§8.7 用z变换解差分方程
合集下载
Z变换和差分方程

t z 1
经常用于分析计算机系统的稳态误差!!
5、超前定理
n F ( z ) f ( nT ) z 则: 设函数f(t)的 Z变换为 n 0
Z [ f (t kT )] z F ( z ) z
k
k
n 0
n 1
f (nT ) z n
若
f (0) f (T ) f [(k 1)T ] 0 则:
k
求: y ( k )
• 解: • 将方程中除 y(k)以外的各项都移到等号右边, • 得: y(k ) 3 y(k 1) 2 y(k 2) f (k )
• 对于 k 2, 将已知初始值 y(0) 0, y(1) 2代入上式,得:
y(2) 3 y(1) 2 y(0) f (2) 2
第三节
差分方程
差分方程是包含关于变量 k 的序列y(k) 及其各阶差分的方程式。 是具有递推关系的代数方程,若已知初始 条件和激励,利用迭代法可求差分方程的数值 解。
差分方程的定义:
对于单输入单输出线性定常系统,在某一采样时 刻的输出值 y(k) 不仅与这一时刻的输入值 r(k)有 关,而且与过去时刻的输入值r(k-1)、 r(k-2)…有 关,还与过去的输出值y(k-1)、 y(k-2)…有关。可 以把这种关系描述如下:
i 1
n
i 1 n
函数线性组合的Z变换,等于各函数Z变换的线性组合。
2、滞后定理
设在t<0时连续函数f(t)的值为零,其Z变换为F(Z)则:
Z[ f (t kT )] z k F ( z)
原函数在时域中延迟几个采样周期,相当于在象函数上乘以z-k, 算子z-k的含义可表示时域中时滞环节,把脉冲延迟k个周期。
经常用于分析计算机系统的稳态误差!!
5、超前定理
n F ( z ) f ( nT ) z 则: 设函数f(t)的 Z变换为 n 0
Z [ f (t kT )] z F ( z ) z
k
k
n 0
n 1
f (nT ) z n
若
f (0) f (T ) f [(k 1)T ] 0 则:
k
求: y ( k )
• 解: • 将方程中除 y(k)以外的各项都移到等号右边, • 得: y(k ) 3 y(k 1) 2 y(k 2) f (k )
• 对于 k 2, 将已知初始值 y(0) 0, y(1) 2代入上式,得:
y(2) 3 y(1) 2 y(0) f (2) 2
第三节
差分方程
差分方程是包含关于变量 k 的序列y(k) 及其各阶差分的方程式。 是具有递推关系的代数方程,若已知初始 条件和激励,利用迭代法可求差分方程的数值 解。
差分方程的定义:
对于单输入单输出线性定常系统,在某一采样时 刻的输出值 y(k) 不仅与这一时刻的输入值 r(k)有 关,而且与过去时刻的输入值r(k-1)、 r(k-2)…有 关,还与过去的输出值y(k-1)、 y(k-2)…有关。可 以把这种关系描述如下:
i 1
n
i 1 n
函数线性组合的Z变换,等于各函数Z变换的线性组合。
2、滞后定理
设在t<0时连续函数f(t)的值为零,其Z变换为F(Z)则:
Z[ f (t kT )] z k F ( z)
原函数在时域中延迟几个采样周期,相当于在象函数上乘以z-k, 算子z-k的含义可表示时域中时滞环节,把脉冲延迟k个周期。
利用z变换解差分方程(精选)共15页文档

6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
利用z变换解为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
§8.7 用z变换解差分方程

y ( n) = 0.5 +0.45×( 0.9)
n
( n ≥ 0)
第
例8-7-2
已知系统框图 列出系统的差分方程。 列出系统的差分方程。
n
6 页
x(n)
1 E
+ + +
−3
1 E 1 E
y(n)
(− 2) n ≥ 0 x(n) = , y(0) = y(1) = 0, 0 n<0
求系统的响应 y(n)。 。 解: (1) 列差分方程,从加法器入手 ) 列差分方程,
第
一.应用z变换求解差分方程步骤
一.步骤
(1)对差分方程进行单边 变换(移位性质); 对差分方程进行单边 变换(移位性质) 对差分方程进行单边z变换 (2)由z变换方程求出响应 由 变换方程求出响应 变换方程求出响应Y(z) ; (3) 求Y(z) 的反变换,得到 的反变换,得到y(n) 。
3 页
0.9y ( −1) z 0.05z2 Y ( z) = + ( z −1)( z − 0.9) z − 0.9
z −1
Y ( z) A A2 1 = + z z −1 z − 0.9
第 5 页
Y ( z) A A2 1 = + z z −1 z − 0.9
A = 0.5 1
A2 = 0.45
z z Y ( z) = 0.5 + 0.45 z −1 z − 0.9
§8.7 用z变换解差分方程
第
序言
2 页
描述离散时间系统的数学模型为差分方程。 描述离散时间系统的数学模型为差分方程。求解差分 方程是我们分析离散时间系统的一个重要途径。 方程是我们分析离散时间系统的一个重要途径。 求解线性时不变离散系统的差分方程有两种方法: 求解线性时不变离散系统的差分方程有两种方法: •时域方法 时域方法 •z变换方法 变换方法 •差分方程经 变换→代数方程; 差分方程经z变换 代数方程; 差分方程经 变换→ •可以将时域卷积→频域(z域)乘积; 可以将时域卷积→ 可以将时域卷积 频域( 域 乘积; •部分分式分解后将求解过程变为查表; 部分分式分解后将求解过程变为查表; 部分分式分解后将求解过程变为查表 •求解过程自动包含了初始状态(相当于0-的 求解过程自动包含了初始状态( 求解过程自动包含了初始状态 相当于0 条件)。 条件)。
n
( n ≥ 0)
第
例8-7-2
已知系统框图 列出系统的差分方程。 列出系统的差分方程。
n
6 页
x(n)
1 E
+ + +
−3
1 E 1 E
y(n)
(− 2) n ≥ 0 x(n) = , y(0) = y(1) = 0, 0 n<0
求系统的响应 y(n)。 。 解: (1) 列差分方程,从加法器入手 ) 列差分方程,
第
一.应用z变换求解差分方程步骤
一.步骤
(1)对差分方程进行单边 变换(移位性质); 对差分方程进行单边 变换(移位性质) 对差分方程进行单边z变换 (2)由z变换方程求出响应 由 变换方程求出响应 变换方程求出响应Y(z) ; (3) 求Y(z) 的反变换,得到 的反变换,得到y(n) 。
3 页
0.9y ( −1) z 0.05z2 Y ( z) = + ( z −1)( z − 0.9) z − 0.9
z −1
Y ( z) A A2 1 = + z z −1 z − 0.9
第 5 页
Y ( z) A A2 1 = + z z −1 z − 0.9
A = 0.5 1
A2 = 0.45
z z Y ( z) = 0.5 + 0.45 z −1 z − 0.9
§8.7 用z变换解差分方程
第
序言
2 页
描述离散时间系统的数学模型为差分方程。 描述离散时间系统的数学模型为差分方程。求解差分 方程是我们分析离散时间系统的一个重要途径。 方程是我们分析离散时间系统的一个重要途径。 求解线性时不变离散系统的差分方程有两种方法: 求解线性时不变离散系统的差分方程有两种方法: •时域方法 时域方法 •z变换方法 变换方法 •差分方程经 变换→代数方程; 差分方程经z变换 代数方程; 差分方程经 变换→ •可以将时域卷积→频域(z域)乘积; 可以将时域卷积→ 可以将时域卷积 频域( 域 乘积; •部分分式分解后将求解过程变为查表; 部分分式分解后将求解过程变为查表; 部分分式分解后将求解过程变为查表 •求解过程自动包含了初始状态(相当于0-的 求解过程自动包含了初始状态( 求解过程自动包含了初始状态 相当于0 条件)。 条件)。
对差分方程两边进行Z变换

二.典型序列的收敛域 1.有限长序列:
x( z )
0 n1 n n2 x(n) 其它 0
n
n
x(n) z
n n1
n x ( n ) z (1)
n2
①
n1 0 n2 0
0 n n n1
( 1 )式 x(n) z
1 a n2 1 1. an 1 a n 0 n2 1
n2
a 1 a 1
a n1 a n2 1 a 1 n 2. a 1 a n n1 n2 n1 1 a 1
n2
1 n 3. a a 1 1 a n 0
n
a z
n 0
结论:(1)通常收敛域以极点为边界,且收敛域内无极点 1 z z z (2)根据x(n)是左边、右边、还是双边序列,直接 a z z a z b 1 1 写出收敛域形式 z b
a 1 z
n
a z b z
冲激,抽样 n 0
对上式取拉氏变换
xs (t ) x s (t )e st dt
0
[ x(nT ) (t nT )]e st dt
0 n 0
x( z ) x(n) z n x(0) x(1) z 1 x(2) z 2 x(n) z n
z 1
z 0.5
0.5 z 1
求三种可能收敛域的逆变换 解:1. 三种可能收敛域 2. 收敛域|z|>1时 (1)先求围线内所包含的极点个数x(z)zn-1
x( z ) z
n 1
z2 z n1 n 1 z ( z 1)(z 0.5) ( z 1)(z 0.5)
差分方程的Z变换解

ห้องสมุดไป่ตู้
其中: 其中:
。
14
实验步骤与方法
用ztrans、iztrans求实验内容1和2。在命令窗口求解 ztrans、iztrans求实验内容 求实验内容1 即可。 即可。 在例3 计算的是前向差分方程。但实验内容3 (a)是 在例3中,计算的是前向差分方程。但实验内容3 (a)是 后向差分方程。所以要仿照例3的程序和Z 后向差分方程。所以要仿照例3的程序和Z变换求解后 向差分方程的原理编写用z 向差分方程的原理编写用z变换计算前向差分方程的零 输入响应,零状态响应,全响应的程序。 输入响应,零状态响应,全响应的程序。 仿照例3的方法,完成实验内容3的编程。 仿照例3的方法,完成实验内容3的编程。上机调试程 序,与理论计算结果比较。 与理论计算结果比较。 由于实验内容4有复数极点, 由于实验内容4有复数极点,用符号运算的方法就不能 计算。这需要用部分分式法和Z 计算。这需要用部分分式法和Z变换解差分方程的原理 来完成实验内容4的编程。(提高实验) 来完成实验内容4的编程。(提高实验) 。(提高实验
4
实验原理与说明
3、差分方程的Z变换解 差分方程的Z 若线性常系数差分方程描述的系统为: 若线性常系数差分方程描述的系统为:
(1)已知零输入初始值 对上式两边取 变换有: 变换有:
和
上式的第一项为零输入响应,第二项为零状态响应。 上式的第一项为零输入响应,第二项为零状态响应。
5
实验原理与说明
(2)已知系统初始值 对原方程式两边取
10
实验内容 1
求下列序列的变
(a) (b)
换,并注明收敛域。 并注明收敛域。
(c) (d)
11
实验内容 2
求下列
其中: 其中:
。
14
实验步骤与方法
用ztrans、iztrans求实验内容1和2。在命令窗口求解 ztrans、iztrans求实验内容 求实验内容1 即可。 即可。 在例3 计算的是前向差分方程。但实验内容3 (a)是 在例3中,计算的是前向差分方程。但实验内容3 (a)是 后向差分方程。所以要仿照例3的程序和Z 后向差分方程。所以要仿照例3的程序和Z变换求解后 向差分方程的原理编写用z 向差分方程的原理编写用z变换计算前向差分方程的零 输入响应,零状态响应,全响应的程序。 输入响应,零状态响应,全响应的程序。 仿照例3的方法,完成实验内容3的编程。 仿照例3的方法,完成实验内容3的编程。上机调试程 序,与理论计算结果比较。 与理论计算结果比较。 由于实验内容4有复数极点, 由于实验内容4有复数极点,用符号运算的方法就不能 计算。这需要用部分分式法和Z 计算。这需要用部分分式法和Z变换解差分方程的原理 来完成实验内容4的编程。(提高实验) 来完成实验内容4的编程。(提高实验) 。(提高实验
4
实验原理与说明
3、差分方程的Z变换解 差分方程的Z 若线性常系数差分方程描述的系统为: 若线性常系数差分方程描述的系统为:
(1)已知零输入初始值 对上式两边取 变换有: 变换有:
和
上式的第一项为零输入响应,第二项为零状态响应。 上式的第一项为零输入响应,第二项为零状态响应。
5
实验原理与说明
(2)已知系统初始值 对原方程式两边取
10
实验内容 1
求下列序列的变
(a) (b)
换,并注明收敛域。 并注明收敛域。
(c) (d)
11
实验内容 2
求下列
Z域变换分析方法

[1 0.7 z 0.1z ]Y ( z) 0.7 y(1) 0.1z y(1) 0.1y(2)
1 2 1
第8章 Z变换
(2 z 2.6)z 代入初始条件,整理得 : Y ( z ) 2 z 0.7 z 0.1 Y ( z) (2 z 2.6) 12 10 z ( z 0.2)(z 0.5) ( z 0.5) ( z 0.2)
例8-10: 已知某离散LTI系统的单位阶跃响应为:
s[n] (2 3 5 10)u[n]
n n
(1)求系统单位抽样响应 (2)求此二阶差分方程
解: ( 1)
h[n] s[n] s[n 1] 1 n 12 n ( 2 5 )u[n] 11.1 [n] 2 5稳定系统全部极点就一定是位于单位圆内的呢?
第8章 Z变换
三、由极点分布决定系统稳定性 系统稳定的充要条件是单位样值响应绝对可和。即:
n
h( n )
因果稳定系统的充要条件为 :h(n)是单边的而且是有 界的。即: 因果
稳定
h(n) h(n)u (n) 非因果也 可以稳定 h( n) a<1 n
一、系统函数的求取 定义一:系统单位样值响应h[n]的Z变换
激励与单位样值响应的卷积为系统零状态响应
y[n] x[n] h[n]
由卷积定理
Y ( z) X ( z)H ( z)
Y ( z) H ( z) X ( z)
H ( z ) h[n]z
n 0
n
第8章 Z变换
定义二:系统零状态响应的Z变换与输入的Z变换之比 若x(n)是因果序列, 则在系统零状态下:
1 2 1
第8章 Z变换
(2 z 2.6)z 代入初始条件,整理得 : Y ( z ) 2 z 0.7 z 0.1 Y ( z) (2 z 2.6) 12 10 z ( z 0.2)(z 0.5) ( z 0.5) ( z 0.2)
例8-10: 已知某离散LTI系统的单位阶跃响应为:
s[n] (2 3 5 10)u[n]
n n
(1)求系统单位抽样响应 (2)求此二阶差分方程
解: ( 1)
h[n] s[n] s[n 1] 1 n 12 n ( 2 5 )u[n] 11.1 [n] 2 5稳定系统全部极点就一定是位于单位圆内的呢?
第8章 Z变换
三、由极点分布决定系统稳定性 系统稳定的充要条件是单位样值响应绝对可和。即:
n
h( n )
因果稳定系统的充要条件为 :h(n)是单边的而且是有 界的。即: 因果
稳定
h(n) h(n)u (n) 非因果也 可以稳定 h( n) a<1 n
一、系统函数的求取 定义一:系统单位样值响应h[n]的Z变换
激励与单位样值响应的卷积为系统零状态响应
y[n] x[n] h[n]
由卷积定理
Y ( z) X ( z)H ( z)
Y ( z) H ( z) X ( z)
H ( z ) h[n]z
n 0
n
第8章 Z变换
定义二:系统零状态响应的Z变换与输入的Z变换之比 若x(n)是因果序列, 则在系统零状态下:
利用z变换解差分方程
于是
Y(z) =
br z−r ∑ ak z−k ∑
k= 0 M r= 0 N
M
X(z)
令
H(z) =
∑b z
r r= 0 N k= 0
−r
ak z−k ∑
则
Y(z) = X (z)H(z)
−1
此时对应的序列为 y(n) = F [X(z)H(z)]
差分方程为 例:若描述离散系统的 1 1 y(n) + y(n −1) − y(n − 2) = x(n) 2 2 x(n) = 2n u(n) , y( 已知激励 初始状态 −1) =1, y(−2) = 0, 求系统的零输入响应、 零状态响应和全响应。 求系统的零输入响应、 零状态响应和全响应。
ak z−k [Y(z) = ∑br z−r [X(z) + ∑x(m)z−m] ∑
k= 0 r= 0 m=−r N M −1
如果激励x(n)为因果序列, 如果激励x(n)为因果序列,上式可以写成 x(n)为因果序列
ak z−k [Y(z) = ∑br z−r X(z) ∑
k= 0 r= 0 N M
8.5节已经给出利用 节已经给出利用z 在8.5节已经给出利用z变换解差分方程的简 单实例,本节给出一般规律。 单实例,本节给出一般规律。这种方法的原 理是基于z变换的线性和位移性, 理是基于z变换的线性和位移性,把差分方程 转化为代数方程,从而使求解过程简化。 转化为代数方程,从而使求解过程简化。
k= 0 l =−k r= 0 m=−r −1
若激励x(n)=0,即系统处于零输入状态,此时 若激励x(n)=0,即系统处于零输入状态, x(n)=0,即系统处于零输入状态 差分方程( 差分方程(1)成为齐次方程∑a y(n −源自) =0k=0 kN
第八章_离散时间系统的z域分析4_北京交通真题库_大学915916通信系统及原
z0
七阶极点
j Im[z]
z
1 3
一阶极点
Re[z]
z 0
27
§8.4 逆z变换
X (z) ZT[x(n)] x(n)zn n
x(n) ZT 1[ X (z)] 1 X (z)zn1dz
2 j C
C是包围X(z)zn-1所有极点的逆时针闭合积分路线,一
般取z平面收敛域内以原点为中心的圆。
n0
n
an zn 1 bn zn
n0
n0
z a, z b
X (z) z 1 b za zb zz
za zb
25
jIm(z)
a
0
Re(z)
jIm(z)
a
0 b
Re(z)
图8.1序列单边Z变换的收敛域
图8.2序列双边Z变换的收敛域
当 z a时,X (z) z 当a z b时,X (z) z z
d s j
j
)
!
d
zs
j
(z
zi )s
X (z)
z
zzi
32
或X (z)
A0
M m1
1
Am zm
z
1
s j 1
Cj (1 zi z1) j
A0
M m1
Am z z zm
C1z z zi
C2 z2 (z zi )2
Cs (z
zs zi )s
Cs
1 zi z1
s
X
(
z
)
z
6
§8.2 z变换的定义、典型序列的z变换
➢ 借助于抽样信号的拉氏变换引出。 ➢ 连续因果信号x(t)经均匀冲激抽样,则抽样信号xs(t)
Z变换的基本性质
第
22 页
Y z A1 A2 z z 1 z 0.9
A1 0.5
A2 0.45
z z Y z 0.5 0.45 z 1 z 0.9
y n 0.5 0.45 0.9
n
n 0
第
例8-7-2
已知系统框图 列出系统的差分方程。
a,b为任意常数。
二.位移性
1.双边z变换 2.单边z变换
(1) 左移位性质
(2) 右移位性质
第 4 页
1.双边z变换的位移性质
x ( n) 4
第 5 页
x ( n 2) 4
4
x ( n 2)
1O Hale Waihona Puke 2n 1O 1 2
n
2 1 O 1
n
的z变换为Z x( n m ) z m X ( z )
1 m k z X z x k z k m
(z域微分) 三.序列线性加权
若 则 Z x( n) X ( z )
第
12 页
d X (z) 1 d X z nx( n) z z dz d z 1
例:求na
解:
n
z2 Yzs z 2 z 2
n Yzs z yzs n n 1 2 un
第
b.由储能引起的零输入响应(对n 2都成立)
Yzi z 1 3z 1 2z 2 2z 1 y 1 3 y 1 2 y 2
z z 1 3z 2z Yzi z z 2z 1 z 2 z 1 零输入响应为
25 页
差分方程及其Z变换法求解
例1:右图所示的一阶系统描述它的微分方程为
y(t ) Ke(t ) K (r (t ) y(t ))
y(t ) Ky(t ) Kr (t )
用一阶前向差分方程近似:
(1)
r( t ) e( t ) -
K
1/s
y( t )
y (k 1)T y (kT ) dy y (t ) lim dt T 0 T
由图:x1 (k 1)T x2 (kT )
zX 1 ( z ) zx1 (0) X 2 ( z )
x2(kT)
z
1
x1(kT)
z 1
x1(0) 1
x1 ( z)
x2(z) y[(k+1)T]
例2:画出例2所示离散系统的模拟图
y[(k 1)T ] -( KT -1) y(kT ) + KTr (kT ) r(kT)
y (k 1)T y (kT ) T
(T 很小)
(2)
式中:T为采样周期,(2)代入(1)得:
y (k 1)T (KT 1) y(kT ) KTr(kT )
y(k 1) ( K 1) y(k ) Kr (k )
(3)
二、离散系统差分方程的模拟图
连续系统采用积分器s-1作为模拟连续系统微分方程的主要器件; 与此相对应,在离散系统中,采用单位延迟器z-1。 单位延迟器:把输入信号延迟一个采样周期T秒或延迟1拍。
再利用初始条件,逐次迭代得到各采样时刻的值。
特点:适用于计算机处理求解。 例3:用迭代法解二阶差分方程 y(k+2) +3y(k+1)+2y(k)=1(k)
利用初始条件 y(0)=0, y(1)=1,则有: y(k+2) =-3y(k+1) -2y(k)+1(k) y(2) =-3y(1) -2y(0)+1(0)= -3*1-2*0+1= -2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 页
三.差分方程解的验证
y(0), y(1), y(2)两种迭代结果相同 , y 解的表达式迭代出 (0), y(1), y(2) 解答是正确的 原方程迭代出
�
X
第
二.差分方程响应y(n)的起始点确定
响应y(n)根据输入信号加上的时刻定 根据输入信号加上 全响应 根据输入信号加上的时刻定 对因果系统 不可能出现在x(n)之前 对因果系统y(n)不可能出现在 系统 不可能出现在 之前 观察Y(z)分子分母的幂次 分子分母的幂次 观察 分子分母 分母高于分子的次数是响应的起点 次数是响应的 分母高于分子的次数是响应的起点 2z 2z Y (z) = 2 y 从n = 2开始 (n)有不为零的值 . (z +1)(z + 2)
§8.7 用z变换解差分方程
北京邮电大学电子工程学院 2003.1
第
序言
2 页
描述离散时间系统的数学模型为差分方程. 描述离散时间系统的数学模型为差分方程.求解差分 方程是我们分析离散时间系统的一个重要途径. 方程是我们分析离散时间系统的一个重要途径. 求解线性时不变离散系统的差分方程有两种方法: 求解线性时不变离散系统的差分方程有两种方法: 时域方法 时域方法——第七章中介绍,烦琐 第七章中介绍, 时域方法 第七章中介绍 z变换方法 变换方法 差分方程经 变换→代数方程; 差分方程经z变换 代数方程; 差分方程经 变换→ 可以将时域卷积→频域(z域)乘积; 可以将时域卷积→ 可以将时域卷积 频域( 域 乘积; 部分分式分解后将求解过程变为查表; 部分分式分解后将求解过程变为查表; 部分分式分解后将求解过程变为查表 求解过程自动包含了初始状态(相当于0-的 求解过程自动包含了初始状态( 求解过程自动包含了初始状态 相当于0 条件). 条件).
X
第
一.应用z变换求解差分方程步骤
一.步骤
(1)对差分方程进行单边 变换(移位性质); 对差分方程进行单边 变换(移位性质) 对差分方程进行单边z变换 (2)由z变换方程求出响应 由 变换方程求出响应 变换方程求出响应Y(z) ; (3) 求Y(z) 的反变换,得到 的反变换,得到y(n) .
3 页