整体煤气化联合循环
8第七章 煤气化联合循环发电技术

二、以煤完全气化为基础的多联产技术
特点: 1、多种技术有机组合,随着合成气利用技术
的发展与成熟,可对系统进行进一步的优化 组合。 2、在系统中,颗粒物、SO2、NOx和固体废 物等污染可以有效地得到控制。
第四节 煤气地下气化技术
自学
一、IGCC的主要特点 1、燃料的适应性广 2、具有进一步提高效率的潜力 3、整体煤气化联合循环克服了单独煤气化的缺点 4、优良的环保性能 5、耗水量较少,节水效果显著 6、充分利用煤炭资源,组成多联产系统 7、宜大型化,并能与其他先进发电技术结合 8、便于分段、分步建设电站
பைடு நூலகம்
第三节 煤气化多联产技术
一、以煤部分气化为基础的多联产技术 图7-5
优点:
1、不追求气化过程的高转化率,实现煤炭的分级 转化利用,对煤气化技术与设备要求较低,从而降 低了系统的投资和运行成本。 2、部分气化技术可以采用较低的气化温度,所以 可以与目前相对成熟的煤气低温净化技术直接集成。 3、煤炭中的硫、氮在气化炉被转达化成相对容易 除的H2S、NH3等,可在气化炉内或煤气净化过程 中脱除,半焦中残余的硫、氮、磷、氯和碱金属等 污染相对于原煤大大降低,燃烧起来相对清洁,系 统污染物控制成本降低。
第七章 煤气化联合循环发电技术
第一节 煤气化工艺分类
P94
第二节 煤气化联合循环发电技术
煤气化联合循环发电:指煤经过气化产生中
低热值煤气,经过净化除去煤气中的硫化物、 氮化物、粉尘等污染物,变为清洁的气体燃 料,燃烧后先驱动燃气轮机发电,然后利用 高温煤气余热在废热锅炉内产生高压过热蒸 汽驱动蒸汽轮机发电。
IGCC

三、IGCC未来 IGCC未来
(5)美国 )美国Mesaba IGCC项目 项目 (6)加拿大 )加拿大Alberta EPCOR IGCC+CCS示范 + 示范 项目 (7)英国 )英国Centrica Teesside IGCC项目 项目
三、IGCC未来 IGCC未来
(8)英国 )英国Powerfuel HatField IGCC项目 项目
(9)德国 )德国RWE Zero-IGCC项目 - 项目
(10)韩国 )韩国Taean IGCC NO.1示范项目 示范项目
三、IGCC未来 IGCC未来
LOGO
二、IGCC发展及现状 IGCC发展及现状
二、IGCC发展及现状 IGCC发展及现状
IGCC研究 开发 (70’S)
IGCC试验 验证3639%(80’S)
IGCC商业 示范4045%(90’S)
IGCC应用 与发展4550%(00’S)
二、IGCC发展及现状 IGCC发展及现状
四座大容量商业 示范电站
一、IGCC概述 IGCC概述
一、IGCC概述 IGCC概述
一、IGCC概述 IGCC概述
2、IGCC 工艺流程 、 煤的气化: 煤经气化成为中低热值煤气。 煤的气化: 煤经气化成为中低热值煤气。 煤气的净化:煤气经过净化,除去硫化物、 煤气的净化:煤气经过净化,除去硫化物、氮化 粉尘等污染物,变为清洁的气体燃料。 物、粉尘等污染物,变为清洁的气体燃料。 燃气轮机发电:送入燃气轮机的燃烧室燃烧, 燃气轮机发电:送入燃气轮机的燃烧室燃烧,加 热气体工质以驱动燃气轮机作功。 热气体工质以驱动燃气轮机作功。 蒸汽轮机发电: 蒸汽轮机发电:燃气轮机排气进入余热锅炉加热 给水,产生过热蒸汽驱动蒸汽轮机作功。 给水,产生过热蒸汽驱动蒸汽轮机作功。
关于编制整体煤气化联合循环发电技术项目可行性研究报告编制说明

整体煤气化联合循环发电技术项目可行性研究报告编制单位:北京中投信德国际信息咨询有限公司编制时间:高级工程师:高建关于编制整体煤气化联合循环发电技术项目可行性研究报告编制说明(模版型)【立项 批地 融资 招商】核心提示:1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。
2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整)编制单位:北京中投信德国际信息咨询有限公司专业撰写节能评估报告资金申请报告项目建议书商业计划书可行性研究报告目录第一章总论 (1)1.1项目概要 (1)1.1.1项目名称 (1)1.1.2项目建设单位 (1)1.1.3项目建设性质 (1)1.1.4项目建设地点 (1)1.1.5项目主管部门 (1)1.1.6项目投资规模 (2)1.1.7项目建设规模 (2)1.1.8项目资金来源 (3)1.1.9项目建设期限 (3)1.2项目建设单位介绍 (3)1.3编制依据 (3)1.4编制原则 (4)1.5研究范围 (5)1.6主要经济技术指标 (5)1.7综合评价 (6)第二章项目背景及必要性可行性分析 (8)2.1项目提出背景 (8)2.2本次建设项目发起缘由 (8)2.3项目建设必要性分析 (8)2.3.1促进我国整体煤气化联合循环发电技术产业快速发展的需要 (9)2.3.2加快当地高新技术产业发展的重要举措 (9)2.3.3满足我国的工业发展需求的需要 (9)2.3.4符合现行产业政策及清洁生产要求 (9)2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (10)2.3.6增加就业带动相关产业链发展的需要 (10)2.3.7促进项目建设地经济发展进程的的需要 (11)2.4项目可行性分析 (11)2.4.1政策可行性 (11)2.4.2市场可行性 (11)2.4.3技术可行性 (12)2.4.4管理可行性 (12)2.4.5财务可行性 (13)2.5整体煤气化联合循环发电技术项目发展概况 (13)2.5.1已进行的调查研究项目及其成果 (13)2.5.2试验试制工作情况 (14)2.5.3厂址初勘和初步测量工作情况 (14)2.5.4整体煤气化联合循环发电技术项目建议书的编制、提出及审批过程 (14)2.6分析结论 (14)第三章行业市场分析 (16)3.1市场调查 (16)3.1.1拟建项目产出物用途调查 (16)3.1.2产品现有生产能力调查 (16)3.1.3产品产量及销售量调查 (17)3.1.4替代产品调查 (17)3.1.5产品价格调查 (17)3.1.6国外市场调查 (18)3.2市场预测 (18)3.2.1国内市场需求预测 (18)3.2.2产品出口或进口替代分析 (19)3.2.3价格预测 (19)3.3市场推销战略 (19)3.3.1推销方式 (20)3.3.2推销措施 (20)3.3.3促销价格制度 (20)3.3.4产品销售费用预测 (21)3.4产品方案和建设规模 (21)3.4.1产品方案 (21)3.4.2建设规模 (21)3.5产品销售收入预测 (22)3.6市场分析结论 (22)第四章项目建设条件 (22)4.1地理位置选择 (23)4.2区域投资环境 (24)4.2.1区域地理位置 (24)4.2.2区域概况 (24)4.2.3区域地理气候条件 (25)4.2.4区域交通运输条件 (25)4.2.5区域资源概况 (25)4.2.6区域经济建设 (26)4.3项目所在工业园区概况 (26)4.3.1基础设施建设 (26)4.3.2产业发展概况 (27)4.3.3园区发展方向 (28)4.4区域投资环境小结 (29)第五章总体建设方案 (30)5.1总图布置原则 (30)5.2土建方案 (30)5.2.1总体规划方案 (30)5.2.2土建工程方案 (31)5.3主要建设内容 (32)5.4工程管线布置方案 (33)5.4.1给排水 (33)5.4.2供电 (34)5.5道路设计 (36)5.6总图运输方案 (37)5.7土地利用情况 (37)5.7.1项目用地规划选址 (37)5.7.2用地规模及用地类型 (37)第六章产品方案 (39)6.1产品方案 (39)6.2产品性能优势 (39)6.3产品执行标准 (39)6.4产品生产规模确定 (39)6.5产品工艺流程 (40)6.5.1产品工艺方案选择 (40)6.5.2产品工艺流程 (40)6.6主要生产车间布置方案 (40)6.7总平面布置和运输 (41)6.7.1总平面布置原则 (41)6.7.2厂内外运输方案 (41)6.8仓储方案 (41)第七章原料供应及设备选型 (42)7.1主要原材料供应 (42)7.2主要设备选型 (42)7.2.1设备选型原则 (43)7.2.2主要设备明细 (44)第八章节约能源方案 (45)8.1本项目遵循的合理用能标准及节能设计规范 (45)8.2建设项目能源消耗种类和数量分析 (45)8.2.1能源消耗种类 (45)8.2.2能源消耗数量分析 (45)8.3项目所在地能源供应状况分析 (46)8.4主要能耗指标及分析 (46)8.4.1项目能耗分析 (46)8.4.2国家能耗指标 (47)8.5节能措施和节能效果分析 (47)8.5.1工业节能 (47)8.5.2电能计量及节能措施 (48)8.5.3节水措施 (48)8.5.4建筑节能 (49)8.5.5企业节能管理 (50)8.6结论 (50)第九章环境保护与消防措施 (51)9.1设计依据及原则 (51)9.1.1环境保护设计依据 (51)9.1.2设计原则 (51)9.2建设地环境条件 (52)9.3 项目建设和生产对环境的影响 (52)9.3.1 项目建设对环境的影响 (52)9.3.2 项目生产过程产生的污染物 (53)9.4 环境保护措施方案 (54)9.4.1 项目建设期环保措施 (54)9.4.2 项目运营期环保措施 (55)9.4.3环境管理与监测机构 (57)9.5绿化方案 (57)9.6消防措施 (57)9.6.1设计依据 (57)9.6.2防范措施 (58)9.6.3消防管理 (59)9.6.4消防设施及措施 (60)9.6.5消防措施的预期效果 (60)第十章劳动安全卫生 (61)10.1 编制依据 (61)10.2概况 (61)10.3 劳动安全 (61)10.3.1工程消防 (61)10.3.2防火防爆设计 (62)10.3.3电气安全与接地 (62)10.3.4设备防雷及接零保护 (62)10.3.5抗震设防措施 (63)10.4劳动卫生 (63)10.4.1工业卫生设施 (63)10.4.2防暑降温及冬季采暖 (64)10.4.3个人卫生 (64)10.4.4照明 (64)10.4.5噪声 (64)10.4.6防烫伤 (64)10.4.7个人防护 (65)10.4.8安全教育 (65)第十一章企业组织机构与劳动定员 (66)11.1组织机构 (66)11.2激励和约束机制 (66)11.3人力资源管理 (67)11.4劳动定员 (67)11.5福利待遇 (68)第十二章项目实施规划 (69)12.1建设工期的规划 (69)12.2 建设工期 (69)12.3实施进度安排 (69)第十三章投资估算与资金筹措 (70)13.1投资估算依据 (70)13.2建设投资估算 (70)13.3流动资金估算 (71)13.4资金筹措 (71)13.5项目投资总额 (71)13.6资金使用和管理 (74)第十四章财务及经济评价 (75)14.1总成本费用估算 (75)14.1.1基本数据的确立 (75)14.1.2产品成本 (76)14.1.3平均产品利润与销售税金 (77)14.2财务评价 (77)14.2.1项目投资回收期 (77)14.2.2项目投资利润率 (78)14.2.3不确定性分析 (78)14.3综合效益评价结论 (81)第十五章风险分析及规避 (83)15.1项目风险因素 (83)15.1.1不可抗力因素风险 (83)15.1.2技术风险 (83)15.1.3市场风险 (83)15.1.4资金管理风险 (84)15.2风险规避对策 (84)15.2.1不可抗力因素风险规避对策 (84)15.2.2技术风险规避对策 (84)15.2.3市场风险规避对策 (84)15.2.4资金管理风险规避对策 (85)第十六章招标方案 (86)16.1招标管理 (86)16.2招标依据 (86)16.3招标范围 (86)16.4招标方式 (87)16.5招标程序 (87)16.6评标程序 (88)16.7发放中标通知书 (88)16.8招投标书面情况报告备案 (88)16.9合同备案 (88)第十七章结论与建议 (90)17.1结论 (90)17.2建议 (90)附表 (91)附表1 销售收入预测表 (91)附表2 总成本表 (92)附表3 外购原材料表 (94)附表4 外购燃料及动力费表 (95)附表5 工资及福利表 (97)附表6 利润与利润分配表 (98)附表7 固定资产折旧费用表 (99)附表8 无形资产及递延资产摊销表 (100)附表9 流动资金估算表 (101)附表10 资产负债表 (103)附表11 资本金现金流量表 (104)附表12 财务计划现金流量表 (106)附表13 项目投资现金量表 (108)附表14 借款偿还计划表 (110) (114)第一章总论总论作为可行性研究报告的首章,要综合叙述研究报告中各章节的主要问题和研究结论,并对项目的可行与否提出最终建议,为可行性研究的审批提供方便。
IGCC

常温脱硫一般采用MDEA 脱硫工艺。煤中的硫份 在气化炉中部分转化成硫化物(主要是H2S 和少量 的COS) 留在粗煤气里。粗煤气逐步冷却至40 ℃ 左右进入常温脱硫装置,脱硫吸收剂尽可能地吸收 煤气中的H2S 成为富液,富液经解吸释放H2S ,再 生出的吸收剂循环使用,分离出的H2S 输送到其后 的Claus 硫回收装置中生成元素硫,硫磺纯度在99 %以上。回收副产品硫磺可以提高综合利用效益。 如果采用COS 水解装置把COS 转化成H2S ,脱硫 率可进一步提高到98 %以上。
煤的气化
通常是指在气化剂的参与下,在一定的温度 和压力条件下,把煤炭转化成可燃气体的过 程。现IGCC 中有的采用空气或空气—水蒸 气混合气体为气化剂,气化产物为低热值煤 气;有的采用氧气或富氧气体为气化剂,气化 产物为中热值煤气。煤在气化炉中燃烧,产 生的高温用来切断煤中的高分子化学键,使 其与气化剂反应,生成含有CO、H2 、CH4 等可燃气体的合成煤气。
Gasification
Syngas
N2,Ar
High Tem. Clean up
Байду номын сангаас
NG
Commercial building residential IGCC or GCC
Coal
Heat/power/cool cogeneration
petroleum coke and residue Steam
多联产: 具有发展前途的综合解 决方案
多联产
有助于缓解能源总量要求:联合生产多种产品, 效率提高可以减少总量需求;利用高硫煤扩展了 煤炭资源 有助于缓解液体燃料短缺:可以大规模地生产甲 醇,二甲醚,F-T柴油,氢等替代燃料,缓解和缓 冲石油进口压力 彻底解决燃煤污染问题: 完全消除常规燃煤污染 物排放,重金属等痕量污染物脱除更经济 有助于解决快速城市化引起的小城镇和农村洁净 能源需求:
解析整体煤气化联合循环发电中的燃气轮机问题

部 件上 的碱 材料 引起 腐蚀 。
在 燃 料 气 温 度 低 于 5 8 , 材 料 基 本 凝 结 3℃ 碱 在 粗 合 成 气 里 的 微 粒 物 上 , 的 除 去 效 率 近 似 于 碱
给燃 气轮 机 。
l " i 曩
l l 第1 4级 1 4 l l 第 1 级 6 1 6
压气 机 放 气 级 次 燃 烧 室 火 焰 筒 数
G 公 司 期 望 推 出 6 9 燃 料 进 口 温 度 的 燃 E 4℃ 料 系统 。最 大 燃 料 进 口温 度 试 验 已做 到 5 8 , 3℃
通 常 限 制 燃 机 质 量 流 量 的 因 素 是 透 平 入 口喷
运行策 略所 要 讨 论 的 主要 问题 是 燃 料 流 量 、
压 气机 性 能和压气 机 空气抽 气 之 间的相互 作用 。 所 设 计 的 燃 气 轮 机 针 对 规 定 的运 行 条 件 达 到
一
嘴 的 面积 。当流 动 发 生 壅塞 时 , 量 流 量 达其 最 质
m 。
,
21 年第 2 00 期
燃烧 天 然气 和燃烧 煤基合 成气 之 间 的最 大 区
别 在燃料 的热值 。天然 气 的热值 约 3 7 . J 72 4 7k /
中 热 值 煤 气 ( G) 热 值 约 l 8 . ~ 1 MB 的 l10 8 8 6 6k / , 低 热 值 煤 气 ( B 的 热 值 约 37 7 3 J m。 而 L G) 2.
净 出力/ MW 热 耗 率/ J・(W ・ ) k k h l I 10 5 1 2 04 3 l l 15 4 1 4 05 8
分布式能源与IGCC(整体煤气化联合循环)及热电冷三联供

2015-2020年分布式能源与IGCC(整体煤气化联合循环)及热电冷三联供行业发展前景预测分析报告(十三五规划)Report Description报告描述本研究报告由华经视点公司领衔撰写。
报告以行业为研究对象,基于行业的现状,行业运行数据,行业供需,行业竞争格局,重点企业经营分析,行业产业链进行分析,对市场的发展状况、供需状况、竞争格局、赢利水平、发展趋势等进行了分析,预测行业的发展前景和投资价值。
在周密的市场调研基础上,通过最深入的数据挖掘,从多个角度去评估企业市场地位,准确挖掘企业的成长性,为企业提供新的投资机会和可借鉴的操作模式,对欲在行业从事资本运作的经济实体等单位准确了解目前行业发展动态,把握企业定位和发展方向有重要参考价值。
报告还对下游行业的发展进行了探讨,是企业、投资部门、研究机构准确了解目前中国市场发展动态,把握行业发展方向,为企业经营决策提供重要参考的依据。
Report Directory报告目录第一部分分布式能源深度研究第一章分布式能源概述第一节分布式能源称谓与定义第二节分布式电站定义第三节分布式各类能源折算标准煤的参考系数一、各类能源折算标准煤的参考系数表二、标准煤三、各种能源折算标准煤第四节天然气水合物解析第五节地热能解析第六节风能解析第七节固体废弃物能解析第八节海洋能解析第九节氢能解析第十节生物质能解析第十一节水能解析第十二节太阳能解析第十三节科普能源综述第十四节节能减排概论第十五节制冷剂水合物蓄冷综述第二章中国分布式能源技术发展研究第一节分布式能源系统的国外发展研究第二节分布式能源系统的国内发展研究第三节分布式能源系统和电力系统对比研究一、发电厂产能二、工厂耗能三、常用能源四、生物质能源五、能源对比六、总结第二部分分布式能源市场与发展动态分析第三章中国分布式能源地区发展研究第一节中国分布式能源总体分布情况第二节中国主要地区分布式能源发展状况一、广州分布式能源发展状况二、北京分布式能源发展状况三、上海分布式能源发展状况第三节中国主要分布式能源在建、预建项目分析第四节中国分布式能源的适宜规模第五节天然气市场开拓中分布式能源的作用第六节国际分布式联盟对中国电力发展的分析第七节大型联合循环电站与分布式三联供系统发电投资效益的比较第四章中国分布式能源主要应用领域研究第一节中国分布式能源应用的重要性与必要性分析一、环境压力与能源结构调整二、中国电力需求三、分布能源支撑持续发展需要第二节分布式能源发展应用的可持续性分析一、中国进入了燃气大发展应用二、分布能源系统配置的经济优势三、国家的政策支持第三节中国分布式能源应用结构现状第四节分布式能源实际技术应用及存在的问题分析一、中国分布式能源技术实际应用二、分布式能源技术应用难点与障碍分析第五节合理用气是能源结构调整的关键第六节发展分布能源的问题一、法规问题二、技术问题三、市场问题第七节分布能源系统应用技术第八节分布式能源市场研究结论第三部分IGCC (整体煤气化联合循环)技术与发展第五章2011-2020年IGCC (整体煤气化联合循环)现状及发展趋势第一节IGCC行业发展概况一、IGCC商业运行成必然趋势二、煤气化容量持续增长三、政府投资力度增大四、美国引领IGCC的开发第二节IGCC成为洁净煤发电发展方向第三节科技进步性能改进一、适用于发电用的大容量、高性能气化炉二、新型空分设备三、高性能的高温燃气轮机四、高温煤气净化设备第四节IGCC组成多联产的能源系统一、合成气园-IGCC总能系统二、IGCC-燃料电池三、磁流体- IGCC发电第五节碳捕集封存技术成IGCC发展新机遇第六章IGCC系统关键部件气化炉选择及其对电厂整体性能的影响第一节气化炉类型第二节IGCC电站建模和气化炉的选择一、采用不同气化炉的IGCC选择二、其它参数选择第三节选择结果分析与评估一、技术性能分析二、经济性能分析第四节重要结果第七章中国整体煤气化联合循环(IGCC)电厂的经济性估算研究第一节经济性估算综述第二节中国IGCC经济性估算模型的建立一、投资估算系数修正二、重要经济性参数修正第三节IGCC电厂运行数据假定一、催化剂消耗量二、利用小时数与可用率第四节IGCC经济性参数一、运行维护成本二、工程费三、未可预见费(预备费)四、融资假定五、折旧方法六、流动资金七、其它经济性假定第五节模型计算框架第六节评估结果一、投资成本评估二、研究模型与实际电厂投资数据比较三、投资潜力第八章IGCC及多联产系统的发展和关键技术第一节国内外现状第二节中国IGCC及多联产的发展目标第三节IGCC及多联产需解决的关键技术一、新型气化炉的研制二、煤气冷却器的设计三、余热锅炉的设计四、汽轮机改造五、新型空分装置空分流程研制六、系统效率及主要设计参数的研究七、系统的优化及性能计算八、IGCC电站调试和性能试验技术九、IGCC电站的运行和控制技术第四节IGCC多联产关键技术一、低成本、低能耗制氧和氢分离技术二、CO2分离技术三、能量转换利用过程新机理研发和系统创新四、关键设备和新工艺的研究五、系统整体特性研究和综合优第五节中国IGCC及多联产技术的发展第四部分发展IGCC基础条件第九章中国IGCC发展新型煤化工所需基础条件研究第一节煤化工行业综述第二节煤炭储量与利用第三节煤炭资源分布第四节煤化工单位消耗水量第五节煤化工三废处置第六节交通配套第七节单位投资需求第八节技术工艺要求第九节2011-2020年市场需求趋势一、市场需求是关键二、2011-2020年需求预测第十节煤化工主要评价指标一、气化强度二、单炉生产能力三、碳转化率四、气化效率五、热效率六、水蒸气消耗量和水蒸气分解率第十章中国煤炭气化多联产生产代用天然气研究第一节中国天然气资源及供应第二节煤炭气化多联产技术应用与趋势第三节以加压固定床气化技术为基础的多联产工艺一、单纯生产城市煤气模式二、通过煤气甲烷化生产代用天然气三、生产城市煤气联产甲醇四、煤气化间接液化制油联产城市煤气第四节以加压气流床气化为基础的多联产工艺第五节应具备基本条件第六节可能发展煤基多联产生产代用天然气的地区分析一、在内蒙古自治区东部区二、在内蒙古自治区西部区三、在新疆地区四、在四川、贵州和云南部分富煤地区五、在鲁西南、苏北徐州及河南东部交界处六、在靠近油田地区七、在广东等地第七节发展前景第十一章国外4座大型IGCC电站的煤气化工艺第一节TEXACO 煤气化工艺一、Texaco结构特点二、Texaco性能和运行指标三、Tampa IGCC电站经验第二节DESTEC煤气化工艺一、Destec结构特点二、Destec性能和技术经济指标三、Wabash River IGCC电站经验第三节SHELL煤气化工艺一、Shell结构特点二、Shell性能及技术经济指标三、Demkolec IGCC电站经验第四节PRENFLO煤气化工艺一、Prenflo结构特点二、Prenflo性能及技术经济指标三、在Puertollano电站经验第五节4种气化炉的综合比较第五部分热电冷三联供专题第十二章热电冷三联供概述第一节冷热电联产的定义第二节BCHP系统组成第三节BCHP的组成方式一、微型涡轮发电机加尾气再燃/热交换并联型吸收式制冷机方式二、燃气轮机加吸收式烟气机方式三、微型涡轮发电机加吸收式烟气机方式四、蒸汽轮机加溴化锂冷机方式五、燃气轮机前置循环加溴化锂制冷机方式六、燃料电池加余热利用型直燃机方式第十三章中国热电联产集中供热总体状况研究第一节中国热电联产发展简介一、热电联产的兴起与发展时期二、1971-1980年期间三、“六五”计划时期热电联产建设开始新发展第二节中国热电联发展特征一、以热电厂为主的热电联产二、热电厂服从城市热力规划三、以区域热电厂为主联片供热四、热电厂由电力部门独家建设五、老旧机组供热恢复生机六、供热机组容量增大七、地区形成建设热电的高潮八、国家政策法规支持鼓励发展热电联产九、热电冷联产与热电煤气三联产形成发展趋势第三节中国目前热电联产水平第四节热电联产在中国体现的优越性一、节能降耗二、改善环境质量三、缓和地区电力紧张局面四、提高供热质量发展生产改善民生五、为灰渣综合利用创造了有利条件六、节约宝贵的城建占地第五节热电联产建设经验一、加强宣传提高认识争取各方支持二、制订鼓励发展热电联产的政策三、加强工程项目的全过程管理第六节热电联产发展趋势一、大型供热机组的比重增加二、推广循环流化床锅炉三、城市发展热电冷三联产四、城市发展煤气、热力、电力三联产五、在条件适合的地区利用现有工业锅炉发展热电联产六、燃料结构调整为发展燃气-蒸汽联合循环七、“西气东输”为发展小型全能量系统开创新机遇八、中小型凝汽机组改造为供热机组九、新建大型供热机组取代中、小供热的机组十、城市集中供热走向热电联产第十四章美国从小型热电联产走向冷热电联产发展研究第一节美国能源部支持CHP和CCHP第二节冷热电联产的特殊意义第三节美国关于冷热电联产的研究一、CCHP纲领二、CCHP宣言三、CCHP战略实施目标第四节CCHP和CHP应用领域特点一、CCHP和CHP应用领域的划分二、商用建筑物节能的设想三、采暖和空调将出现新的变化四、更新经营模式和改进研究方法五、CCHP对环境保护也有巨大潜力六、CCHP发展中的关键因素七、要特别重视室内空气质量第五节CCHP与中国一、小型电站是21世纪的新电源,最具经济潜力二、要严格控制为楼宇采暖建设大型热电联产电厂和大型供热管网三、重视发展分布式小型热电联产(CHP)和小型冷热电联产(CCHP)四、加快发展天然气、煤层气,积极引进液化天然气和管道天然气五、为经济合理的发展暖通空调,要尽快取消采暖免费供应制度六、要加强冷热电联供系统(CCHP)的研究和推广工作第十五章中国从热电联产走向冷热电联产发展趋势研究第一节发展趋势第二节效益分析第三节冷热电联供系统缺点第四节关于冷热电联产的研究一、研究综述二、CCHP战略实施目标三、应用领域特点第五节中国分布式能源与热电联产应用一、分布式电站与新电源应用二、小型冷热电联供(CCHP)成为发展趋势三、能源供应渠道多元化四、中国在冷热电联产方面具有一定优势第十六章分布式供能系统第一节分布式供能系统第二节相比传统的集中式大电网供电的优势一、高效节能二、避免或减少输配电成本三、分布式供能系统的组成四、同的发动机在分布式供能系统中的应用五、怎样利用余热来制冷六、可以放在家里的分布式供能七、分布式供能系统在我们身边的实例第三节热电(冷)联产的研究现状以及方向一、国际发展基本概述二、中国基本概述第四节热电(冷)联产系统的优化研究一、重点装置的研发与应用二、热电(冷)联供系统的创新研究第五节BCHP工程实例一、奥斯丁(美国)BCHP项目二、马里兰大学(University of Maryland)BCHP项目第六节热电(冷)联产的主要形式一、热电联产系统二、热电冷联供系统第七部分热电联产典型案例第十七章上海浦东国际机场热电联供分析研究第一节概况第二节建设条件第三节热、电负荷分析研究一、热、电基本负荷预测、分析二、一期供热系统预测及一、二期供热系统的连网、供热设备能力分析三、二台热电联余热锅炉容量分析第四节电负荷分析一、12#(35kV)变电站负荷情况二、5#(35kV)变电站负荷情况第五节规模及机型选择一、机型性能参数二、热电联供机组的选择原则第六节过渡季节对策第七节燃气轮机发电机组热电联供成本分析一、成本组成分析二、成本变动因素第十八章杭州市推广天然气热电冷联供分析研究第一节推广天然气热电冷联供系统的必要性一、环保的需要二、提高供电可靠性的需要三、天然气高效利用的需要第二节推广天然气热电冷联供系统的可行性一、可靠的气源条件二、天然气热电冷联供市场需求分析第三节系统模式一、模式1:汽轮机+蒸汽型溴化锂吸收式冷水机组二、模式2:燃气轮机+补燃型余热锅炉+蒸汽轮机+蒸汽型溴化锂吸收式冷水机组三、模式3:燃气轮机+烟气补燃型溴化锂吸收式冷热水机组四、模式4:燃气内燃机+烟气热水补燃型溴化锂吸收式冷热水机组第四节工程实例一、系统负荷二、设备选型三、冷热水机组改造四、系统造价五、经济性分析第十九章热电冷联供系统应用设计研究与案例第一节热电冷联供系统的主要优点第二节热电冷联供系统中的主要设备一、发电机组二、溴化锂吸收式制冷机第三节热电冷联供系统设计原则一、经济性分析二、补燃型溴化锂吸收式制冷机的基本配置原则第四节燃气轮机热电冷联供系统案例一、设备配置二、系统的经济效益三、关于发电机组的配置容量四、关于余热锅炉配置五、关于补燃型溴化锂吸收式制冷机的配置第五节燃气轮机热电冷联供系统案例一、设备配置二、系统的经济效益三、烟气系统第六节综合评估第二十章燃气冷热电三联供的能量消耗分析研究第一节综述第二节燃气冷热电联供的能耗状况分析研究一、CCHP的主要方式二、冷热电三联供的节能率三、与不同发电厂发电效率比较的三联供节能率四、不同制冷机配置方式的节能率五、不同燃机发电效率的节能率第三节冷热电三联供的总热效率第四节三项主要结论第二十一章中国燃气轮机热电冷联供系统的应用及投资经济性分析第一节热电冷三联供系统发展背景第二节燃气轮机热电冷三联供系统第三节浦东机场能源中心三联供系统经济性分析第四节燃气轮机热电冷三联供系统投资综合分析一、投资项目的技术分析二、投资项目的财务分析第五节综合评估第二十二章燃气轮机热电冷联产系统合理配置研究第一节系统组成第二节系统设施模型一、燃机模型二、余热锅炉模型三、尖峰锅炉模型四、溴化锂吸收式制冷机模型五、电动压缩式制冷机模型六、进气冷却器模型七、蓄冷器模型八、能量平衡第三节合理配置方法一、全年总费用法二、层次分析法第四节计算与分析一、算例二、分析结果第五节评估结论第八部分基础数据第二十三章中国能源资源及产需状况统计第一节中国能源资源一、中国化石能源资源基础储量构成二、中国主要能源基础储量及人均储量三、中国煤炭基础储量和分布四、中国石油基础储量和分布五、中国天然气基础储量和分布六、中国可再生能源资源量第二节中国能源生产分析一、中国能源生产总量及构成二、中国分品种能源产量三、中国原煤产量结构四、中国煤炭工业洗选煤产品产量五、中国焦炭生产量六、中国柴油、汽油、燃料油、煤油产量七、中国发电量及构成八、中国发电量构成九、中国核发电趋势十、中国风电装机容量图十一、全国各省(区、市)风电累积装机及所占市场份额初步统计表十二、中国光伏电池装机十三、我国在建的主要大型常规水电站第三节中国能源消费一、中国能源消费总量及构成二、中国分品种能源消费量三、中国石油产品消费情况四、中国农村能源利用情况五、中国主要高耗能产品产量六、我国可再生能源开发利用量七、中国生活能源消费量八、中国人均生活能源消费量第二十四章中国能源经济与贸易分析第一节中国能源经济一、中国能源与经济状况二、中国能源生产与消费弹性系数三、中国各地区能源消耗指标第二节中国能源贸易一、中国煤炭进出口量二、中国石油进出口量三、主要能源与耗能产品进口量四、主要能源与耗能产品出口量五、中国进口原油前5国第二十五章中国能源环境与经济展望分析第一节中国能源环境一、中国主要污染物排放量二、中国环境污染治理投资三、中国废气排放及处理情况四、中国工业固体废物产生及处理情况五、中国废水排放及处理情况六、中国交通能源需求及CO2排放量预测七、中国主要城市空气质量指标第二节我国能源与经济展望一、中国能源消费概况二、中国能源消费总量统计三、中国能源消费情况图表目录:图表:天然气水合物-共11张图表:地热能-共36张图表:风能-共14张图表:固体废弃物能-共19张图表:海洋能-共12张图表:氢能-共10张图表:生物质能-共16张图表:水能-共12张图表:太阳能-共33张图表:科普能源概论-共15张图表:节能减排概论-共9张图表:制冷剂水合物蓄冷概论-共5张图表:各类能源折算标准煤的参考系数表图表:有效能源利用效率和能量产出效率表图表:造价投入比较表图表:各类燃气热电联产设备的氮氧化物排放比较图表:Solar 公司小型燃机热电联供系统功效比较分析图表:P&W轻型燃气轮机技术性能图表:P&W轻型燃气轮机顶峰能力图表:轻型燃气轮机流程图图表:宝曼微燃机Bowman TG80 CHP 经济性比较分析图表:卡特彼勒燃气内燃发电机热电联产技术参数图表:STM外燃机与燃气锅炉生产热水经济性比较(上海地区)图表:外燃机适意图图表:25kW外燃机外型图表:STM外燃机性能图表:不同规模城市的集中供热图表:城镇集中供热发展状况图表:不同地区城市的热化率图表:2003年国家批准立项和开工的热点工程图表:计划建设的燃气-蒸汽联合循环热电厂图表:上海分布式(楼宇式)三联供系统的发展情况图表:北京市分布式(楼宇式)三联供系统的发展情况图表:广东分布式(楼宇式)三联供系统的发展情况图表:其他地区分布式(楼宇式)三联供系统的发展情况图表:国外扩大分布式能源利用图表:原方案负荷与需求图表:负荷优化后的评估图表:同步系数分析后容量评估图表:Solar机组参数图表:余热锅炉直接供热( 蒸汽压力1034kPa,饱和)图表:余热锅炉补燃至9270C直接供热( 蒸汽压力1034kPa,饱和)图表:Bowman微型燃气轮机组合系统图表:Bowman微型燃气轮机组合系统制冷量图表:Bowman微型燃气轮机组合系统与烟气型直燃机组合图表:机组能量分配图图表:中国能源生产总量及构成能源生产总量占能源生产总量的比重(%) 图表:中国及周边天然气探明与预计储量图表:2005年中国天然气供应情况图表:北京主要燃料比价系数图表:全球IGCC项目发展情况图表:全球煤气化容量增长态势图表:全球煤气化容量预测图表:美国能源部2015年IGCC项目资助情况图表:各国IGCC容量变化情况图表:GE公司IGCC部分项目实例图表:全球煤气化产品分布图表:IGCC电站发展预测图表:CO2捕获与封存的影响图表:一段式纯氧气硫化床炉技术分类图表:气化炉合成气冷却系统图表:气化技术分类及对应的商业品牌图表:蒸汽循环进口参数图表:蒸汽循环设计参数图表:气化用煤煤质分析(表5)图表:经济性估算的输入参数图表:不同气化炉选择对系统出力的影响图表:不同气化炉选择对系统效率的影响图表:采用不同气化炉对IGCC系统的经济性的影响图表:国内实际联合循环电站的主辅工程造价和EPRI模型计算造价结果对比图表:投资估算的系数图表:EPRI模型中估算的IGCC电厂化学试剂和水的消耗量图表:IGCC的非燃料运行维护成本图表:EPRI推荐的未可预见费率图表:流动资金估算图表:模型计算框架图表:计算齐准化资本费用率的假设条件图表:中国各地区已发现煤炭储量/资源量构成图表:各类新型煤化工项目消耗新鲜水量情况图表:各类新型煤化工项目3废排放情况图表:各类新型煤化工项目投资需求图表:各类新型煤化工产品需求情况预测图表:鲁奇加压气化厂工艺流程图表:鲁奇加压气化厂代用天然气工艺流程图表:鲁奇加压气化厂联产甲醇(义马煤气厂还联产二甲醚)。
绿色煤电——IGCC

绿色煤电——IGCC摘要:整体煤气化联合循环IGCC发电技术是当今国际上最引人注目的新型、高效的洁净煤发电技术之一。
IGCC 是一种先进的洁净煤发电和多联产技术,具有优秀的环保排放特性(包括对温室气体二氧化碳的捕捉),在不断改善净效率、比投资费用、设备的可用率和生产成本后,在21世纪初期有望被逐渐推广使用,并为氢能源经济的来临准备条件。
本文介绍了什么是IGCC、其主要优缺点和国内外的发展现状,并展望了它的发展趋势。
关键词:整体煤气化联合循环;IGCC;洁净煤;绿色煤电1 什么是IGCCIGCC全名(Intergrated Gasification Combined Cycle),即整体煤气化联合循环发电,IGCC发电系统有两大分系统构成,即煤气化、洁净系统和发电系统。
其基本原理是:先通过煤气化炉将煤气化成中、低热值的合成粗煤气,然后经净化系统将其除尘、脱硫、除染而制成可供燃气轮机使用的精煤气,进入燃烧室产生高效燃气带动汽机做功,同时还利用燃气轮机排气经余热锅炉产生不同参数蒸汽,以驱动蒸汽轮机发电,以及供热等(其流程图如图1)。
它既能大幅提高发电效率,同时又能实现极好的环保效果。
图1 煤气化联合循环发电流程图2 IGCC优缺点IGCC发电技术是当今国际上最引人注目的新型、高效的洁净煤发电技术之一。
它采用“先治理后发电”的策略,在燃料燃烧前先除去污染物,可以大大降低二氧化碳、氮氧化物等污染物的排放。
IGCC发电技术将联合循环发电技术与煤炭气化和煤气净化技术有机的结合在一起,与常规燃煤机组及燃气蒸汽联合循环(GTCC)相比,具有下面诸多优缺点:2.1 主要优点(1)效率较高,其具有继续提高效率的最大潜力。
高效率IGCC供电效率可达42-46%,提高初燃后可达50%以上,与煤粉火力发电相比,在商用阶段,能将发电效率提高约2成。
(2)与普通发电机组相比,其使用的煤种扩大。
能综合利用煤碳资源,组成多联产系统,能同时生产电、热、燃料气和化工产品。
整体煤气化联合循环技术研究方向与进展

深冷 分 离装 置 。 由于进入 深冷 装 置 的空 气 中 的氧气 浓度 的 提高 将使 空 气 总量 减 小 , 虽然 增 加 了真 空 泵
耗 功 , 在一 定条 件下 会减少 整个 空分 系统 耗功 。 但
将使煤 气 化技 术 有 大的 突破 , 如气 化技 术 和 流化 床
燃 烧技 术 的 汇合 , 内 固态脱 硫 和 炉外 气 体 净化 技 炉 术 的互 补 , 使煤 在 气化 过 程 中就 经 济有 效 地把 大 部 分 硫去掉 , 从而 简化后 置 的煤气 净化设 备 。 高温煤 气
缩耗 功 , 在气 体 达到 相 同压 力 的 情况 下 等 温压 缩 耗 功最 小 , 因此 开 始尝 试采 用 多 级 间冷 的 准 等温压 缩 过程 。 一方面 降低 了压 缩耗功 , 一方面 可将 间冷 放 另
( )高 性 能 的燃气 轮 机 1
I C 系统 中联合 循 G C
环 以燃气 轮 机 为 主 , 气 轮 机是 I C最 关 键 的集 燃 GC
1 6
பைடு நூலகம்
燃 气 轮 机 技 术
第 1 卷 5
方 面 继 续 积 极 发 展 关 键 集 成 技 术 、 寻 求 新 突 以
多采 用 深度 冷冻 方 法 分离 空 气 以制 取 氧气 , 是 液 它
破 卅 ; 一方 面 深入 研究 各 设 备 间 的 匹配 与综 合 另
规律 、 以寻求 系统整 体综合 优化 L 。 2 。
( )优 化 的 高 效 余 热 锅 炉 及 蒸 汽 轮 机 系 统 4 I C 中蒸 汽循 环 与常 规汽 轮 机 电站 的系 统有 较 大 G C 的差 异 , 如采 用 滑压 参 数 运行 、 回热抽 汽 等 。 无 关键
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整体煤气化联合循环(IGCC)现状及发展趋势 供稿人:宋鸿 供稿时间:2009-12-23 关键字:整体煤气化联合循环(IGCC) 现状 发展趋势
一、IGCC行业发展概况
整体煤气化联合循环(Integrated gasification combined cycle,IGCC)是指将煤炭、生物质、石油焦、重渣油等多种含碳燃料进行气化,将得到的合成气净化后与高效的联合循环相结合的先进动力系统。这种系统不仅可以符合2005-2010年日益严格的脱硫脱硝除尘要求,而且可以符合2010-2020年排上日程的微颗粒(PM10、PM2.5)和金属元素(如汞)的排放要求,同时也克服了天然气供应不足和价格昂贵的问题,并具有延伸产业链,发展循环经济的技术优势。从系统构成及设备制造的角度来看,这种系统继承和发展了当前热力发电系统几乎所有技术,代表21世纪洁净煤发电技术的发展方向。
IGCC的研发始于二十世纪七十年代初,1972年在西德Lǔnen的Kellerman电厂建立了第一座IGCC装置,但世界上真正试运成功的第一座IGCC电站是1984年启动的美国加州Cool Water电站。Cool Water电站成功地验证了IGCC技术的可行性,跨过了原理概念性开拓验证阶段,使IGCC从此转上了较为稳健、有效的开发阶段。之后,美国、英国、荷兰、西班牙、德国、日本、印度等国纷纷建起了IGCC商用化示范电站,其中最受关注的是美国的Wabash River(1995)、Free town(1995)、Tampa(1996)和Pinon Pine电站(1996),以及欧洲荷兰的Buggenum电站(1994)、西班牙的Puertollano电站(1998)等。它们多已并入电网作商用化示范运行,证明能够实现有害物质零排放、利于环境保护(污染物排放量仅为常规燃煤电站的1/10,脱硫效率达99%,氮氧化物排放只有常规电站的15%-20%,耗水只有常规电站的1/2-1/3),净效率可达43%以上(高于超临界参数燃煤发电机组在同样净化要求下的最高水平),运行可靠性良好,其建设投资和运行成本基本上已具备竞争力。近年来,IGCC的发展呈现以下一些特征:
1、IGCC商业运行成必然
IGCC的技术日臻成熟,已进入300~400MW大容量机组的商业示范阶段,也就是第二代商用化示范电站。加强整体化,并采用最新技术,提高发电效率,成为世界能源界关注的白热点。现在新型工业燃气轮机的进气初温已达1430℃,用以组成的IGCC系统净效率应将超过50%。以先进的H级燃气轮机为核心的前置SOFC(固体氧化物燃料电池)、后置HAT(湿空气透平)循环的IGCC的发电效率将达到60%~70%以上。美国1998年4月推出的《综合国家能源战略》,要求2012年燃煤发电效率提高到60%以上,而目前发达国家火力发电厂的平均发电效率为37%左右。因此IGCC只要具备大规模商用化的技术和物质条件,就将立于不败之地。
目前,由于IGCC技术的发展、环保标准的提高和石油、天然气等能源价格走势等多重因素,IGCC正逐步从商业示范走向商业应用阶段。据统计,全世界已经运行的IGCC电站有59座,最高发电效率已达45%,为IGCC未来电站建设积累了丰富的经验。全球已经宣布或正在规划中的IGCC项目大约50多个(图1)。
从图1看出,全球只有少数几个IGCC项目被延期或取消,更多的IGCC发电厂将在2010-2013年以后实现商业运行。而且从国外的最新研究进展和发展趋势来看,经过多年的发展, IGCC 技术正在逐步走向大规模的商业运行。作为可持续发展的先进洁净煤技术, IGCC 将是未来能源系统的核心技术和重要基础之一。
图1 全球IGCC项目发展情况
资料来源:Status of the global IGCC project pipeline. Emerging Energy Research
2、煤气化容量持续增长
随着煤气化技术和燃机技术的不断发展和进步,IGCC朝着大容量、高效率、低排放发展,而全球煤气化容量虽然各年有所波动,但始终保持增长态势(图2)。根据www.gasification.com公布的调研数据,进入21世纪以来,IGCC行业发展迅速,2007年总容量约58000 MW,2008年接近60000 MW,而2009年还将继续增长,预计到2010年将有一个飞跃,自那以后,IGCC增长势头迅猛,预计2015年全球容量将较2007年增长72%(图3、图4)。
图2全球煤气化容量增长态势
资料来源:Gasification Technologies Council,ISTIS整理
图3 2004年和2007年全球煤气化容量增长调查
资料来源:http://www.gasification.org,ISTIS整理
图4 全球煤气化容量预测
资料来源:http://www.gasification.org,ISTIS整理
3、政府投资力度很大
自20世纪80年代起,美国、欧盟和日本等国政府分别制定和实施了IGCC研究、发展和示范的国家计划,投资持续增加。根据德国联邦银行2007年1月的研究报告,到2030年时全球对于煤气化这种低排放技术热电厂的投资额将会增加到100亿美元,其中中国就将超过20亿美元。
美国政府的投资政策由来已久。1985-2000年,美国先后部署了5轮“洁净煤发展计划”,其中先后资助建成了4座IGCC示范电站,总投资2117亿美元,占该计划总投资的31%。2002年实施了CCPI(Clean Coal Power Initiative)计划,历时10年安排4轮项目,总投资达20亿美元。2003年美国FutureGen计划研发和建立一个“零排放”的IGCC发电厂,当时总投资约10亿美元,能源部承担74%,其余由13家企业联盟分担,2007年选定伊利诺斯州的Mattoon作为示范基地,但总投资上升到18亿美元。2008年初该项目进行了重组,重点支持多座IGCC或其他先进燃煤电站示范CO2捕集与封存技术。根据美国能源部的报告,其2008年资助27个IGCC项目,资助额度约5400万美元,2009年资助额度将达到6900万美元,美国能源部还对资金的用途进行了分配,2008年的资助额55.8%用于先进气化技术,6.5%用于气体净化,21.9%用于空气分离(图5)。
欧盟也十分重视IGCC的发展,自2004年开始执行HYPO GEN项目,计划到2015年完成建设和示范运行,总投资达13亿欧元。该项目以建成煤气化为基础、生产电力和氢并进行CO2分离和处理的近零排放电站为目标。日本的IGCC实证试验从2001年开始到2009年,从国家得到30%的补助,由投资者与中央电力研究所筹措其余70%的分担金并招聘研究人员。
图5 美国能源部2008年IGCC项目资助情况
资料来源:http://www.netl.doe.gov/2009,ISTIS整理
4、美国引领IGCC的开发
煤气化和燃气轮机技术是IGCC的两大核心技术,美国在这两方面具有雄厚的技术积淀,相应装备技术基本成熟。美国于1972年开始研究IGCC技术。1984年,美国集成两大核心技术在加州建成的冷水电厂是世界上第一座真正试运行成功的IGCC电厂,电厂的成功运行验证了IGCC技术的可行性。紧接着美国建造了Wabash River、Tampa、Pinon Pine等IGCC示范电站。因此,雄厚的煤气化、燃气轮机单元技术基础和30余年IGCC示范电站运行经验使得美国在IGCC技术方面充满自信,尤其是过去5年内的技术研发和示范成果,使得美国能够在很长时间内引领IGCC技术潮流。据EER(Emerging Energy Research)的报告,2007年全球煤和焦炭基IGCC新增容量为25500MW,美国占其中的59%,居世界首位,而这种优势将持续到2014年(图6)。另外,尽管美国开发IGCC技术卓有成效,处于遥遥领先地位,但是加拿大、澳大利亚和中国对IGCC的开发也明显增长,而欧洲到2015年之前IGCC都发展得相当缓慢。
图6 各国IGCC容量变化情况
资料来源:“Global IGCC pipeline by country”,Emerging Energy Research,ISTIS整理
5、老牌技术公司继续保持市场主力地位
壳牌(Shell)、鲁奇(Sasol Lurgl)、GE 、康菲石油公司(Conoco Philips)等公司是老牌的IGCC技术公司,它们也都以上下延伸的相关技术与产品为核心业务,在整个IGCC市场优势集聚,占主导地位。Shell公司特别突出,2007年运行中的采用Shell公司技术的IGCC煤气化容量为15637MW,预计2010年将增加17135MW。而2007年Shell技术占市场的28%,预计2010年将占45%,雄踞市场垄断地位。
GE公司在IGCC发展上注重形成技术的整体优势。2004年6月,GE收购德士古公司气化部,成为全世界第一个掌握IGCC全套核心技术的公司。以后,在对IGCC技术进行了一系列技术整合和整体优化的基础上,又提出了“标准化IGCC电站”的概念,通过标准化、规模化IGCC机组设备生产,形成GE公司在IGCC技术上的整体优势。同时,GE公司非常注重IGCC示范电站建设和运行经验的积累,先后参与建设了COOL WATER等IGCC示范电站(表1),以示范工程带动IGCC技术研发,优化IGCC电厂设计,编制IGCC产业标准。
表1 GE公司IGCC部分项目实例
项目 容量(MW) 原料 GE提供的技术 Cool water示范工厂(美国) 120 煤 气化/发电
PSI Global(美国) 250 煤/石油焦 发电 Tampa发电厂(美国) 250 煤/石油焦 气化/发电 SUV(捷克) 350 煤 发电 Schwarze Pumpe(德国) 40 褐煤 发电 Pernis(荷兰) 120 残油 发电 Sarlux Sardinia(意大利) 550 焦油 气化/发电
ISAB(意大利) 510 石油沥青 气化 Api Energia Falconarai 280 焦油 气化
ExxonMobil化学(新加坡) 160 焦油 气化/发电 Valero Delaware(美国) 160 流化焦 气化/发电