§8.7 用z变换解差分方程
合集下载
Z变换和差分方程

t z 1
经常用于分析计算机系统的稳态误差!!
5、超前定理
n F ( z ) f ( nT ) z 则: 设函数f(t)的 Z变换为 n 0
Z [ f (t kT )] z F ( z ) z
k
k
n 0
n 1
f (nT ) z n
若
f (0) f (T ) f [(k 1)T ] 0 则:
k
求: y ( k )
• 解: • 将方程中除 y(k)以外的各项都移到等号右边, • 得: y(k ) 3 y(k 1) 2 y(k 2) f (k )
• 对于 k 2, 将已知初始值 y(0) 0, y(1) 2代入上式,得:
y(2) 3 y(1) 2 y(0) f (2) 2
第三节
差分方程
差分方程是包含关于变量 k 的序列y(k) 及其各阶差分的方程式。 是具有递推关系的代数方程,若已知初始 条件和激励,利用迭代法可求差分方程的数值 解。
差分方程的定义:
对于单输入单输出线性定常系统,在某一采样时 刻的输出值 y(k) 不仅与这一时刻的输入值 r(k)有 关,而且与过去时刻的输入值r(k-1)、 r(k-2)…有 关,还与过去的输出值y(k-1)、 y(k-2)…有关。可 以把这种关系描述如下:
i 1
n
i 1 n
函数线性组合的Z变换,等于各函数Z变换的线性组合。
2、滞后定理
设在t<0时连续函数f(t)的值为零,其Z变换为F(Z)则:
Z[ f (t kT )] z k F ( z)
原函数在时域中延迟几个采样周期,相当于在象函数上乘以z-k, 算子z-k的含义可表示时域中时滞环节,把脉冲延迟k个周期。
经常用于分析计算机系统的稳态误差!!
5、超前定理
n F ( z ) f ( nT ) z 则: 设函数f(t)的 Z变换为 n 0
Z [ f (t kT )] z F ( z ) z
k
k
n 0
n 1
f (nT ) z n
若
f (0) f (T ) f [(k 1)T ] 0 则:
k
求: y ( k )
• 解: • 将方程中除 y(k)以外的各项都移到等号右边, • 得: y(k ) 3 y(k 1) 2 y(k 2) f (k )
• 对于 k 2, 将已知初始值 y(0) 0, y(1) 2代入上式,得:
y(2) 3 y(1) 2 y(0) f (2) 2
第三节
差分方程
差分方程是包含关于变量 k 的序列y(k) 及其各阶差分的方程式。 是具有递推关系的代数方程,若已知初始 条件和激励,利用迭代法可求差分方程的数值 解。
差分方程的定义:
对于单输入单输出线性定常系统,在某一采样时 刻的输出值 y(k) 不仅与这一时刻的输入值 r(k)有 关,而且与过去时刻的输入值r(k-1)、 r(k-2)…有 关,还与过去的输出值y(k-1)、 y(k-2)…有关。可 以把这种关系描述如下:
i 1
n
i 1 n
函数线性组合的Z变换,等于各函数Z变换的线性组合。
2、滞后定理
设在t<0时连续函数f(t)的值为零,其Z变换为F(Z)则:
Z[ f (t kT )] z k F ( z)
原函数在时域中延迟几个采样周期,相当于在象函数上乘以z-k, 算子z-k的含义可表示时域中时滞环节,把脉冲延迟k个周期。
z变换求解差分方程步骤

z变换求解差分方程步骤嘿,咱今儿就来讲讲这用 z 变换求解差分方程的步骤哈。
这可就像是解开一道神秘的谜题呢!你想想,差分方程就像是一个调皮的小精灵,藏着好多秘密等我们去发现。
而 z 变换呢,就是那把神奇的钥匙啦。
首先呢,得把差分方程给它表示清楚咯,可不能模模糊糊的。
就像你要找东西,总得先知道要找啥样的不是?然后对这个差分方程进行 z 变换,这就好比给它施了个魔法,一下子就变得不一样啦。
在这个过程中啊,你得细心点儿,可别弄错啦。
这就跟走迷宫似的,一步错步步错呀。
接着呢,就会得到一个关于 z 的表达式,这可就是我们前进的线索呢。
然后呢,咱得把这个表达式给它化简化简,把那些复杂的东西都去掉,就像给苹果削皮一样,让它露出最精华的部分。
这时候可就考验咱的本事啦,得有耐心,还得有那么点儿小技巧。
再接下来呀,就得求解啦!这就像是终于找到了宝藏的位置,要把它挖出来一样。
把 z 的值求出来,这可不容易呢,但咱不能怕呀,要勇往直前!等求出了 z 的值,可别以为就大功告成咯。
还得把它变回原来的世界,也就是反变换回去。
这就像是把变了形的东西再变回来,可神奇啦。
哎呀,你说这过程是不是挺有意思的?就好像是一场冒险,每一步都充满了挑战和惊喜。
你要是能熟练掌握这 z 变换求解差分方程的步骤,那可就厉害咯,就像是拥有了超能力一样!你想想,以后遇到那些复杂的差分方程,别人都抓耳挠腮不知道咋办的时候,你就能轻松搞定,那多牛呀!这就好比别人还在走路,你都开上小汽车啦,一下子就把他们甩在后面啦。
所以呀,可得好好学这 z 变换求解差分方程的步骤哦,别偷懒,多练练,肯定能掌握得牢牢的。
到时候,不管啥样的难题都难不倒你啦!这多棒呀,是不是?。
Z变换详细讲解2

f (t)
j
F
(s)e
st
ds
由于z esT , dz Te sT
Tz
j
ds
f (t) f (nT ) f (n)
F (s) f (n)z n F (z) n
e sT e snT z n
ds 1 dz dz Tz z
j
j
c
10
f (n) 1 F (z)z n1dz 令z re j
n0
zm x(n m)z(nm) zm x(k)zk
n0
k m
zm
x(k ) z k
m1
x(k ) z k
k 0
k 0
zm
X
(z)
m1
x(k ) z k
k 0
15
(3)双边右移序列旳单边Z变换
X (z) x(n)u(n)zn n0
ZT[x(n m)u(n)] x(n m)zn
.画出下列系统函数所表示系统的建立级联和 并联形式的结构图。
H (z) 3z3 5z 2 10z z3 3z2 7z 5
解:
H
(
z
)=
(
z z
(3z 2 1)(
z2
5z 10) 2z 5)
1 1 z 1
3 5z 1 1 2z 1
10z 2 5z2
1
H (z)
1 1 z1
br z r
r 0
N
ak zk
k 0
请注意这里 与解差分有 何不同?
因果!
22
(2)定义二:系统单位样值响应h(n) 旳Z变换
• 鼓励与单位样值响应旳卷积为系统零状
态响应
y(n) x(n)*h(n)
差分方程的求解

计算机控制技术课程讲义
17
4.6 方框图及其分析
脉冲传递函数也可用方块图表示,增加一个部件 —— 采样开关
4.6.1 采样开关位置与脉冲传递函数的关系
1、连续输入,连续输出 2、连续输入,离散输出 3、离散输入,离散输出 4、离散输入,连续输出
例:方框图分析
例1、例2、
计算机控制技术课程讲义 18
计算机控制技术课程讲义 2
做Z反变换,由于 Y ( z) 1 1 1 2 z z 3z 2 z 1 z 2 z z 则Y ( z ) z 1 z 2 查Z变换表可得 y (k T) Z 1[Y ( z )] (1) k (2) k , k 0,1,2,...
两个环节中间无采样开关时
a z (1 e aT ) G ( z ) Z [G1 ( s )G2 ( s )] Z s ( s a ) ( z 1)( z e aT )
G1 ( z )G2 ( z ) G1G2 ( z )
计算机控制技术课程讲义 13
T
Y (s)
D( z ) G1 ( z ) R( z ) Y ( z ) G2 ( z ) D( z ) G1 ( z )G2 ( z ) R( z )
Y ( z) G( z) G1 ( z )G2 ( z ) R( z )
计算机控制技术课程讲义
脉冲传递函数等于两个环 节的脉冲传递函数之积。
但是,对离散系统而言,串联环节的脉冲传递函数不 一定如此,这由各环节之间有无同步采样开关来确定
计算机控制技术课程讲义
10
二、离散系统串联环节 1、串联各环节之间有采样器的情况
G( z)
G1 ( z ) G2 ( z )
Z域变换分析方法

[1 0.7 z 0.1z ]Y ( z) 0.7 y(1) 0.1z y(1) 0.1y(2)
1 2 1
第8章 Z变换
(2 z 2.6)z 代入初始条件,整理得 : Y ( z ) 2 z 0.7 z 0.1 Y ( z) (2 z 2.6) 12 10 z ( z 0.2)(z 0.5) ( z 0.5) ( z 0.2)
例8-10: 已知某离散LTI系统的单位阶跃响应为:
s[n] (2 3 5 10)u[n]
n n
(1)求系统单位抽样响应 (2)求此二阶差分方程
解: ( 1)
h[n] s[n] s[n 1] 1 n 12 n ( 2 5 )u[n] 11.1 [n] 2 5稳定系统全部极点就一定是位于单位圆内的呢?
第8章 Z变换
三、由极点分布决定系统稳定性 系统稳定的充要条件是单位样值响应绝对可和。即:
n
h( n )
因果稳定系统的充要条件为 :h(n)是单边的而且是有 界的。即: 因果
稳定
h(n) h(n)u (n) 非因果也 可以稳定 h( n) a<1 n
一、系统函数的求取 定义一:系统单位样值响应h[n]的Z变换
激励与单位样值响应的卷积为系统零状态响应
y[n] x[n] h[n]
由卷积定理
Y ( z) X ( z)H ( z)
Y ( z) H ( z) X ( z)
H ( z ) h[n]z
n 0
n
第8章 Z变换
定义二:系统零状态响应的Z变换与输入的Z变换之比 若x(n)是因果序列, 则在系统零状态下:
1 2 1
第8章 Z变换
(2 z 2.6)z 代入初始条件,整理得 : Y ( z ) 2 z 0.7 z 0.1 Y ( z) (2 z 2.6) 12 10 z ( z 0.2)(z 0.5) ( z 0.5) ( z 0.2)
例8-10: 已知某离散LTI系统的单位阶跃响应为:
s[n] (2 3 5 10)u[n]
n n
(1)求系统单位抽样响应 (2)求此二阶差分方程
解: ( 1)
h[n] s[n] s[n 1] 1 n 12 n ( 2 5 )u[n] 11.1 [n] 2 5稳定系统全部极点就一定是位于单位圆内的呢?
第8章 Z变换
三、由极点分布决定系统稳定性 系统稳定的充要条件是单位样值响应绝对可和。即:
n
h( n )
因果稳定系统的充要条件为 :h(n)是单边的而且是有 界的。即: 因果
稳定
h(n) h(n)u (n) 非因果也 可以稳定 h( n) a<1 n
一、系统函数的求取 定义一:系统单位样值响应h[n]的Z变换
激励与单位样值响应的卷积为系统零状态响应
y[n] x[n] h[n]
由卷积定理
Y ( z) X ( z)H ( z)
Y ( z) H ( z) X ( z)
H ( z ) h[n]z
n 0
n
第8章 Z变换
定义二:系统零状态响应的Z变换与输入的Z变换之比 若x(n)是因果序列, 则在系统零状态下:
利用z变换解差分方程

于是
Y(z) =
br z−r ∑ ak z−k ∑
k= 0 M r= 0 N
M
X(z)
令
H(z) =
∑b z
r r= 0 N k= 0
−r
ak z−k ∑
则
Y(z) = X (z)H(z)
−1
此时对应的序列为 y(n) = F [X(z)H(z)]
差分方程为 例:若描述离散系统的 1 1 y(n) + y(n −1) − y(n − 2) = x(n) 2 2 x(n) = 2n u(n) , y( 已知激励 初始状态 −1) =1, y(−2) = 0, 求系统的零输入响应、 零状态响应和全响应。 求系统的零输入响应、 零状态响应和全响应。
ak z−k [Y(z) = ∑br z−r [X(z) + ∑x(m)z−m] ∑
k= 0 r= 0 m=−r N M −1
如果激励x(n)为因果序列, 如果激励x(n)为因果序列,上式可以写成 x(n)为因果序列
ak z−k [Y(z) = ∑br z−r X(z) ∑
k= 0 r= 0 N M
8.5节已经给出利用 节已经给出利用z 在8.5节已经给出利用z变换解差分方程的简 单实例,本节给出一般规律。 单实例,本节给出一般规律。这种方法的原 理是基于z变换的线性和位移性, 理是基于z变换的线性和位移性,把差分方程 转化为代数方程,从而使求解过程简化。 转化为代数方程,从而使求解过程简化。
k= 0 l =−k r= 0 m=−r −1
若激励x(n)=0,即系统处于零输入状态,此时 若激励x(n)=0,即系统处于零输入状态, x(n)=0,即系统处于零输入状态 差分方程( 差分方程(1)成为齐次方程∑a y(n −源自) =0k=0 kN
差分方程及其Z变换法求解

例1:右图所示的一阶系统描述它的微分方程为
y(t ) Ke(t ) K (r (t ) y(t ))
y(t ) Ky(t ) Kr (t )
用一阶前向差分方程近似:
(1)
r( t ) e( t ) -
K
1/s
y( t )
y (k 1)T y (kT ) dy y (t ) lim dt T 0 T
由图:x1 (k 1)T x2 (kT )
zX 1 ( z ) zx1 (0) X 2 ( z )
x2(kT)
z
1
x1(kT)
z 1
x1(0) 1
x1 ( z)
x2(z) y[(k+1)T]
例2:画出例2所示离散系统的模拟图
y[(k 1)T ] -( KT -1) y(kT ) + KTr (kT ) r(kT)
y (k 1)T y (kT ) T
(T 很小)
(2)
式中:T为采样周期,(2)代入(1)得:
y (k 1)T (KT 1) y(kT ) KTr(kT )
y(k 1) ( K 1) y(k ) Kr (k )
(3)
二、离散系统差分方程的模拟图
连续系统采用积分器s-1作为模拟连续系统微分方程的主要器件; 与此相对应,在离散系统中,采用单位延迟器z-1。 单位延迟器:把输入信号延迟一个采样周期T秒或延迟1拍。
再利用初始条件,逐次迭代得到各采样时刻的值。
特点:适用于计算机处理求解。 例3:用迭代法解二阶差分方程 y(k+2) +3y(k+1)+2y(k)=1(k)
利用初始条件 y(0)=0, y(1)=1,则有: y(k+2) =-3y(k+1) -2y(k)+1(k) y(2) =-3y(1) -2y(0)+1(0)= -3*1-2*0+1= -2
Z变换和差分方程

• 引入变量: 引入变量:
z=e
Ts
sT s
或者写成: s = 1 ln z 或者写成:
S: 拉普拉斯变换的算子; Ts:采样周期; 拉普拉斯变换的算子; Ts:采样周期 采样周期; 一个复变量, 平面上, 变换算子, Z:一个复变量,定义在 Z 平面上,称为 Z 变换算子, 记为:采样信号的Z变换: 记为:采样信号的Z变换:Z[f*(t)] = F(z) 变换, F (z)是采样脉冲序列的 Z变换, 它只考虑了采样时刻的信号值。 它只考虑了采样时刻的信号值。
y ( 0 ) = 0 , y (1) = 2 , 激励 f ( k )= 2 k ε ( k ),
求: y (k )
• 解: • 将方程中除 y(k)以外的各项都移到等号右边, 以外的各项都移到等号右边, • 得: y (k ) = −3 y (k − 1) − 2 y (k − 2) + f (k ) • 对于 k = 2, 将已知初始值y (0) = 0, y (1) = 2代入上式,得:
s z 1 z R2 = lim ( s + jω ) = sT s → − jω ( s − jω )( s + jω ) z − e 2 z − e − jωT
例8—6 求
解:
f ( t ) = t 的Z变换
两阶重极点!! 两阶重极点!!
1 F (s) = 2 s
d z d z Tz 2 1 R = lim (s − 0) 2 = lim = sT sT 2 s →0 ds s →0 ds z − e s z −e ( z − 1)
c ( k ) = (1 − T ) k c ( 0 ) + T
∑
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.应用z变换求解差分方程步骤
第 3
页
一.步骤
(2)由z变换方程求出响应Y(z) ; (3) 求Y(z) 的反变换,得到y(n) 。
二.差分方程响应y(n)的起始点确定时刻定
对因果系统y(n)不可能出现在x(n)之前
观察Y(z)分子分母的幂次
分母高于分子的次数是响应的起点
Y
z
z
2z
1z
22
从n 2开始yn有不为零的值。
三.差分方程解的验证
原方程迭代出 y0, y1, y2两种迭代结果相同, 解的表达式迭代出y0, y1, y2解答是正确的
§8.7 用z变换解差分方程
北京邮电大学电子工程学院
序言
第 2
页
描述离散时间系统的数学模型为差分方程。求解差分方 程是我们分析离散时间系统的一个重要途径。
求解线性时不变离散系统的差分方程有两种方法: •时域方法——第七章中介绍,烦琐 •z变换方法
•差分方程经z变换→代数方程; •可以将时域卷积→频域(z域)乘积; •部分分式分解后将求解过程变为查表; •求解过程自动包含了初始状态(相当于0-的 条件)。