差分方程的Z变换解
§5-4_差分方程的z变换解法

Q X( z ) =
z
1 z− 4 1 2 z 2 ∴ Y ( z) = 1 1 ( z + )( z − ) 2 4
1 2 X ( z) ∴ Y ( z) = 1 −1 1+ z 2 1 z Y ( z) 2 = 1 1 z ( z + )( z − ) 2 4
= 1 3 z+ 1 2 + 1 6 z− 1 4
求反z变换 求反 变换
2 5 1 1 n n n ∴ y(n) = [− (0.2) + (0.5) + (0.2) + (0.5) n ]u (n) 3 3 5 2
零状态响应 零输入响应
= [−
7 13 (0.2) n + (0.5) n ]u (n) 15 6
自由响应
与拉氏变换解微分方程类似, 变换解差分方程可以一次求 与拉氏变换解微分方程类似,用z变换解差分方程可以一次求 出系统的全解。同样因为带有起始条件,使运算繁杂。 出系统的全解。同样因为带有起始条件,使运算繁杂。
N
设差分方程为: 设差分方程为: 两边同求z变换: 两边同求 变换: 变换
∑a
k =0
N k =0
k
y (n − k ) = ∑ br x(n − r )
r =0
−1 −k
M
∑a z
k
[Y ( z ) +
n= − k
∑ y ( n) z
−n
] = ∑ br z − r X ( z )
r =0
M
《Signals & Systems》 》
1 y (n) + y (n − 1) = 0 2
系统方程求z变换 系统方程求 变换
matlab用z变换求解差分方程

matlab用z变换求解差分方程Z变换是一种非常重要的信号分析工具,在MATLAB中,可以使用Symbolic Math Toolbox进行Z变换的计算和求解差分方程。
Z变换是一种将离散时间信号从时间域转换到复平面域的方法。
它与拉普拉斯变换的关系类似,但适用于离散时间信号的分析。
在MATLAB 中,使用syms函数创建符号变量来表示Z变换的变量,然后使用ztrans函数进行Z变换的计算和求解差分方程。
下面将通过一个简单的例子来说明如何使用MATLAB进行Z变换求解差分方程。
假设有一个差分方程:y[n]-0.5y[n-1]+0.25y[n-2]=x[n]首先,使用syms函数创建符号变量:syms z定义输入信号和初始条件:x=z^2;%输入信号y0=1;%初始条件y[-1]y1=0;%初始条件y[-2]然后,使用ztrans函数进行Z变换计算:Y = ztrans(y[n], n, z);X = ztrans(x, n, z);差分方程中的Y和X分别表示Y(z)和X(z),因此可以写出差分方程的Z变换方程:Y-0.5*z^(-1)*Y+0.25*z^(-2)*Y=X然后,将方程转化为Y(z)的表达式:Y = solve(Y - 0.5*z^(-1)*Y + 0.25*z^(-2)*Y == X, Y);至此,Z变换方程求解完成,可以使用ilaplace函数从Z域转换回时间域,以获得Y[n]的表达式:y = ilaplace(Y, z, n);最后,可以将结果绘制出来:n=-10:10;%时间范围y_n = subs(y, n, n); % 计算y[n]的值stem(n, y_n); % 绘制离散时间信号综上所述,我们可以使用MATLAB的Symbolic Math Toolbox进行差分方程的Z变换求解,这对于信号分析和系统设计非常有用。
差分方程的Z变换解

其中: 其中:
。
14
实验步骤与方法
用ztrans、iztrans求实验内容1和2。在命令窗口求解 ztrans、iztrans求实验内容 求实验内容1 即可。 即可。 在例3 计算的是前向差分方程。但实验内容3 (a)是 在例3中,计算的是前向差分方程。但实验内容3 (a)是 后向差分方程。所以要仿照例3的程序和Z 后向差分方程。所以要仿照例3的程序和Z变换求解后 向差分方程的原理编写用z 向差分方程的原理编写用z变换计算前向差分方程的零 输入响应,零状态响应,全响应的程序。 输入响应,零状态响应,全响应的程序。 仿照例3的方法,完成实验内容3的编程。 仿照例3的方法,完成实验内容3的编程。上机调试程 序,与理论计算结果比较。 与理论计算结果比较。 由于实验内容4有复数极点, 由于实验内容4有复数极点,用符号运算的方法就不能 计算。这需要用部分分式法和Z 计算。这需要用部分分式法和Z变换解差分方程的原理 来完成实验内容4的编程。(提高实验) 来完成实验内容4的编程。(提高实验) 。(提高实验
4
实验原理与说明
3、差分方程的Z变换解 差分方程的Z 若线性常系数差分方程描述的系统为: 若线性常系数差分方程描述的系统为:
(1)已知零输入初始值 对上式两边取 变换有: 变换有:
和
上式的第一项为零输入响应,第二项为零状态响应。 上式的第一项为零输入响应,第二项为零状态响应。
5
实验原理与说明
(2)已知系统初始值 对原方程式两边取
10
实验内容 1
求下列序列的变
(a) (b)
换,并注明收敛域。 并注明收敛域。
(c) (d)
11
实验内容 2
求下列
信号与系统5-2差分方程的Z变换解课件

电信学院
1
前向差分方程
查公式
考虑二阶系统:
y(k 2) a1y(k 1) a0 y(k) b2 f (k 2) b1 f (k 1) b0 f (k)
初始值:yzi (0), yzi (1)
两边取Z变换有:
(z2 a1z a0 )Y (z) yzi (0)z2 yzi (1)z a1yzi (0)z (b2z2 b1z b0 )F(z)
1
(z
1)( z
2)
z
1
3
z
1
z
1
3
z
2
全响应
yzs (k )
[2 3
(1)k
1 3
(2)k
] (k)
y(k)
yzi
(k)
yzs (k )
[
2 3
6(1)k
2 3
(2)k
]
(k)
电信学院 返回
8
例 5.12 解 法 二
y(k 2) 3y(k 1) 2y(k) f (k 1) 3 f (k) yzi(1)=1, yzi(2)=3
F(z)
Y (z) Yzi (z) Yzs (z) 零输入响应
零状态响应
电信学院
3
系统函数
定义
H
(z)
零状态响应的z变换 激励信号的z变换
Yzs (z) F(z)
二阶系统零状态响应
Yzs (z)
b2z2 b1z b0 z2 a1z a0
F(z)
H (z)F (z)
对n阶LTI系统的系统函数
(b2z2 b1z b0 )F(z) b2 f (0)z2 b2 f (1)z b1 f (0)z
令:M (z) [ y(0) b2 f (0)]z2 [ y(1) a1y(0) b2 f (1) b1 f (0)]z
利用z变换解差分方程

于是
Y(z) =
br z−r ∑ ak z−k ∑
k= 0 M r= 0 N
M
X(z)
令
H(z) =
∑b z
r r= 0 N k= 0
−r
ak z−k ∑
则
Y(z) = X (z)H(z)
−1
此时对应的序列为 y(n) = F [X(z)H(z)]
差分方程为 例:若描述离散系统的 1 1 y(n) + y(n −1) − y(n − 2) = x(n) 2 2 x(n) = 2n u(n) , y( 已知激励 初始状态 −1) =1, y(−2) = 0, 求系统的零输入响应、 零状态响应和全响应。 求系统的零输入响应、 零状态响应和全响应。
ak z−k [Y(z) = ∑br z−r [X(z) + ∑x(m)z−m] ∑
k= 0 r= 0 m=−r N M −1
如果激励x(n)为因果序列, 如果激励x(n)为因果序列,上式可以写成 x(n)为因果序列
ak z−k [Y(z) = ∑br z−r X(z) ∑
k= 0 r= 0 N M
8.5节已经给出利用 节已经给出利用z 在8.5节已经给出利用z变换解差分方程的简 单实例,本节给出一般规律。 单实例,本节给出一般规律。这种方法的原 理是基于z变换的线性和位移性, 理是基于z变换的线性和位移性,把差分方程 转化为代数方程,从而使求解过程简化。 转化为代数方程,从而使求解过程简化。
k= 0 l =−k r= 0 m=−r −1
若激励x(n)=0,即系统处于零输入状态,此时 若激励x(n)=0,即系统处于零输入状态, x(n)=0,即系统处于零输入状态 差分方程( 差分方程(1)成为齐次方程∑a y(n −源自) =0k=0 kN
差分方程及其Z变换法求解

例1:右图所示的一阶系统描述它的微分方程为
y(t ) Ke(t ) K (r (t ) y(t ))
y(t ) Ky(t ) Kr (t )
用一阶前向差分方程近似:
(1)
r( t ) e( t ) -
K
1/s
y( t )
y (k 1)T y (kT ) dy y (t ) lim dt T 0 T
由图:x1 (k 1)T x2 (kT )
zX 1 ( z ) zx1 (0) X 2 ( z )
x2(kT)
z
1
x1(kT)
z 1
x1(0) 1
x1 ( z)
x2(z) y[(k+1)T]
例2:画出例2所示离散系统的模拟图
y[(k 1)T ] -( KT -1) y(kT ) + KTr (kT ) r(kT)
y (k 1)T y (kT ) T
(T 很小)
(2)
式中:T为采样周期,(2)代入(1)得:
y (k 1)T (KT 1) y(kT ) KTr(kT )
y(k 1) ( K 1) y(k ) Kr (k )
(3)
二、离散系统差分方程的模拟图
连续系统采用积分器s-1作为模拟连续系统微分方程的主要器件; 与此相对应,在离散系统中,采用单位延迟器z-1。 单位延迟器:把输入信号延迟一个采样周期T秒或延迟1拍。
再利用初始条件,逐次迭代得到各采样时刻的值。
特点:适用于计算机处理求解。 例3:用迭代法解二阶差分方程 y(k+2) +3y(k+1)+2y(k)=1(k)
利用初始条件 y(0)=0, y(1)=1,则有: y(k+2) =-3y(k+1) -2y(k)+1(k) y(2) =-3y(1) -2y(0)+1(0)= -3*1-2*0+1= -2
3差分方程Z变换解读

第3章线性离散时间系统的描述及分析3.1 差分方程及其时域分析3.1.1 差分方程3.1.2 差分方程的解A递推解B古典解C Z变换求解3.2 Z变换3.2.1 Z变换的定义3.2.2 Z变换的性质3.2.3 Z反变换A长除法B留数法C部分分式法3.3 离散时间系统的Z域分析3.3.1 零输入响应3.3.2 零状态响应3.3.3 完全响应3.4 Z传递函数及其求法3.4.1 Z传递函数的定义3.4.2 离散系统的运算3.4.3 由G(s)求G(z)——连续时间系统的离散化A对G(s)的讨论B对离散化方法的评价C 留数法D直接代换法E系统等效法Ⅰ——冲击响应不变法;F系统等效法Ⅱ——阶跃响应不变法G部分分式法3.4.4 离散化方法小结3.5 线性离散时间系统的稳定性分析3.5.1 闭环极点与输出特性之间的关系3.5.2 稳定判据3.6 线性离散时间系统的频率特性分析法3.6.1 线性离散时间系统的频率特性3.6.2 线性离散时间系统的频率特性分析法第3章 线性离散系统的描述及分析3.1 差分方程及其时域分析3.1.1 差分方程在线性离散时间动态系统中,输入激励序列u (k )与输出响应序列y (k )之间的动态关系在时域中用差分方程来描述,差分方程一般写成升序方式1101101-1()(1)(1)()()(1)(1)()0(0),(1),...,(-1)n n m m n y k n a y k n a y k a y k b u k m b u k m b u k b u k k y y y y y n y m n--+++-++++==+++-++++≥===≤有始性:初始条件:时间因果律: (2.1)或写成∑∑==-+--+=+m i nj j i j n k y a i m k u b n k y 01)()()(上式表明某一离散时间点上输出值可能与当前时间点上的输入值(当00,b m n ≠=)以及此前若干个输入和输出值有关。
6.5 用Z变换解差分方程

上述结论可由s平面与z平面的关系以及H(s)极点 分布与h(t)形状的关系直接得来
(五)由H(z)判定离散系统的稳定性
稳定系统: H z 的全部极点落在单位圆之内。
临界稳定系统:单位圆上有一阶极点,其余极点均位 于单位圆内。
不稳定系统:单位圆外有极点或单位圆上有高阶极点。
第六章 z变换、 离散系统的z域分析 小结
解:
零状态响应,初值为0
(1) Y z 3z 1Y z 2z 2Y z X z 1 z 1
Y z 1 z 1 z ( 2) H z 1 2 X z 1 3z 2z z2
综合
例:书:87页,例8-19
§6.5
用 z 变 换 解 差 分 方 程
§6利用Z变换解差分方程的一般规律; 方法的原理: 基于Z变换的线性和位移性 将差分方程转化为代数方程 使求解过程简化
线性时不变离散系统的差分方程一般形式:
a
k 0
N
k
y( n k ) br x ( n r )
N N A z n 1 k hn ZT Ak zk un k 0 z zk k 0
H z 的极点 zk ,可以是不同的实数或共轭复数, 决定了 hn 的特性。
zk在单位圆内,h(n)为衰减序列
zk在单位圆外, h(n)为发散序列 zk在单位圆上且为一阶: h(n)不衰减也不发散 zk在单位圆上且为高阶: h(n)为发散序列
2) A1 2 ,B1 2,
3) Y z 2
B2 2
z z z 2 2 2 z 1 z2 z 2
n n n
4) yn 2 1 2 2 2n 2 un