DEM地形因子提取

合集下载

遥感技术专题DEM提取

遥感技术专题DEM提取
遥感技术专题——DEM提取
本帖最后由dsbin于2011-6-19 14:35编辑
DEM除了包括地面高程信息外,还可以派生地貌特性,包括坡度、坡向等,还可以计算地形特征参数,包括山峰、山脊、平原、位面、河道和沟谷等。在测绘中用于制作正射影像图以及地图的修测。在遥感应用中可作为分类的辅助数据。它还是地理信息系统的基础数据,作为三维GIS的基础地形数据。在军事上可用于导航及导弹制导、作战电子沙盘等。
TIN的数据存储方式比格网DEM复杂,常见的有ArcGIS中TIN数据模型。
这三种表达模型中,使用最多也最简单的就是栅格图像(格网)。等高线模型往往在地形图或者线画图中表现。TIN由于数据存储较复杂,用的较少。值的注意的是,这三种模型很容易互相转换。
DEM获取途径
建立DEM的方法有多种,从数据源及采集方式主要有:根据航空或航天影像,通过摄影测量途径获;野外测量或者从现有地形图上采集高程点或者等高线,后通过内插生成DEM等方法。如下表所示:
规则格网模型
规则网格,通常是正方形,也可以是矩形、三角形等规则网格。规则网格将区域空间切分为规则的格网单元,每个格网单元对应一个数值,这个数值就是高程。数学上可以表示为一个矩阵,在计算机实现中则是一个二维数组。
规则格网的高程矩阵,可以很容易地用计算机进行处理,特别是栅格数据结构的地理信息系统。它还可以很容易地计算等高线、坡度坡向、山坡阴影和自动提取流域地形,使得它成为DEM最广泛使用的格式,目前许多国家提供的DEM数据都是以规则格网的数据矩阵形式提供的。
不规则三角网(Triangulated Irregular Network, TIN)是另外一种表示数字高程模型的方法[Peuker等,1978],它既减少规则格网方法带来的数据冗余,同时在计算(如坡度)效率方面又优于纯粹基于等高线的方法。

基于DEM的云南省区域土壤侵蚀坡度坡长因子提取与分析

基于DEM的云南省区域土壤侵蚀坡度坡长因子提取与分析

基于DEM的云南省区域土壤侵蚀坡度坡长因子提取与分析[摘要]土壤侵蚀与地形关系研究由来已久,国内外学者在流域尺度针对土壤侵蚀调查制图的地形因子提取方法也有较多的研究[1]。

本文阐述了在云南省2015年土壤侵蚀调查中,利用全省1:1万或1:5万DEM数据,借助ARCGIS等软件整合生成全省DEM数据,通过北京师范大学研发的“土壤侵蚀模型地形因子计算工具”,提取和分析了全省坡度坡长因子,该套数据为云南省区域范围内的土壤侵蚀影响因素提供一定的基础数据,为区域水土保持措施规划、综合治理提供指导依据。

[关键词] DEM;坡度;坡长1 研究区概况云南位于我国西南边陲,位于东经97°31′39″~106°11′47″、北纬21°08′32″~29°15′08″之间,地质构造复杂,切割剧烈,山高坡陡谷深,坡耕地分布广泛,气候条件变化多样,生态环境敏感脆弱,是全国水土流失最为严重的省份之一。

云南属青藏高原南延部分,地形一般以元江谷地和云岭山脉南段的宽谷为界,分为东西两大地形区。

东部为滇东、滇中高原,称云南高原,系云贵高原的组成部分,平均海拔2000m左右,地形表现为波状起伏和缓的低山和浑圆丘陵,发育着各种类型的岩溶地形。

西部为横断山脉纵谷区,高山深谷相间,相对高差较大,地势险峻;南部海拔一般在1500~2200m;北部在3000~4000m;西南部边境地区地势渐趋和缓,河谷开阔,一般海拔在800~1000m,个别地区下降至500m以下,是全省主要的热带、亚热带地区。

全省整体地势从西北向东南倾斜,海拔相差较大,最高点为滇藏交界的德钦县怒山山脉梅里雪山主峰卡格博峰,海拔6740m;最低点在与越南交界的河口县境内南溪河与元江汇合处,海拔仅76.4m。

最高、最低两地直线距离约900km,高低相差达6000多米[2]。

2 数据来源DEM数据来源于云南省范围内已入库的数字化成果1:1万DEM数据和云南省范围内由国家基础地理信息中心下发的1:5万精细化DEM数据。

第3章 DEM数据获取方法

第3章 DEM数据获取方法

2.几何学观点:DEM表面通过不同的几何结构来 表示,这些结构按其自身的性质可分为规则和 不规则两种形式。 规则结构据其在空间表现可分为: • 一维结构:对应的采样方法为剖面法或等高线 法。 • 二维结构:通常为正方形或矩形、等边三角形、 六边形或其他规则几何图形。 不规则结构:不规则三角形或多边形。
步骤: 扫描图件准备:图件、接图表、控制点、坐标系等 图件预处理:检查图面是否平整、图廓点与符号清 晰,量测图廓边长,检查变形情况,检查接边,等 高线连接情况等。 定向纠正与编辑:将地图数据由数字化仪坐标(扫 描文件坐标)转化为地理/地图坐标。若图面变形大, 逐格网进行纠正。坐标变化方式由仿射变换、双线 性变换、二次多项式等方法。坐标误差要小于10米。
南方NTS-202 205全站仪 徕卡TPS700系列卓越中文全站仪
南方ET-02A 05A电子经纬仪
4.其他数据源 用气压测高法、航空测高法、重力测量 等方法,可得到地面系数分布的高程 数据。 依此建立的DEM主要用于大范围且高程 精度要求较低的研究。
5.既有DEM数据 我国到目前为止,已经建成了覆盖全国范围的 1:100万、1:25万、1:5万数字高程模型,以及 七大江河重点防洪区的1:1万DEM,省级1:1万 数字高程模型的建库工作也已全面展开。 对已存在的各种分辨率的DEM数据,应用时要考 虑自身的研究目的以及DEM分辨率、存储格式、 数据精度和可信度等因素。
2.数据的密度 数据密度是指采样数据密集程度,与研究区 域的地貌类型和地形复杂程度相关。用于刻 画地形形态所必需的最少的数据点。 表示方法:相邻两点之间的距离、单元面积内 的点数、截止频率、单位线段上的点数等。 采样距离:相邻两采样点之间的距离,也称采 样间隔。
采样距离为20米—表示规则格网分布的采 样数据 每平方米500点—描述随机分布的采样数据 单位线段上的点数,每米2点—描述数据分 布是沿等高线或特征线等线状分布采样点

地形因子的提取与三维可视化

地形因子的提取与三维可视化

实验二地形因子的提取与三维可视化一、实验目的掌握三维分析中的表面分析(地形因子的提取及各种指标的量算)及在ArcScene 中进行数据的三维可视化。

二、实验准备PC、ArcGIS软件三、实验内容1、地形因子的提取:坡度、坡向、坡长、变坡率、地形粗糙度、起伏度、高程变异系数等。

2、表面积体积计算、断面分析、表面阴影显示;3、三维可视化及飞行漫游。

四、实验步骤地形因子的提取1.坡度(坡向)的提取在Spatial Analyst下拉菜单中选择表面分析, 在弹出的下一级菜单中点击坡度(坡向),出现坡度(坡向)对话框,完成坡度提取(坡向)坡度坡向2,计算坡度与坡向变率对坡度和坡向分别再求取坡度坡度变率坡向变率3,平面曲率、剖面曲率的提取平面曲率、剖面曲率的提取过程为:打开ArcGIS的Toolbox,在Spatial Analyst Tools底下选择表面分析,在表面分析的下一级菜单中选择曲率。

打开曲率对话框,完成平面及剖面曲率的提取平面曲率剖面曲率4,提取地形剖面1,在ArcMap中添加数据,然后在3D Analyst工具条上选择该数据。

2,使用线插值工具创建线,以确定剖面线的起终点。

3. 使用创建剖面图工具生成剖面图。

4,在生成的剖面图标题栏上点击右键,选择属性(Properties)项,进行布局调整与编辑。

5,提取表面阴影与DEM叠加显示6,三维阴影显示在ArcScene三维场景中,设置栅格表面自身的高程值为其基准高程后,在属性对话框的渲染选项卡中,选中相对于光照位置显示阴影复选框,使表面具有阴影显示。

同时可以使用光滑阴影工具使阴影表面更光滑7,使用动画旋转激活之后,可以使用场景漫游工具(Navigate)将场景左右拖动之后,即可开始进行旋转,旋转的速度决定于鼠标释放前的速度,在旋转的过程中也可以通过键盘的Page Up键和Page Down键进行调节速度。

点击场景即可停止其转动。

改变其背景色、照明度等属性,再次观察其显示效果。

数字高程模型 地形因素的提取

数字高程模型 地形因素的提取

等高线三维可视化原理H=f(x,y)坡面地形因子提取1坡度打开Spacial Analysis工具依次选择表面分析、坡度、提取坡度,输出栅格命名为(坡度)2 坡向打开Spacial Analysis工具,依次选择表面分析、坡向,提取坡向,并将输出栅格命名为(坡向)3粗糙度打开栅格计算器,输入公式1/cos[DEM*3.14159/180),即可以得到地表粗糙度,并命名图层为地表粗糙度。

4地表起伏度选中DEM数据,打开Spacial Analysis\邻域分析、焦点统计、后选择统计类型为最大值,邻域类型为矩形记为max;同理再次打开Spacial Analysis\邻域分析、焦点统计、后选择统计类型为最大值,邻域类型为矩形记为min;打开Spacial Analysis,地图代数,栅格计算器,输入公式max-min,命名产生的图层为地表起伏度山脊线、山谷线提取操作步骤:1. 加载DEM 数据,设置默认存储路径,使用空间分析模块下拉箭头中的表面分析工具,选择坡向工具(Aspect),提取DEM 的坡向数据层,命名为A。

该DEM 的坡向数据如下图所示:2. 点击数据层A,使用空间分析模块下拉箭头中的表面分析工具,选择坡度工具(slope),提取A 的坡度数据层,命名为SOA1。

3. 求取原始DEM 数据层的最大高程值,记为H:由此可见该最大高程值H 为1153.79使用栅格计算器,公式为(H-DEM),求反地形DEM 数据如下:反地形DEM 数据层calculation 如下(可与原始DEM 相比较):4. 基于反地形DEM 数据求算坡向值反地形DEM 数据层calculation 的坡向数据如下:5. 提取反地形DEM 坡向数据的坡度数据,记为SOA2,即利用SOA 方法求算反地形的坡向变率。

6. 使用空间分析工具集中的栅格计算器,求没有误差的DEM 的坡向变率SOA,公式为SOA=(([SOA1]+[SOA2])-Abs([SOA1] -[SOA2]))/2其中,Abs 为求算绝对值,可点击右下侧将其查找出来。

DEM专题

DEM专题

水流方向确定
提取洼地
计算洼地深度
将此洼地深度图与相 应的地形图(其他地 形资料)进行比较, 确定哪些是真实地表 形态哪些是由误差造 成的洼地。
洼地填充
洼地填充是无洼地DEM生成的最后一个步骤。 洼地填充是无洼地DEM生成的最后一个步骤。
流水累积量
32 16 8 64 x 4 128 1 2
河网的生成
栅格河网矢量化
北京市大流域划分
流域划分成果对比
与北京市水务局的北 京山区小流划分界线对比
本次基于DEM的流域划分,并 本次基于DEM的流域划分,并 没有考虑行政界线的因素,而 是完全采用水文分析模型得到 的。从流域划分的角度来说, 我们得到的流域数据更接近自 然流域的真实情况。 然流域的真实情况。同时对平 原区也进行了详细的划分。
DEM是比较光滑的地形表面模型。一般生 DEM是比较光滑的地形表面模型。一般生 成DEM都是通过插值得来的,由于插值过 DEM都是通过插值得来的,由于插值过 程中,由于采集的原始数据的密度、分布、 精度以及插值方法的影响,会对DEM产生 精度以及插值方法的影响,会对DEM产生 一定的误差,很可能造成DEM表面存在一 一定的误差,很可能造成DEM表面存在一 些凹陷的区域。在进行水流方向计算时由 于这些区域的存在往往得到不合理的甚至 错误的水流方向。因此,要对这些洼地进 行填充
山顶点
山顶点指那些在特 定领域范围内,该 点都比周围点高的 点。山顶点是地形 的重要特征点,它 的分布和密度反映 了地貌的发育特征 同时也制约地貌发 育。
山脊线、山谷线 山脊线、
山脊线和山谷线构成了地形起伏变化的分 界线。因此,它对于地形地貌研究具有重 要的意义。 对于水文物理过程研究而言,由于山脊、 山谷分别表示分水性与汇水性,所以山脊 线与山谷线的提取实质上也是分水线和汇 水线的提取。

GIS概论7_DEM与数字地形分析

滁州学院国土信息工程系 /CountryIS/index.aspx
GIS概论
李伟涛 liweitao_801225@
DEM与数字地形分析
基本概念
数字高程模型、数字地形分析
DEM采集与建立 数字地形分析
基本因子分析、地形特征分析、流域分析、可视性分析
23
DEM空间插值方法—局部分块内插
局部分块内插是将地形区域按一定的方法进行分块,对每 一分块,根据其地形曲面特征单独进行曲面拟合和高程内 插。 分块方法:一般按地形结构线或规则区域分块,分块大小 取决于地形复杂一定宽度的重 叠,或者对内插曲面补充一定的连续性条件。 优点:简化了地形的曲面形态,每一分块可用不同曲面表 达,同时得到光滑连续的空间曲面。不同的分块单元可使 用不同内插函数。 常用内插函数:线性内插、双线性内插、多项式内插、样 条函数、多层曲面叠加法等。
25
DEM与数字地形分析
基本概念
数字高程模型、数字地形分析
DEM采集与建立 数字地形分析
基本因子分析、地形特征分析、流域分析、可视性分析
26
数字地形分析
一、基本因子分析
1、坡度
2、坡向
3、曲率 4、宏观地形因子
27
数字地形分析
一、基本因子分析
1、坡度
当具体进行坡度提取时,常采用简化的差分公式,完整的数学表示为:
28
数字地形分析
一、基本因子分析
2、坡向
对于地面任何一点来说,坡向表征了该点高程值改变量的最大变化方向。 在输出的坡向数据中,坡向值有如下规定:正北方向为0°,顺时针方向 计算,取值范围为0°~360°。
29
数字地形分析
一、基本因子分析
3、曲率

测绘技术中的地形信息提取方法与技巧

测绘技术中的地形信息提取方法与技巧引言:测绘技术在地理信息系统(GIS)中起到了至关重要的作用。

其中,地形信息的提取是测绘技术的核心部分。

本文将探讨测绘技术中的地形信息提取方法与技巧。

一、数字高程模型(DEM)的应用数字高程模型(Digital Elevation Model,DEM)是地形信息提取的重要工具之一。

它可以将地理表达转化为数学模型,具有较高的精度和实用性。

1. DEM数据的采集采集DEM数据的方法主要包括激光雷达测量、航空摄影测量和卫星测绘等。

激光雷达测量是一种常用的高精度DEM采集方法,通过反射激光束的时间和强度来测量地物的高程信息。

航空摄影测量和卫星测绘则是利用航空器和卫星进行拍摄和采集地形信息。

2. DEM数据的处理与分析采集到的DEM数据需要进行处理和分析,以获取更加精确的地形信息。

常用的方法包括数据滤波、高程插值和领域分析等。

滤波是一种用于去除DEM数据中的噪声的方法,通过对数据进行平滑处理,使其更符合实际地形。

高程插值则是根据已知的地形点,通过数学方法估算未知位置的地形高程。

领域分析则是利用邻近点的高程信息,对目标点进行估算和插值。

二、遥感技术在地形信息提取中的应用遥感技术是测绘领域非常重要的工具之一,可以通过对卫星或航空器获取的图像进行分析,提取地形信息。

1. 遥感影像的获取与处理遥感影像的获取主要通过航空器或卫星进行拍摄,然后进行图像处理。

图像处理涉及到影像校正、辐射校正以及影像增强等技术,以获得更加准确和清晰的遥感影像。

2. 地形信息提取的方法利用遥感影像进行地形信息提取有许多方法。

常见的方法包括影像分类、目标识别和土地利用覆盖分析等。

影像分类是通过对遥感影像中的地物进行分类和识别,从而获取地形信息。

目标识别是利用遥感影像中的特征,对不同的地物进行识别和分析。

土地利用覆盖分析则是通过遥感影像来研究地表的土地利用情况,并提取地形信息。

三、地形信息提取中的精度控制与误差分析在进行地形信息提取时,精度控制和误差分析是非常重要的环节。

DEM数据获取方法

共六十一页
基于高程(gāochéng)信息的不规则分 布数据粗差探测方法
共六十一页
第五节
DEM数据共享和利用(lìyòng)
各个国家、地区(dìqū)和组织纷纷制定了相关领域的数据共享
原则和数据交换标准,我国也适时颁布了我国DEM数据
交换格式标准
共六十一页
我国DEM数据交换格式(gé 标准 shi)
共六十一页
地形 的复杂程度 (dìxíng)
采样点多少要求 地形比较破碎,沟壑交错,这时宜多布 设一些采样点,以便能正确反映地形细 部变化特征 地形变化比较均匀平坦,则可在满足密 度要求的条件下,可适当(shìdàng)减少采样 点
共六十一页
共六十一页
地形(dìxíng)复杂度表达方法
常用(chánɡ yònɡ)的判别方法: 光谱频率法、分数维、地形曲率、相似 性、坡度 (李志林 )
共六十一页
数据 精度 (shùjù)
采样数据精度与数据源、数据的采集(cǎijí) 方法和数据采集(cǎijí)的仪器密切相关的
数据源: 野外(yěwài)测量>影像>地形图扫描
影像:摄影测量 >GPS
地形图无论是手扶跟踪数字化
还是地形图扫描的精度都是比较低的。
共六十一页
采样的布点(bù 遵循的原则 diǎn)
特征线:山脊线、山谷线、各种断裂线 (陡坎、海岸线、水涯线等)
共六十一页
(实线为山脊线,虚线为山谷线,三角形表示山顶(shān dǐnɡ),小园
为鞍部,正方形为方向变化点和坡度变化点)
共六十一页
非特征要素是分布在各个地形单元(dānyuán) 上的点和线,是为满足采样点密度要求 而加测的点,这些点线主要是用来辅助 地形重建(地形测图中的辅助等高线勾 绘等)

ArcGIS教程】(3)DEM数据的拼接与提取处理

ArcGIS教程】(3)DEM数据的拼接与提取处理原创君默 GIS小白 2022-01-14 22:08收录于话题#arcgis11#GIS17#数据分析3文章简介引言:在实践操作中我们经常需要选择某块研究区域去进行数据分析与处理,但下载影像往往会包含一些多余图层信息,这时我们就需要运用ArcGis软件工具提取所需要素。

最常见的就是DEM数据的镶嵌与腌膜提取以及坡度坡向的分析了。

请看下面:BEGIN01加载DEM数据如下,这是我下载的某块区域的DEM数据(分辨率为30m)。

下载好数据后解压了把所有栅格数据拖进ArcMap界面即可。

注:(此时各图层是一块一块分开的,从左边图层栏可以看到有好多块数据)02镶嵌DEM数据运行ArcT oolbox,依次打开【数据管理工具】/【栅格】/【栅格数据集】/【镶嵌到新的栅格】(合并DEM数据),对工具双击,从而打开工具栏中进行设置。

投影如果需要可以自定义或者导入原图层坐标信息在进行选择波段数、像元类型等信息时可在原图层属性源中查看(一般波段数都是1)合并Mosaic操作设置完成如下,完成了DEM数据的合并,生成了新图层“2020_Mosaic”。

(已经把所有图层拼接到一起)03腌膜提取DEM添加所需要提取范围的区域面矢量图层,如下图,这是我添加的某个区域的面范围图层注:例如提取青海省西宁市的区域,可以添加西宁市的地级面图层shp文件运行ArcT oolbox,依次打开【空间分析工具】/【提取】/【掩膜提取】,双击调出工作面板。

在工具栏中进行设置。

输入栅格:合并后的DEM影像;输入栅格或掩膜数据:所需要提取要素的面范围。

点击完成,DEM数据腌膜提取成功,如下:下面的是DEM数据的坡度与坡向提取步骤04DEM数据的坡向提取运行ArcT oolbox,依次打开【空间分析】/【表面工具】/【坡向】,双击调出坡向设置面板。

输入栅格选择上一步腌膜提取完成的DEM数据,其它参数默认即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DEM地形因子提取
DEM(Digital Elevation Model)是指数字高程模型,通过将地表高
程数据进行数字化处理,构建出来的地形数据模型。

DEM地形因子的提取
是对DEM数据进行分析和处理,从中提取出一系列反映地形特征的参数或
指标,用于地貌研究、水文模拟、地质勘探等领域。

1.高程因子:高程是指地表其中一点与一个确定的基准面的垂直距离。

高程因子主要是用来表示地形的海拔高度,通常以米为单位。

高程可以通
过全球定位系统(GPS)或激光雷达等遥感技术获取,也可以通过实地测
量获得。

2.坡度因子:坡度是指地表上两点之间的垂直距离和水平距离之比。

坡度因子可以用来衡量地表的陡峭程度,是地形分析和水文模拟中常用的
指标。

坡度的计算方法有很多种,最简单的方法是使用两点之间的高差和
水平距离进行计算。

3.坡向因子:坡向是指地表上其中一点相对于水平面的方向。

坡向因
子可以表达地表的朝向特征,具有重要的地貌学意义。

坡向的计算方法有
很多种,常用的方法是使用坡度和坡向角度进行计算。

4.流域面积因子:流域面积是指其中一点上游汇入该点的所有河流流
域面积之和。

流域面积因子主要是用来描述河流的排水系统,是水文模拟
和洪水预测中常用的指标。

流域面积可以通过DEM数据进行计算,常用的
方法是根据流域边界进行面积统计。

5.曲率因子:曲率是指地表在其中一点的曲率半径。

曲率因子主要是
用来描述地表的起伏变化,对地形研究和土地利用规划有很大的意义。


率的计算方法有很多种,最常用的方法是使用高程数据进行计算。

6.等高线密度因子:等高线密度是指在一定范围内等高线的数量和长度。

等高线密度因子可以用来反映地形的起伏程度和地貌类型。

等高线密度的计算方法是将DEM数据转换为等高线数据,然后统计等高线的数量和长度。

除了以上提到的几个常见的DEM地形因子,还有很多其他的因子可以从DEM数据中提取出来,如凸性、凹性、坡谷密度、地形湿度等。

这些地形因子的提取方法都有一定的理论基础和计算流程,需要根据具体应用进行选择和计算。

DEM地形因子的提取是地形分析和应用的基础,对于地理信息系统和遥感技术的发展和应用具有重要的意义。

相关文档
最新文档