流体力学课件(第四章)

合集下载

《工程流体力学》第四章 流动损失

《工程流体力学》第四章  流动损失
只有当惯性力(升力或沉力)的作用比粘性阻力作用大到 一定程度时,旋涡才可能迁移、掺混和发展,使层流变为 紊流。
层流受到扰动后 主导作用:粘性稳定作用 粘性稳定作用:使扰动衰减下来 流动:变为层流 主导作用:惯性扰动作用 粘性作用:无法使扰动衰减下来 流动:变为紊流
雷诺数正是反映了惯性力和粘性力的对比关系, 能判别流态。
在波峰上侧断面受压缩,流动截面积A变小,流速V增加, 压强p变小 在波峰下侧与上侧相反,A增加,V变小,p增加
在波谷上侧断面,A增加,V变小,p增加 在波谷下侧断面,A变小, V增加,p变小
结果出现由波谷指向波峰的两种压差Dp,Dp’
其中Dp使波动弯曲加剧,波幅增大; 而Dp’大到一定程度后,使流线两侧产生从波谷向另一波 峰流动的二次流,其作用是使波谷处受吸力,波峰处有惯 性力。
2、运动参数的时均值: 时均流速V:某点瞬时速度V在足够长时间段内的平均值
流速脉动->切应力、压强也产生脉动 如,对压强同样有:
对时均流动和脉动流动分别进行研究。
定常紊流流动:对时均流动,时均速度和时均压强不随时 间而变的紊流流动。 有关定常流动规律,如连续方程、伯努利方程等都可用。
但紊流中还要考虑脉动影响 脉动->横向掺混->各流层间质量、动量、热量和悬浮 含量的分布大大平均化 动量交换->紊流阻力大大增加 紊流脉动速度时均值:0 在工程上采用紊流度概念:表示紊流随机性质
Q流速高于VK的流动状态:极不稳定,稍有扰动,就转变 为紊流,对实际工程来说,总是有扰动的。 上临界速度对工程实际没有意义,而下临界速度就成为 判断流态的界限。 下临界速度也被称为临界速度。
雷诺实验还揭示了不同流动状态下流动损失规律。 不同流速下截面1到截面2的流动损失hw:画在对数坐标上

《流体力学》第四章 流动阻力和能量损失4.8-4.9

《流体力学》第四章 流动阻力和能量损失4.8-4.9
ζ:局部阻力系数
2
实验研究表明:局部损失和沿程损失一样,不 同的流态遵循不同的规律。
如果流体以层流经过局部阻碍,而且受干扰后仍能 保持层流的话,局部阻力系数为: B
z=
Re
要使局部阻碍处受边壁强烈干扰的流动仍能保 持层流,只有当Re远小于2000才有可能。因此, 以紊流的局部损失讨论为主。
局部阻碍的种类很多,但按其流动特性 来分,主要是过流断面的扩大或收缩、流动 方向的改变、流量的合入与分出三种基本形 式以及这几种形式的不同组合。
2 a 1v12 a 2 v2 hm = 2g 2g v2 + (a 02 v2 - a 01v1 ) g
av a v v2 hm = + (a 02 v2 - a 01v1 ) 2g 2g g
(v1 - v2 ) hm = 2g
2
2 1 1
2 2 2
(取动能、动量修正系数均为1)
突然扩大的水头损失等于以平 均流速差计算的流速水头。 断面突然扩大时的水流图形
gQ p1 A2 - p2 A2 + g A2 ( Z1 - Z 2 ) = (a 02 v2 - a 01v1 ) g
Q = v2 A2 p1 p2 v2 ( Z1 + ) - ( Z 2 + ) = (a 02v2 - a 01v1 ) g g g
将上式代入能量方程
2 p1 a 1v12 p2 a 2 v2 hm = ( Z1 + + ) - (Z2 + + ) g 2g g 2g
Re=1000000时弯管的局部阻力系数
序号 断面形状 R/d(R/b) 1 圆形 方形 h/b=1.0 矩形 h/b=0.5 矩形 h/b=2.0

流体力学第四章

流体力学第四章

• 在每一个微元流束的有效截面上,各点的速度可认为是相同的 总流:无数微元流束的总和。
38
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
均匀流与非均匀流·渐变流和急变流
均匀流——同一条流线上各空间点上的流速相 同的流动,流线是平行直线,各有效截面上的 流速分布沿程不变 非均匀流——同一条流线上各空间点上的流速不 同的流动,流线不是平行直线,即沿流程方向速 度分布不均
迹线· 流线 1、迹线 1)定义:某一质点在某一时段内的运动轨迹 线。 2)迹线的微分方程
dx dy dz dt ux u y uz
烟火的轨迹为迹线
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
25
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
一维、二维和三维流动
三维流动:流动参数是x、y、z三个坐标的函数
的流动。
二维流动:流动参数是x、y两个坐标的函数的
流动。
一维流动:是一个坐标的函数的流动。
26
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
x= x (t)
dux ux ux dx ux dy ux dz ax dt t x dt y dt z dt
(1)当地加速度(时变加速度):流动过程中流体 由于速度随时间变化而引起的加速度; (2)迁移加速度(位变加速度):流动过程中流体 由于速度随位置变化而引起的加速度。

[理学]流体力学 第4章-基本方程

[理学]流体力学 第4章-基本方程
dt V r,t 应用欧拉输运定理,以控制体为研究对象时角动量守恒方 程可表述为:
控制体净输出
的动量矩流量
控制体内的动 量矩变化率
作用于控制 体的总力矩
(r )
( A)
dA

t

V
(r

)

dV
M
24/57
角动量方程 推导
应力张量就是对称的 zy yz , xz zx , yx xy
7/57
质量守恒定律 推导
质量守恒原理指 物体质量在运动中保 持不变,换言之,物 体质量随时间的变化 率为零。
如右图所示,在 考察的物质系统内, 围绕任意点取一无限 小体积。
图3.2 流动流体的物质体积
8/57
质量守恒定律 推导
对于系统,由质量守恒定律有:
d dV 0
dt V r ,t
取如右图所示系 统,函数 (r, t) 在 整个系统区域上是连 续的、单值的、可微 的。
图3.1 流体实体容积
4/57
输运定理
推导
r,t dV r,t dV
V r,t t
V r ,t t
d
dV
lim
1


r, t t dV r,t dV

0
质量守恒定律的微分形式:

t
div v dV
0
div 0
t
或 grad div 0
t
对不可压缩流体, 0 ,则方程简化为
t
divv 0
11/57
质量守恒定律
柱坐标形式

工程流体力学 第4章 流体运动学

工程流体力学 第4章 流体运动学
质量表示时,为质量流量,以 qm 标记;以体积表示为体 积流量,以 qV 标记,可表示为
qV
vdA
A
断面平均流速:过流断面各点速度的断面平均值,以V标记,有
V
vdA
A
qV
AA
对任一点有
v V v
§4-2 描述流体运动的基本概念
四、一、二、三元流动
一、二、三元流动又称为一、二、三维流动。 一元流动(One-dimensional Flow):流体的运动
v v (x, y, z) p p(x, y, z)
§4-2 描述流体运动的基本概念
三、流管、流束、流量与平均速度 流管:流场中过封闭曲线上各点作流线所围成的管状
曲面,见图。
流束:流管内所有流线的集合为流束。 微小流束:断面积无限小的流束。 总流:无数流束的总和。 注:(1)流束表面没有流体穿越;
间曲线,该瞬时位于曲线上各点的流体质点的速度与曲线在 该点相切,(如图示)。
§4-2 描述流体运动的基本概念
(2)流线的作法:欲作流场中某瞬时过A点的流线,可
在该瞬时作A点速度 v1 ;在 v1 上靠近A点找点 2,并在同 一时刻作 2点速度 v2;再在 v2上靠近2点找点3,也在同一 时刻作速度 v3 ;依次作到 N点,得到折线A-2-3-…-N,当
工程流体力学 第四章 流体运动学
§4-1 描述流体运动的两种方法
流体运动学研究流体运动的规律,不追究导致运动的力 学因素。
研究流体运动的方法
一、拉格朗日法(Lagrange Method) 拉格朗日法又称随体法。它追踪研究每一个流体质点的
运动规律,综合所有的流体质点,从而得到整个流场的运动 规律,参见图。
a y

工程流体力学(4)

工程流体力学(4)
z
(p+ p s ds)dA s (2)
τ τ
dz pdA θ
(1)
重力
dz ρgdsdA = ρgdAdz ds
ρ gdAds
两端面积力 pdA ( p + dp)dA = dpdA 粘性引起的摩擦阻力
u =0 t
z
τ 2πrds
p s ( p + ds)dA s (2)
定常流:
u u du a =u + =u s t ds
Q V = = 373 c m / s A Vd Re = = 3979 > 2300
ν
Vc = Rec
ν
d
紊流
= 216
cm / s
如果要达到层流,只需将V降到Vc,这时Q下降, 如果要维持原流量不变,采用什么方法?
§5.层流向紊流的过渡
一.脉动现象和时均化 紊流运动实质上是一种非定常运 动。如采用特定仪器(如热线风速仪) 可测出其速度变化如图所示。把这种 运动参数随时间变化的现象称为脉动 现象。同样,其它物理量也是脉动值。
lg h f = lg K + m lg V
A
C

h f = KV
m
B v'c
vc
lgV
损失与速度成指数关系。
由实验得出结论: 1 ) 当V < Vc时,m = 1,层流的h f ∝ V, V 与 成一次方的关系。
2 当V > Vc时,m = 1.75 2,h f ∝ V
1.75 2
由此可见,沿程损失与流动状态关系密切, 故在解此类问时,应首先判别流态。
层流
0 Vc
过渡 vc'
紊流

工程流体力学第4章流体在圆管中的流动


流体在圆管中的摩擦系数
定义
表示流体在圆管中流动时, 流体与管壁之间的摩擦力 与压力梯度之间的比值。
影响因素
流体的物理性质、管道的 粗糙度、流动状态等。
测量方法
通过实验测定,常用的实 验设备有摩擦系数计和流 阻仪等。
流体在圆管中的流动效率
定义
表示流体在圆管中流动的能量转 换效率,即流体在流动过程中所 消耗的能量与流体所具有的能量
流速分布受流体粘性和密度的影响, 粘性越大、密度越小,靠近管壁处流 速降低越快。
03
流体在圆管中的流动现象
流体阻力
01
02
03
定义
流体在流动过程中,由于 流体内部以及流体与管壁 之间的摩擦力而产生的阻 力。
影响因素
流体的物理性质、流动状 态、管道的形状和尺寸等。
减小阻力措施
选择适当的流速、优化管 道设计、使用减阻剂等。
之比。
影响因素
流体的物理性质、管道的形状和尺 寸、流动状态等。
提高效率措施
优化管道设计、改善流体物性、降 低流速等。
流体பைடு நூலகம்圆管中的流动稳定性
定义
表示流体在圆管中流动时,流体的速 度和压力等参数随时间的变化情况。
影响因素
流动稳定性控制
通过控制流体物性、流速和管道设计 等措施,保持流体在圆管中的流动稳 定性。
根据输送距离、流量和扬程要求,选择合适的水 泵。
输送效率
优化输送管道布局,降低流体阻力,提高输送效 率。
输送安全性
确保输送过程中不发生泄漏、堵塞等安全问题。
液压系统
液压元件
根据液压系统要求,选择合适的液压元件,如油泵、阀、油缸等。
系统稳定性
确保液压系统在各种工况下稳定运行,避免压力波动和振动。

流体力学 第四章 量纲分析


v l
F 3 l
3 Fp Fm3 300 20 2400000 N 2400 kN l
5.按雷诺准则和佛劳德准则导出的物理量比尺表 比尺
名称
λυ=1 长度比尺λl 流速比尺λv λl λl-1
雷诺准则 λυ≠1 λl λυλl-1
弗劳德准则 λl λl1/2
加速度比尺λa
取m个基本量,组成(n-m)个无量纲的π项
F 1 , 2 ,, nm 0
例:求有压管流压强损失的表达式 解:步骤
a.找出物理过程中有关的物理量,组成未知的函数关系
f p, ,, l , d , , v 0
b.选取基本量
n7
常取:几何学量l(d),运动学量v,动力学量ρ
vp vm

up um
v λv——速度比尺
l t tm lm vm v
tp lp vp
时间比例尺 加速度比尺
v 2 a v t l
qV p qVm
流量比例尺 q 运动粘度比例尺 角速度比例尺
3 3 l 2l v lm tm t
Re
vl

雷诺数——粘性力的相似准数
(2)佛劳德准则——重力是主要的力
FGP FIP FGm FIm
改成
FIm FIP FGP FGm
FG mg gl 3
FI l 2v 2
2 vm g p l p g m lm
v2 p
无量纲数
v2 Fr gl
佛劳德数——重力的相似准数 (3)欧拉准则——压力是主要的力
20 vm v p 300 6000km / h lm 1 lp
难以实现,要改变实验条件

流体力学-张也影-李忠芳 第4章相似和量纲分析


欧拉数
Eu

p
v 2

压力 惯性力
主要反映 粘性力相似
主要反映 重力相似
主要反映 压力相似
如果两个流动力学相似,则它们的上述三个准则数必须相等。
于是:
Fr Fr'

Eu Eu'
Re Re'
这三个等式称为不可压缩流体定常流动的力学相似准则。判断两个流 动是否相似,只要判断这三个准则是否相等。
v2 惯性力
Fr gl
重力
; v2 v '2 gl g 'l '
1
; v


2 l
基本比例尺为:
密度比例尺 和长度比例尺l 。
弗劳德模型法在水利工程上应用广泛。
图表示深为H=4m的水在弧形闸门下的流动,求(1) δρ=1, δl=10的模型上的水深。(2)在模型上测得流量、 收缩断面流速、作用在闸门上的力及力矩分别如下, 求各实物上的量。
能满足这三个关系,便是完全相似。实际上,
2 V
gl
p



2 v
很难同时满足。
l v
1
因为
g 1
代入第一式,得
V


2 l
从第三式可得
V

ν l
3
所以



2 l
3
即流体的运动粘度比例尺和线性比例尺要保持



2 l
显然不现实。因为一般来说模型和实物所用流体
压强[p] ML-1T-2
动力粘性 系数[µ]
ML-1T-1
运动粘性 系数[ν]
L2T-1

《工程流体力学》第四章 流动损失


1、运动参数的脉动: 紊流特征:旋涡结构 紊流运动:旋涡迁移掺混的随机运动
精密测速仪测定流场中M点瞬时速度:随机变化曲线 运动参数的脉动(脉动现象):在足够长时段T内,随机 值具有围绕某一“平均值”而上下变动的现象
紊流脉动:各空间点的速度、压强等物理量,随时间围 绕某一“平均值”作不规则变化的流动现象。
(b)继续开大阀门C:B管中流速增大,有色液体的流动并 无变化,仍为层流。
当B管中平均流速达到某一值时,层流开始转变紊流 —— 临界状态(临界区)。
临界状态:流束发生动荡、分散、个别地方出现中断。
(c)再稍开大阀门C:B管中流速超过临界值VK’,则有色 液体不再呈现流束动荡和分散中断,而破碎掺混变成一种 紊乱的流动状态,有色流体质点布满B管中—紊流。
管中水流为紊流。
(2)保持层流的最大流速就是临界流速:
流态分析:
层流:各流层互不掺混,只有粘性引起的各流层间的滑动 摩擦阻力。
紊流:许多大大小小的涡体动荡于各流层间,有粘性阻力, 惯性阻力。(由质点掺混,互相碰撞所引起的)
紊流阻力>>层流阻力
层流到紊流的转变过程:
假设流体原来作直线层流运动,由于某种原因干扰,流层 发生波动。
水力半径:截面面积A与流体湿周长c之比 水力半径表征截面的流通能力: A增加,c变小,则流体流通能力增加。
几种断面的水力半径:
当量直径de:当非圆管的水力半径 = 圆管的水力半径时, 这时圆管的直径就是非圆管的当量直径。 如当非圆管的水力半径R = 圆管的水力半径d/4时, 则圆管的直径d = 4R为非圆管的当量直径de。
上临界速度VK’不稳定:受试验设备,周围环境影响很大 (1)当管壁光滑,入口平滑,周围干扰较小时:VK’可达到 较高值。即速度较大时,层流才转变为紊流 (2)当管壁粗糙,周围干扰较大时, VK’可达到的值较小。 即速度较小时,层流就转变为紊流
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档