用力;(2)若频率不变,则平板以多大的振幅振动时,重物跳离平板? (3)若振幅不变,则平板以多大的频率振动时,重物跳离平板? [解答](1)重物的圆频率为:ω = 2π/T = 4π,其最大加速度为:a m = ω2A ,合力为:F = ma m ,方向向上.重物受到板的向上支持力N 和向下的重力G ,所以F = N – G . 重物对平板的作用力方向向下,大小等于板的支持力: N = G + F = m (g +a m ) = m (g +ω2A ) = 12.96(N).(2)当物体的最大加速度向下时,板的支持为:N = m (g - ω2A ). 当重物跳离平板时,N = 0,频率不变时,振幅为:A = g/ω2 = 3.2×10-2(m).(3)振幅不变时,频率为:3.52(Hz).4.8 两轻弹簧与小球串连在一直线上,将两弹簧拉长后系在固定点A 和B 之间,整个系统放在光滑水平面上.设两弹簧的原长分别为l 1和l 2,倔强系统分别为k 1和k 2,A和B 间距为L ,小球的质量为m .(1)试确定小球的平衡位置;k pE E =212m E mv=2ωνπ==(2)使小球沿弹簧长度方向作一微小位移后放手,小球将作振动,这一振动是否为简谐振动?振动周期为多少?[解答](1)这里不计小球的大小,不妨设L > l 1 + l 2,当小球平衡时,两弹簧分别拉长x 1和x 2,因此得方程:L = l 1 + x 1 + l 2 + x 2;小球受左右两边的弹簧的弹力分别向左和向右,大小相等,即k 1x 1 = k 2x 2. 将x 2 = x 1k 1/k 2代入第一个公式解得:.小球离A 点的距离为:.(2)以平衡位置为原点,取向右的方向为x 轴正方向,当小球向右移动一个微小距离x 时,左边弹簧拉长为x 1 + x ,弹力大小为:f 1 = k 1(x 1 + x ), 方向向左;右边弹簧拉长为x 1 - x ,弹力大小为:f 2 = k 2(x 2 - x ), 方向向右.根据牛顿第二定律得:k 2(x 2 - x ) - k 1(x 1 + x ) = ma ,利用平衡条件得:,即小球做简谐振动.小球振动的圆频率为:.4.9如图所示,质量为10g 的子弹以速度v = 103m·s -1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k = 8×103N·m -1,木块的质量为4.99kg ,不计桌面摩擦,试求:(1)振动的振幅;(2)振动方程.[解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即:mv = (m + M)v 0.解得子弹射入后的速度为:v 0 = mv/(m + M) = 2(m·s -1),这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得:(m + M ) v02/2 = kA 2/2, 所以振幅为:10-2(m). (2)振动的圆频率为:= 40(rad·s -1).取木块静止的位置为原点、向右的方向为位移x 的正方向,振动方程可设为:x = A cos(ωt + φ).当t = 0时,x = 0,可得:φ = ±π/2;由于速度为正,所以取负的初位相,因此振动方程为:x = 5×10-2cos(40t - π/2).4.10如图所示,在倔强系数为k 的弹簧下,挂一质量为M 的托盘.质量为m 的物体由距盘底高h 处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程.[解答]物体落下后、碰撞前的速度为:物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为,这也是它们振动的初速度.设振动方程为:x = A cos(ωt + φ),211212()k x L l l k k =--+211111212()k L l x l L l l k k =+=+--+2122d ()0d xm kk x t++=ω=22T πω==A v =ω=v =0m v v m M ==+图4.9 图4.10其中圆频率为:物体没有落下之前,托盘平衡时弹簧伸长为x 1,则:x 1 = Mg/k .物体与托盘磁盘之后,在新的平衡位置,弹簧伸长为x 2,则:x 2= (M + m )g/k . 取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为x 0 = x 1 - x 2 = -mg/k .因此振幅为:初位相为:4.11 装置如图所示,轻弹簧一端固定,另一端与物体m 间用细绳相连,细绳跨于桌边定滑轮M 上,m 悬于细绳下端.已知弹簧的倔强系数为k = 50N·m -1,滑轮的转动惯量J = 0.02kg·m 2,半径R = 0.2m ,物体质量为m = 1.5kg ,取g = 10m·s -2.(1)试求这一系统静止时弹簧的伸长量和绳的张力;(2)将物体m 用手托起0.15m ,再突然放手,任物体m 下落而整个系统进入振动状态.设绳子长度一定,绳子与滑轮间不打滑,滑轮轴承无摩擦,试证物体m 是做简谐振动; (3)确定物体m 的振动周期;(4)取物体m 的平衡位置为原点,OX 轴竖直向下,设振物体m 相对于平衡位置的位移为x ,写出振动方程.[解答](1)在平衡时,绳子的张力等于物体的重力T = G = mg = 15(N).这也是对弹簧的拉力,所以弹簧的伸长为:x 0 = mg/k = 0.3(m).(2)以物体平衡位置为原点,取向下的方向为正,当物体下落x 时,弹簧拉长为x 0 + x ,因此水平绳子的张力为:T 1 = k (x 0+ x ).设竖直绳子的张力为T 2,对定滑轮可列转动方程:T 2R – T 1R = Jβ, 其中β是角加速度,与线加速度的关系是:β = a/R .对于物体也可列方程:mg - T 2 = ma . 转动方程化为:T 2 – k (x 0 + x ) = aJ/R 2,与物体平动方程相加并利用平衡条件得:a (m + J/R 2) = –kx ,可得微分方程:,故物体做简谐振动. (3)简谐振动的圆频率为:s -1). 周期为:T 2 = 2π/ω = 1.26(s).(4)设物体振动方程为:x = A cos(ωt + φ),其中振幅为:A = 0.15(m). 当t = 0时,x = -0.15m ,v 0 = 0,可得:cos φ = -1,因此φ = π或-π, 所以振动方程为:x = 0.15cos(5t + π),或x = 0.15cos(5t - π).4.12一匀质细圆环质量为m ,半径为R ,绕通过环上一点而与环平面垂直的水平光滑轴在铅垂面内作小幅度摆动,求摆动的周期.[解答]通过质心垂直环面有一个轴,环绕此轴的转动惯量为:I c = mR 2.根据平行轴定理,环绕过O 点的平行轴的转动惯量为I = I c + mR 2 = 2mR 2.当环偏离平衡位置时,重力的力矩为:M = mgR sin θ, 方向与角度θ增加的方向相反.ω=A ==00arctan v x ϕω-==222d 0d /x kx t m J R +=+ω=根据转动定理得:Iβ = -M ,即,由于环做小幅度摆动,所以sin θ≈θ,可得微分方程:. 摆动的圆频率为:周期为:4.13 重量为P 的物体用两根弹簧竖直悬挂,如图所示,各弹簧的倔强系数标明在图上.试求在图示两种情况下,系统沿竖直方向振动的固有频率.[解答](1)前面已经证明:当两根弹簧串联时,总倔强系数为k = k1k 2/(k 1 + k 2),因此固有频率为(2)前面还证明:当两根弹簧并联时,总倔强系数等于两个弹簧的倔强系数之和,因此固有频率为.4.14质量为0.25kg 的物体,在弹性力作用下作简谐振动,倔强系数k = 25N·m -1,如果开始振动时具有势能0.6J ,和动能0.2J ,求:(1)振幅;(2)位移多大时,动能恰等于势能?(3)经过平衡位置时的速度.[解答]物体的总能量为:E = E k + E p = 0.8(J).(1)根据能量公式E = kA2/2,得振幅为:.(2)当动能等于势能时,即E k = E p ,由于E = E k + E p ,可得:E = 2E p ,即,解得:= ±0.179(m). (3)再根据能量公式E = mv m2/2,得物体经过平衡位置的速度为: 2.53(m·s -1).4.15 两个频率和振幅都相同的简谐振动的x-t 曲线如图所示,求: (1)两个简谐振动的位相差;(2)两个简谐振动的合成振动的振动方程. [解答](1)两个简谐振动的振幅为:A = 5(cm), 周期为:T = 4(s),圆频率为:ω =2π/T = π/2,它们的振动方程分别为:x 1 = A cos ωt =5cosπt /2, x 2 = A sin ωt =5sinπt /2 =5cos(π/2 - πt /2)即x 2=5cos(πt /2 - π/2).位相差为:Δφ = φ2 - φ1 = -π/2. (2)由于x = x 1 + x 2 = 5cosπt /2 +5sinπt /2 = 5(cosπt /2·cosπ/4 +5sinπt /2·sinπ/4)/sinπ/4 合振动方程为:(cm).22d sin 0d I mgR tθθ+=22d 0d mgRt Iθθ+=ω=222T πω===2ωνπ===2ωνπ===A =2211222kA kx =⨯/2x =m v =cos()24x t ππ=- (b)图4.134.16 已知两个同方向简谐振动如下:,.(1)求它们的合成振动的振幅和初位相; (2)另有一同方向简谐振动x 3 = 0.07cos(10t +φ),问φ为何值时,x 1 + x 3的振幅为最大?φ为何值时,x 2 + x 3的振幅为最小?(3)用旋转矢量图示法表示(1)和(2)两种情况下的结果.x 以米计,t 以秒计.[解答](1)根据公式,合振动的振幅为:=8.92×10-2(m). 初位相为:= 68.22°.(2)要使x 1 + x 3的振幅最大,则:cos(φ– φ1) = 1,因此φ– φ1 = 0,所以:φ = φ1 = 0.6π. 要使x 2 + x 3的振幅最小,则 cos(φ– φ2) = -1,因此φ– φ2 = π,所以φ = π + φ2 = 1.2π.(3)如图所示.4.17质量为0.4kg 的质点同时参与互相垂直的两个振动:, .式中x 和y 以米(m)计,t 以秒(s)计.(1)求运动的轨道方程;(2)画出合成振动的轨迹;(3)求质点在任一位置所受的力.[解答](1)根据公式:,其中位相差为:Δφ = φ2 – φ1 = -π/2,130.05cos(10)5x t π=+210.06cos(10)5x t π=+A =11221122sin sin arctancos cos A A A A ϕϕϕϕϕ+=+0.08cos()36x t ππ=+0.06cos()33y t ππ=-2222212122cos sin x y xyA A A A ϕϕ+-∆=∆所以质点运动的轨道方程为:. (2)合振动的轨迹是椭圆.(3)两个振动的圆频率是相同的ω = π/3,质点在x 方向所受的力为,即F x = 0.035cos(πt /3 + π/6)(N).在y 方向所受的力为,即F y = 0.026cos(πt /3 - π/3)(N).用矢量表示就是,其大小为,与x 轴的夹角为θ = arctan(F y /F x ).4.18 将频率为384Hz 的标准音叉振动和一待测频率的音叉振动合成,测得拍频为3.0Hz ,在待测音叉的一端加上一小块物体,则拍频将减小,求待测音叉的固有频率.[解答]标准音叉的频率为v 0 = 384(Hz), 拍频为Δv = 3.0(Hz), 待测音叉的固有频率可能是v 1 = v 0 - Δv = 381(Hz), 也可能是v 2 = v 0 + Δv = 387(Hz).在待测音叉上加一小块物体时,相当于弹簧振子增加了质量,由于ω2 = k/m ,可知其频率将减小.如果待测音叉的固有频率v 1,加一小块物体后,其频率v`1将更低,与标准音叉的拍频将增加;实际上拍频是减小的,所以待测音叉的固有频率v 2,即387Hz .4.19示波器的电子束受到两个互相垂直的电场作用.电子在两个方向上的位移分别为x = A cos ωt 和y = A cos(ωt +φ).求在φ = 0,φ = 30º,及φ = 90º这三种情况下,电子在荧光屏上的轨迹方程.[解答]根据公式,其中Δφ = φ2 – φ1 = -π/2,而φ1 = 0,φ2 = φ.(1)当Δφ = φ = 0时,可得,质点运动的轨道方程为y = x ,轨迹是一条直线.(2)当Δφ = φ = 30º时,可得质点的轨道方程, 即,轨迹是倾斜的椭圆.(3)当Δφ = φ = 90º时,可得, 即x 2 + y 2 = A 2,质点运动的轨迹为圆.4.20三个同方向、同频率的简谐振动为,,.222210.080.06x y +=22d d x x x F ma m t==20.08cos()6m t πωω=-+22d d y y y F ma m t==20.06cos()3m t ωω=--πi+j x y F F F =F =2222212122cos sin x y xyA A A A ϕϕ+-∆=∆2222220x y xyA A A+-=222214x y A+=222/4x y A +=22221x y A A +=10.08cos(314)6x t π=+20.08cos(314)2x t π=+350.08cos(314)6x t π=+求:(1)合振动的圆频率、振幅、初相及振动表达式; (2)合振动由初始位置运动到所需最短时间(A 为合振动振幅). [解答]合振动的圆频率为:ω = 314 = 100π(rad·s -1). 设A 0 = 0.08,根据公式得:A x = A 1cos φ1 + A 2cos φ2 + A 3cos φ3 = 0,A y = A 1sin φ1 + A 2sin φ2 + A 3sin φ3 = 2A 0 = 0.16(m), 振幅为:,初位相为:φ = arctan(A y /A x ) = π/2.合振动的方程为:x = 0.16cos(100πt + π/2).(2)当时,可得:,解得:100πt + π/2 = π/4或7π/4.由于t > 0,所以只能取第二个解,可得所需最短时间为t = 0.0125s .x A =A =/2x =cos(100/2)2t ππ+。

第四章强震动观测

第四章 强震动观测
强震动观测是利用强震仪记录地震发生时地 面运动及工程结构的地震反应,为工程地震学、 结构抗震研究和应用提供地震动与结构反应的观 测数据。强震动观测是地震工程学研究的基础, 是工程地震学研究的重要内容。观测记录提供了 地震动和结构地震反应的详细信息。随着强震仪 和观测技术发展,观测记录还应用于烈度速报、 地震预警、震害快速评估、地震应急反应及结构 振动控制、结构健康诊断等领域。
RDZ1-12-66型强震动加速度仪
SMA1型强震动仪
模拟记录式强震动仪普遍存在的一些缺点
①丢头 ②记录处理困难 ③仪器动态范围小,频带窄 ④不具备远程通讯功能。
数字强震动仪
国内外已研制、生产了多种型号的固态存储 强震动仪,较新的固态存储数字强震动仪型号 有:美国的K2、Etna、Everest、Basalt;日 本的K-NET95;瑞士的GSR-16/18、MR2002 等。国内也已生产了GDQJ、GSMA-2000等 型号。
强震动观测的目的意义
强震动观测是认识强地震动特征和各类工程结 构地震反应特性的主要手段。强震动观测的目的 就是要针对各类场地和工程结构布设强震动观测 台网,对地震动的特性(强度、频谱、持续时间 )、影响范围及各种工程结构的地震反应进行观 测,获取真实可靠的强地面运动记录和工程结构 地震反应资料,为研究强地面运动的特性和工程 结构抗震设计方法与技术提供重要的基础资料, 以达到减轻地震灾害的最终目标。
美国Kinemetrics公司生产ES-DH型井下力 平衡式加速度计
美国Kinemetrics公司生产的Granit多通道强震动 数据记录器,通道数最多可达36道。
强震动观测资料与数据分析处理
• 强震动观测记录的一般特征; • 强震动观测记录的常规处理分析。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 第四章 振动 P174. 4.1 一物体沿x轴做简谐振动,振幅A = 0.12m,周期T = 2s.当t = 0时,物体的位移x = 0.06m,且向x轴正向运动.求: (1)此简谐振动的表达式; (2)t = T/4时物体的位置、速度和加速度; (3)物体从x = -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间. [解答](1)设物体的简谐振动方程为 x = Acos(ωt + φ), 其中A = 0.12m,角频率ω = 2π/T = π. 当t = 0时,x = 0.06m,所以 cosφ = 0.5, 因此 φ = ±π/3. 物体的速度为 v = dx/dt = -ωAsin(ωt + φ). 当t = 0时, v = -ωAsinφ, 由于v > 0,所以sinφ < 0,因此 φ = -π/3. 简谐振动的表达式为 x = 0.12cos(πt – π/3). (2)当t = T/4时物体的位置为 x = 0.12cos(π/2 – π/3) = 0.12cosπ/6 = 0.104(m). 速度为 v = -πAsin(π/2 – π/3) = -0.12πsinπ/6 = -0.188(m·s-1). 加速度为 a = dv/dt = -ω2Acos(ωt + φ) = -π2Acos(πt - π/3) = -0.12π2cosπ/6 = -1.03(m·s-2). (3)方法一:求时间差.当x = -0.06m时,可得 cos(πt1 - π/3) = -0.5, 因此 πt1 - π/3 = ±2π/3.

由于物体向x轴负方向运动,即v < 0,所以sin(πt1 - π/3) > 0,因此 πt1 - π/3 = 2π/3,

得t1 = 1s. 当物体从x = -0.06m处第一次回到平衡位置时,x = 0,v > 0,因此 cos(πt2 - π/3) = 0, 可得 πt2 - π/3 = -π/2或3π/2等. 由于t2 > 0,所以 πt2 - π/3 = 3π/2,

可得 2

t2 = 11/6 = 1.83(s). 所需要的时间为 Δt = t2 - t1 = 0.83(s).

方法二:反向运动.物体从x = -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间就是它从x = 0.06m,即从起点向x轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此 cos(πt - π/3) = 0, 可得 πt - π/3 = π/2, 解得 t = 5/6 = 0.83(s). [注意]根据振动方程 x = Acos(ωt + φ), 当t = 0时,可得 φ = ±arccos(x0/A),(-π < φ ≤ π),

初位相的取值由速度决定. 由于 v = dx/dt = -ωAsin(ωt + φ), 当t = 0时, v = -ωAsinφ, 当v > 0时,sinφ < 0,因此 φ = -arccos(x0/A);

当v < 0时,sinφ > 0,因此 φ = arccos(x0/A).

可见:当速度大于零时,初位相取负值;当速度小于零时,初位相取正值.如果速度等于零,当初位置x0 = A时,φ = 0;当初位置x0 = -A时,φ = π.

4.2 已知一简谐振子的振动曲线如图所示,试由图求: (1)a,b,c,d,e各点的位相,及到达这些状态的时刻t各是多少?已知周期为T; (2)振动表达式; (3)画出旋转矢量图. [解答]方法一:由位相求时间. (1)设曲线方程为 x = AcosΦ, 其中A表示振幅,Φ = ωt + φ表示相位. 由于xa = A,所以 cosΦa = 1, 因此 Φa = 0.

由于xb = A/2,所以 cosΦb = 0.5, 因此 Φb = ±π/3;

O t

x a b c d e A/2 A

图6.2 3

由于位相Φ随时间t增加,b点位相就应该大于a点的位相,因此 Φb = π/3.

由于xc = 0,所以 cosΦc = 0, 又由于c点位相大于b位相,因此 Φc = π/2.

同理可得其他两点位相为 Φd = 2π/3,Φe = π.

c点和a点的相位之差为π/2,时间之差为T/4,而b点和a点的相位之差为π/3,时间之差应该为T/6.因为b点的位移值与O时刻的位移值相同,所以到达a点的时刻为 ta = T/6. 到达b点的时刻为 tb = 2ta = T/3. 到达c点的时刻为 tc = ta + T/4 = 5T/12. 到达d点的时刻为 td = tc + T/12 = T/2. 到达e点的时刻为 te = ta + T/2 = 2T/3. (2)设振动表达式为 x = Acos(ωt + φ), 当t = 0时,x = A/2时,所以 cosφ = 0.5, 因此 φ = ±π/3; 由于零时刻的位相小于a点的位相,所以 φ = -π/3, 因此振动表达式为

cos(2)3txAT. 另外,在O时刻的曲线上作一切线,由于速度是位置对时间的变化率,所以切线代表速度的方向;由于其斜率大于零,所以速度大于零,因此初位相取负值,从而可得运动方程. (3)如图旋转矢量图所示. 方法二:由时间求位相.将曲线反方向延长与t轴相交于f点,由于xf = 0,根据运动方程,可得

cos(2)03tT 所以

232ftT.

显然f点的速度大于零,所以取负值,解得 O x

a

A

b c d

e φ

O t

x a b c d e A/2 A

f 4

tf = -T/12. 从f点到达a点经过的时间为T/4,所以到达a点的时刻为 ta = T/4 + tf = T/6, 其位相为

203aatT. 由图可以确定其他点的时刻,同理可得各点的位相.

4.3 如图所示,质量为10g的子弹以速度v = 103m·s-1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k = 8×103N·m-1,木块的质量为4.99kg,不计桌面摩擦,试求: (1)振动的振幅; (2)振动方程. [解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即 mv = (m + M)v0. 解得子弹射入后的速度为 v0 = mv/(m + M) = 2(m·s-1), 这也是它们振动的初速度. 子弹和木块压缩弹簧的过程机械能守恒,可得 (m + M) v02/2 = kA2/2, 所以振幅为

0mMAvk= 5×10-2(m).

(2)振动的圆频率为 kmM= 40(rad·s-1).

取木块静止的位置为原点、向右的方向为位移x的正方向,振动方程可设为 x = Acos(ωt + φ). 当t = 0时,x = 0,可得 φ = ±π/2; 由于速度为正,所以取负的初位相,因此振动方程为 x = 5×10-2cos(40t - π/2)(m).

4.4 如图所示,在倔强系数为k的弹簧下,挂一质量为M的托盘.质量为m的物体由距盘底高h处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程. [解答]物体落下后、碰撞前的速度为

2vgh,

物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为

k M m v

图4.9 5

02mmvvghmMmM,

这也是它们振动的初速度. 设振动方程为 x = Acos(ωt + φ), 其中圆频率为

kmM.

物体没有落下之前,托盘平衡时弹簧伸长为x1,则 x1 = Mg/k. 物体与托盘碰撞之后,在新的平衡位置,弹簧伸长为x2,则 x2 = (M + m)g/k. 取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为 x0 = x1 - x2 = -mg/k. 因此振幅为

22

220

02

2()()vmgghmAxkkmM

21()mgkh

kmMg;

初位相为 00

2arctan()vkh

xmMg.

4.5 重量为P的物体用两根弹簧竖直悬挂,如图所示,各弹簧的倔强系数标明在图上.试求在图示两种情况下,系统沿竖直方向振动的固有频率. [解答](1)前面已经证明:当两根弹簧串联时,总倔强系数为k = k1k2/(k1 + k2),因此固有频率为

2π

12πk

m12

12

1

2()kkgkkP.

(2)前面还证明:当两根弹簧并联时,总倔强系数等于两个弹簧的倔强系数之和,因此固有频率为

2π

121222kkg

mP.

4.6 一匀质细圆环质量为m,半径为R,绕通过环上一点而与环平面垂直的水平光滑轴在铅垂面内作小幅度摆动,求摆动的周期. [解答]方法一:用转动定理.通过质心垂直环面有一个轴,环绕此轴的转动惯量为 Ic = mR2. 根据平行轴定理,环绕过O点的平行轴的转动惯量为

k1 k2 k

(a) (b) 图4.5

k M m h

x

x1 x2

O

图4.4

C R mg θ

O

相关文档
最新文档