柯西不等式的四个推论

合集下载

5.4柯西不等式与排序不等式 课件(人教A版选修4-5)

5.4柯西不等式与排序不等式 课件(人教A版选修4-5)
1 1 4 a b
注意应用公式: 1 1 ( a b )( ) 4 a b
练习:
1.已知2x 3 y 6,
2 2
求证x 2 y 11 2.已知a b 1,
2 2
求证|a cos b sin | 1
作业
第37页,第1,5,6题
二 一般形式的 柯西不等式
y
P1(x1,y1)
y P1(x1,y1) 0
0
P2(x2,y2) x
x P2(x2,y2)
根据两点间距离公式以及三角形的 边长关系:
x y x y ( x1 x2 ) ( y1 y2 )
2 1 2 1 2 2 2 2 2
2
定理3(二维形式的三角不等式) 设 x , y , x , y R ,那么 1 2 1 2
3 3 3 2 2 2
练习
3.设a1 , a2 ,..., an为正数,求证 a1a2 a2 a3 a3 a1 a1 a2 a3 . a3 a1 a2
练习
4.设a1 , a2 ,..., an为正数,试分别用柯西 不等式与排序不等式证明 a a a a ... a1 a2 ... an . a2 a3 an a1
m n || m | | n | |
2 2 2
ac bd a b c d
2
定理2: (柯西不等式的向量形式)
| || | | |
设α,β是两个向量,则 当且仅当β是零向量,或存在实数k, 使α=kβ时,等号成立.
观 察
即可
三 排序不等式
定理(排序不等式,又称排序定理) 设a1 a2 ... an,b1 b2 ... bn为两组 实数c1 , c2 是b1 , b2 ...bn的任一排列, 那么: a1bn a2bn 1 ... anb1 a1c1 a2 c2 ... an cn a1b1 a2b2 ... anb.n 当且仅当a1 a2 ... an或b1 b2 ... bn时, 反序和等于顺序和。

矩阵的柯西施瓦茨不等式

矩阵的柯西施瓦茨不等式

矩阵的柯西施瓦茨不等式
矩阵的柯西施瓦茨不等式是线性代数的一个重要不等式,它适用于任意两个向量的内积。

对于任意两个n维向量x和y,柯
西施瓦茨不等式可以表达为:
|x·y| ≤ ||x|| ||y||
其中,x·y表示向量x和y的内积,即x1y1 + x2y2 + ... + xnyn,||x||表示向量x的范数(也就是向量的长度),表示为√(x1^2 + x2^2 + ... + xn^2)。

柯西施瓦茨不等式也可以用矩阵的形式表示。

对于两个列向量
x和y,它们可以组成一个矩阵A=[x y]。

那么柯西施瓦茨不等式可表示为:
|A'| ≤ ||x|| ||y||
其中,A'表示矩阵A的转置矩阵,||x||和||y||表示向量x和y的
范数。

柯西施瓦茨不等式的一个重要推论是当且仅当x和y线性相关时,等号成立。

也就是说,向量x和y平行时,它们的内积的绝对值等于它们的范数之积。

柯西施瓦茨不等式在很多领域有广泛的应用,特别是在数学分析和信号处理等领域。

它可以用来证明向量范数的性质,以及推导其他重要不等式,如三角不等式等。

柯西 施瓦茨不等式

柯西 施瓦茨不等式

柯西施瓦茨不等式【原创版】目录1.柯西 - 施瓦茨不等式的定义2.柯西 - 施瓦茨不等式的证明3.柯西 - 施瓦茨不等式的应用4.柯西 - 施瓦茨不等式的意义正文柯西 - 施瓦茨不等式(Cauchy-Schwarz Inequality)是一种在向量空间中的内积不等式,广泛应用于数学分析、线性代数等领域。

本文将从定义、证明、应用和意义四个方面介绍柯西 - 施瓦茨不等式。

1.柯西 - 施瓦茨不等式的定义柯西 - 施瓦茨不等式是指,对于任意两个实数向量 x 和 y,都有如下不等式成立:(x1 * y1 + x2 * y2 +...+ xn * yn)^2 <= (x1^2 + x2^2 +...+ xn^2) * (y1^2 + y2^2 +...+ yn^2)其中,x1、x2、...、xn 和 y1、y2、...、yn 分别是向量 x 和 y 在各个坐标轴上的分量。

2.柯西 - 施瓦茨不等式的证明柯西 - 施瓦茨不等式可以通过向量的内积公式进行证明。

假设向量x 和 y 的内积为 A,向量 x 和 y 的模分别为 B 和 C,那么根据内积公式,有:A = x1 * y1 + x2 * y2 +...+ xn * ynB = sqrt(x1^2 + x2^2 +...+ xn^2)C = sqrt(y1^2 + y2^2 +...+ yn^2)将 A、B、C 代入柯西 - 施瓦茨不等式,得到:A^2 <= B * C由于 B 和 C 都是非负数,所以柯西 - 施瓦茨不等式成立。

3.柯西 - 施瓦茨不等式的应用柯西 - 施瓦茨不等式在数学中有广泛的应用,例如在证明其他不等式、求解最优化问题等。

其中最著名的应用之一是证明线性无关的向量组中最大的内积值等于向量模的乘积,即:max(x1 * y1 + x2 * y2 +...+ xn * yn) <= B * C其中,x1、x2、...、xn 和 y1、y2、...、yn 分别是两个线性无关向量组的分量。

5.4柯西不等式与排序不等式 课件(人教A版选修4-5)

5.4柯西不等式与排序不等式 课件(人教A版选修4-5)
等的正数,证明:
a b c d >ab+bc+cd+da.
2 2 2 2
例3 已知x+2y+3z=1,求 的最小值。
x y z
2 2
2
例4:设a、b、c为正数且各不相等。 求证: 2 2 2 9 ab bc ca abc 1 1 1 证明: 2(a b c)( ) ab bc ca 1 1 1 [(a b) (b c) (c a)]( ) ab bc ca
例2 设a1,a2,…,an是n个互不相等的正整数, 求证:
an a2 a3 1 1 1 1 ... a1 2 2 ... 2 2 3 n 2 3 n
证明:设b1,b2,…,bn是a1,a2,…an的一个排列, 且有 b1<b2<…<bn 因为b1,b2,…,bn是互不相等的正整数, 所以b1≥1,b2≥2,…,bn≥n.
第三讲
柯西不等式与 排序不等式
一 二维形式的 柯西不等式
定理1(二维形式的柯西不等式):
若a,b,c,d都是实数,则
(a2+b2)(c2+d2)≥(ac+bd)2
当且仅当ad=bc时,等号成立.
你能证明吗?
推论
a 2 b2 c 2 d 2 ac bd a 2 b2 c 2 d 2 ac | | bd
当且 仅当 (i=1, 2,…, n) 或存 在一
ai kbi
bi 0
一般形式的三角不等式
x y z
2 1 2 1 2 1
x y z
2 2 2 2 2
2 2 2

( x1 x2 ) ( y1 y2 ) ( z1 z 2 )

柯西不等式讲解

柯西不等式讲解

柯西不等式讲解
柯西不等式(Cauchy's inequality)是数学中一条重要的不等式,用于描述内积空间中两个向量的内积与它们的范数之间的关系。

柯西不等式的一般形式如下:
|⟨u, v⟩| ≤ ||u|| × ||v||
其中,⟨u, v⟩表示向量u和v的内积,||u||和||v||表示向量的范数。

柯西不等式的几何意义是,两个向量的内积的绝对值不会大于它们的范数的乘积。

换句话说,两个向量的夹角的余弦值的绝对值不会大于1,取等号的条件是两个向量线性相关,或者其中至少一个向量为零向量。

柯西不等式在解析几何、线性代数和数学分析等领域发挥着重要的作用。

它不仅有很多重要的推论和应用,还为其他数学定理的证明提供了基础。

例如,在向量空间中,根据柯西不等式,可以得出Cauchy-Schwarz定理,它指出如果一个内积空间是完备的,则该空间是一个赋范线性空间。

另一个例子是在概率论中,柯西不等式被用于证明随机变量的期望和方差的关系,以及协方差的定义和性质。

总之,柯西不等式是数学中一条基础但重要的不等式,可以应用于多个领域。

它提供了关于向量空间和内积空间的有用信息,为解决各种数学问题提供了有力的工具。

(完整版)高中物理-公式-柯西不等式

(完整版)高中物理-公式-柯西不等式

(完整版)高中物理-公式-柯西不等式一、柯西不等式的定义柯西不等式是线性代数中的一种重要不等式,其用于描述向量内积的性质。

柯西不等式的一般形式如下:对于任意两个n维实向量x和y,有不等式:x·y ≤ ||x|| ||y||其中,x·y表示x和y的内积,||x||和||y||分别表示x和y的模长。

二、柯西不等式的证明要证明柯西不等式,可以采用以下方法之一:方法一:使用向量投影通过向量投影的定义,可以得出:x·y = ||x|| ||y|| cosθ其中,θ为x和y之间的夹角。

由于cosθ的取值范围为[-1,1],所以有:x·y ≤ ||x|| ||y||方法二:使用Cauchy-Schwarz不等式柯西不等式也可以通过Cauchy-Schwarz不等式(柯西-施瓦茨不等式)来证明。

Cauchy-Schwarz不等式的一般形式如下:(x1y1 + x2y2 + ... + xnyn)^2 ≤ (x1^2 + x2^2 + ... + xn^2)(y1^2 + y2^2 + ... + yn^2)将Cauchy-Schwarz不等式应用于内积的情况下,可以得到柯西不等式。

三、柯西不等式的应用柯西不等式在物理学中有广泛的应用,特别是在向量分析和线性代数中。

在向量分析中,柯西不等式可用于证明向量的正交性,以及判断向量是否共线等问题。

在线性代数中,柯西不等式可用于证明向量的线性无关性,以及求解线性方程组等问题。

总结:柯西不等式作为一种重要的不等式,在高中物理研究中具有重要的意义。

掌握柯西不等式的定义、证明和应用,对于深入理解向量内积的性质以及推导相关定理都具有重要的帮助。

5.4柯西不等式与排序不等式 课件(人教A版选修4-5)

(a1b1 a2b2 ... anbn )
2
定理 设 a1, a2 , a3 ,...,an , b1, b2 , b3 ,...,bn 是实数,则
2 2 2 2 (a12 a2 ... an ) (b12 b2 ... bn )
(a1b1 a2b2 ... anbn ) 2
例2 设a1,a2,…,an是n个互不相等的正整数, 求证:
an a2 a3 1 1 1 1 ... a1 2 2 ... 2 2 3 n 2 3 n
证明:设b1,b2,…,bn是a1,a2,…an的一个ቤተ መጻሕፍቲ ባይዱ列, 且有 b1<b2<…<bn 因为b1,b2,…,bn是互不相等的正整数, 所以b1≥1,b2≥2,…,bn≥n.
x y x y ( x1 x2 ) ( y1 y2 )
2 1 2 1 2 2 2 2 2
2
例题
例1.已知a,b为实数,证明:
(a4+b4) (a2+b2)≥ (a3+b3)2
例2.求函数y 5 x 1 10 2 x的最大值.
例3.设a,b∈R+,a+b=1,求证
练习
1.设a1 , a2 ,..., an为实数,证明: a1c1 a2c2 ... an cn a a ... a ,
2 1 2 2 2 n
其中c1 , c2 ,..., cn是a1 , a2 ,..., an的任一排列。
练习
2.已知a, b, c为正数,用排序不等式证明 2(a b c ) a (b c) b (a c) c (a b).
3 3 3 2 2 2

二维形式的柯西不等式


证明: ( x12 y12 x22 y22 )2
x12 y12 2 x12 y12 x22 y22 x22 y22
x12 y12 2 x1x2 y1 y2 x22 y22
x12 y12 2( x1x2 y1 y2 ) x22 y22
推论:
(1)a bc d ac bd 2 a,b,c, d R
(2) a2 b2 c2 d 2 ac bd
(3) a2 b2 c2 d 2 ac bd
ur ur ur ur
(4)柯西不等式的向量形式 .
A. 5
B. 6
C. 25
6
5
36
D. 36 25
2.函数y 2 1 x 2x 1的最大值为 ______3
3.设实数x, y满足3x2 2y2 6,则P 2x y的最大
值是 ____1_1_
(5)二维形式的三角不等式 x12 y12 x22 y22 (x1 x2 )2 ( y1 y2 )2
小结:
(1)二维形式的柯西不等式 (a2 b2 )(c2 d 2 ) (ac bd )2 (a, b, c, d R) 当且仅当ad bc时,等号成立.
推论:
(1)a bc d ac bd 2 a,b,c, d R
(2) a2 b2 c2 d 2 ac bd
(3) a2 b2 c2 d 2 ac bd
上面两个不等式等号何时取到
探究:柯西不等式的几何意义是什么?
如图,设在平面直角坐标系xOy中有向量a a,b,

柯西不等式高中公式

柯西不等式高中公式柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。

但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才能将这一不等式应用到近乎完善的地步。

基本信息中文名:柯西不等式外文名:Cauchy-Buniakowsky-Schwarz Inequality应用学科:数学适用领域范围:数学-积分学推广者:维克托·布尼亚科夫斯基提出时间:18世纪提出者:奥古斯丁·路易·柯西柯西不等式[1]是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。

但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。

柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。

柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。

(a^2+b^2+c^2)*(1+1+1)>=(a+b+c)^2=1(柯西不等式)所以(a^2+b^2+c^2)>=1/3(1式)又a^3+b^3+c^3=(a^3+b^3+c^...(平方的和的乘积不小于乘积的和的平方)|a|*|b|≥|a*b|,a=(x1,y1),b=(x2,y2)(x1x2+y1y2)^2≤(x1^2+y1^2)(x2^2+y2^2)[1](a1·b1+a2·b2+a3·b3+...+an·bn)^2≤((a1^2)+(a2^2)+(a3^2)+...+(an^2))((b1^2)+(b2^2)+(b3^2)+...( bn^2))√(a^2+b^2)+√(c^2+d^2)≥√[(a+c)^2+(b+d)^2]等号成立条件:ad=bc注:“√”表示根|α||β|≥|α·β|,α=(a1,a2,…,an),β=(b1,b2,...,bn)(n∈N,n≥2)等号成立条件:β为零向量,或α=λβ(λ∈R)。

柯西—施瓦茨积分不等式证明

柯西—施瓦茨积分不等式证明柯西—施瓦茨积分不等式是分析学中重要的定理之一,其证明如下:1. 引言柯西—施瓦茨积分不等式是指对于任意两个 Lebesgue 可积函数 f 和 g,有以下不等式成立:∣∫ f(x)g(x)dx∣ ≤ (∫ |f(x)²|dx)¹/² * (∫ |g(x)²|dx)¹/²这一不等式在数学分析、概率论、泛函分析等领域有广泛应用。

2. 证明思路为了证明柯西—施瓦茨积分不等式,我们可以先证明一个辅助定理——柯西—施瓦茨不等式。

然后利用柯西—施瓦茨不等式进行推导,最终得到不等式的证明。

3. 柯西—施瓦茨不等式的证明对于任意两个 Lebesgue 可积函数 f 和 g,我们定义函数h(t) = ∫f(x)g(x-t)dx。

由于 f 和 g 可积,h(t) 是一个定义良好的函数。

我们需要证明∫ |h(t)|dt ≤ (∫ |f(x)²|dx)¹/² * (∫ |g(x)²|dx)¹/²。

为了方便,我们记A = (∫ |f(x)²|dx)¹/²,B = (∫ |g(x)²|dx)¹/²。

首先,我们注意到|h(t)|² = |∫ f(x)g(x-t)dx|²。

对此进行展开,并利用积分的线性性质,得到:|h(t)|² = (∫ f(x)g(x-t)dx) * (∫ f(y)g(y-t)dy)= ∫∫ f(x)g(x-t)f(y)g(y-t)dxdy接下来,我们交换积分次序,并利用积分的可加性,得到:∫ |h(t)|²dt = ∫∫∫ f(x)g(x-t)f(y)g(y-t)dxdydt= ∫∫∫ f(x)g(x-t)f(y)g(y-t)dtdydx接着,我们将变量 t 替换为 t = x-θ,得到:∫ |h(t)|²dt = ∫∫∫ f(x)g(θ)f(y)g(y-(x-θ))dθdydx进一步,我们将上式中的内层积分进行展开,并利用积分的线性性质,得到:∫ |h(t)|²dt = ∫∫∫ f(x)g(θ)f(y)g(y)exp(θ)dθdydx= ∫ f(x)g(y) ∫ f(x)g(θ)exp(θ)dθdydx在最后一步中,我们将积分次序进行了交换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

柯西不等式的四个推论
柯西不等式是很重要的数学定理,它的四个推论也有各自的重要性。

其实,柯西不等式有5个推论,但是我们讨论的是最经典的四个推论,即建立柯西不等式的基础。

让我们一起来了解一下它们的含义和应用。

首先,柯西不等式的第一个推论是,任何一个正实数的数平方都是非负的,即:
a 0
这里的a表示任何一个正实数,a2表示这个正实数的平方。

这个推论由正实数的定义引出,即正实数是一类大于等于零的实数,所以它的平方一定是大于等于零的。

这个推论有很多的实际应用,最常用的就是当需要计算某种函数的偏导式时,由于函数的平方乘数在有些情况下可以忽略,所以正实数平方的非负性可以用来减少函数偏导计算的步骤。

柯西不等式的第二个推论是,如果a和b都是正实数,那么: a2 + b2 2ab
这个推论可以说是对正实数平方的一个加强应用,其实这个推论可以从两个正实数的乘积衍生出来,要想证明它的真实性,首先要分别证明:
a2 2ab
以及
b2 2ab
从这两个公式可以看出,a2和b2都是小于2ab的,所以把它们加起来,就可以得到a2 + b2 2ab。

像这种简单的推论,其实有很多应用场景,比如在距离计算中,可以用来证明欧几里得距离公式,也可以用来证明两个向量的内积。

柯西不等式的第三个推论是,两个正实数的平方和是大于他们的乘积,即:
a2 + b2 > ab
这个推论也是由正实数的定义推出的,可以用图形的形式来直观的证明,因为正实数的平方一定是大于它的乘积的,所以一定是大于等于平方和的。

这个推论的应用还是蛮广泛的,比如在直线方程中,可以用来证明斜率的乘积是大于等于方程参数的平方和。

最后,柯西不等式的第四个推论是,三个正实数的平方和是大于他们的乘积,即:
a2 + b2 + c2 > abc
这个推论也是对正实数的平方和乘积推论的加强,也可以由正实数的定义推出,并且可以用图形的形式来直观的证明,因为三个正实数的乘积的面积一定小于它们的平方和的面积,所以一定是大于等于平方和的。

这个推论在求解方程,可以用来证明一元三次方程中的余项式的非负性,也可以用来证明欧几里得距离的三维版本的真实性。

总的来说,柯西不等式的四个推论是数学领域非常重要的基础概念,也是日常运算和实际应用中经常用到的。

它们也被称为柯西相关不等式,与柯西不等式的其他推论一起,它们可以帮助我们更有效的
解决计算问题,简化计算的步骤和过程,从而提高工作效率。

相关文档
最新文档